var bibbase_data = {"data":"\"Loading..\"\n\n
\n\n \n\n \n\n \n \n\n \n\n \n \n\n \n\n \n
\n generated by\n \n \"bibbase.org\"\n\n \n
\n \n\n
\n\n \n\n\n
\n\n Excellent! Next you can\n create a new website with this list, or\n embed it in an existing web page by copying & pasting\n any of the following snippets.\n\n
\n JavaScript\n (easiest)\n
\n \n <script src=\"https://bibbase.org/show?bib=https://raw.githubusercontent.com/plai-group/bibliography/master/group_publications.bib&jsonp=1&theme=dividers&group0=year&group1=type&folding=0&filter=support:COVID&jsonp=1\"></script>\n \n
\n\n PHP\n
\n \n <?php\n $contents = file_get_contents(\"https://bibbase.org/show?bib=https://raw.githubusercontent.com/plai-group/bibliography/master/group_publications.bib&jsonp=1&theme=dividers&group0=year&group1=type&folding=0&filter=support:COVID\");\n print_r($contents);\n ?>\n \n
\n\n iFrame\n (not recommended)\n
\n \n <iframe src=\"https://bibbase.org/show?bib=https://raw.githubusercontent.com/plai-group/bibliography/master/group_publications.bib&jsonp=1&theme=dividers&group0=year&group1=type&folding=0&filter=support:COVID\"></iframe>\n \n
\n\n

\n For more details see the documention.\n

\n
\n
\n\n
\n\n This is a preview! To use this list on your own web site\n or create a new web site from it,\n create a free account. The file will be added\n and you will be able to edit it in the File Manager.\n We will show you instructions once you've created your account.\n
\n\n
\n\n

To the site owner:

\n\n

Action required! Mendeley is changing its\n API. In order to keep using Mendeley with BibBase past April\n 14th, you need to:\n

    \n
  1. renew the authorization for BibBase on Mendeley, and
  2. \n
  3. update the BibBase URL\n in your page the same way you did when you initially set up\n this page.\n
  4. \n
\n

\n\n

\n \n \n Fix it now\n

\n
\n\n
\n\n\n
\n \n \n
\n
\n  \n 2022\n \n \n (1)\n \n \n
\n
\n \n \n
\n
\n  \n article\n \n \n (1)\n \n \n
\n
\n \n \n
\n \n\n \n \n \n \n \n \n Planning as Inference in Epidemiological Dynamics Models.\n \n \n \n \n\n\n \n Wood, F.; Warrington, A.; Naderiparizi, S.; Weilbach, C.; Masrani, V.; Harvey, W.; Åšcibior, A.; Beronov, B.; Grefenstette, J.; Campbell, D.; and Nasseri, S. A.\n\n\n \n\n\n\n Frontiers in Artificial Intelligence, 4. 2022.\n \n\n\n\n
\n\n\n\n \n \n \"Planning paper\n  \n \n \n \"Planning arxiv\n  \n \n\n \n \n doi\n  \n \n\n \n link\n  \n \n\n bibtex\n \n\n \n  \n \n abstract \n \n\n \n  \n \n 10 downloads\n \n \n\n \n \n \n \n \n \n \n\n  \n \n \n\n\n\n
\n
@article{WOO-22,\n\tAUTHOR={Wood, Frank and Warrington, Andrew and Naderiparizi, Saeid and Weilbach, Christian and Masrani, Vaden and Harvey, William and Åšcibior, Adam and Beronov, Boyan and Grefenstette, John and Campbell, Duncan and Nasseri, S. Ali},   \n\tTITLE={Planning as Inference in Epidemiological Dynamics Models},      \n\tJOURNAL={Frontiers in Artificial Intelligence},      \n\tVOLUME={4},      \n\tYEAR={2022},      \n\tURL_Paper={https://www.frontiersin.org/article/10.3389/frai.2021.550603},       \n\turl_ArXiv={https://arxiv.org/abs/2003.13221},\n\tDOI={10.3389/frai.2021.550603},      \n\tISSN={2624-8212},   \n\tsupport = {D3M,COVID,ETALUMIS},\n  \tABSTRACT={In this work we demonstrate how to automate parts of the infectious disease-control policy-making process via performing inference in existing epidemiological models. The kind of inference tasks undertaken include computing the posterior distribution over controllable, via direct policy-making choices, simulation model parameters that give rise to acceptable disease progression outcomes. Among other things, we illustrate the use of a probabilistic programming language that automates inference in existing simulators. Neither the full capabilities of this tool for automating inference nor its utility for planning is widely disseminated at the current time. Timely gains in understanding about how such simulation-based models and inference automation tools applied in support of policy-making could lead to less economically damaging policy prescriptions, particularly during the current COVID-19 pandemic.}\n}\n\n
\n
\n\n\n
\n In this work we demonstrate how to automate parts of the infectious disease-control policy-making process via performing inference in existing epidemiological models. The kind of inference tasks undertaken include computing the posterior distribution over controllable, via direct policy-making choices, simulation model parameters that give rise to acceptable disease progression outcomes. Among other things, we illustrate the use of a probabilistic programming language that automates inference in existing simulators. Neither the full capabilities of this tool for automating inference nor its utility for planning is widely disseminated at the current time. Timely gains in understanding about how such simulation-based models and inference automation tools applied in support of policy-making could lead to less economically damaging policy prescriptions, particularly during the current COVID-19 pandemic.\n
\n\n\n
\n\n\n\n\n\n
\n
\n\n\n\n\n
\n
\n\n\n\n\n
\n\n\n \n\n \n \n \n \n\n
\n"}; document.write(bibbase_data.data);