
Control Barrier Function based Quadratic Programs with Application to
Adaptive Cruise Control

Aaron D. Ames1, Jessy W. Grizzle2 and Paulo Tabuada3

Abstract— This paper develops a control methodology that
unifies control barrier functions and control Lyapunov func-
tions through quadratic programs. The result is demonstrated
on adaptive cruise control, which presents both safety and
performance considerations, as well as actuator bounds. We
begin by presenting a novel notion of a barrier function
associated with a set, formulated in the context of Lyapunov-
like conditions; the existence of a barrier function satisfying
these conditions implies forward invariance of the set. This
formulation naturally yields a notion of control barrier function
(CBF), yielding inequality constraints in the control input that,
when satisfied, again imply forward invariance of the set.
Through these constructions, CBFs can naturally be unified
with control Lyapunov functions (CLFs) in the context of
a quadratic program (QP); this allows for the simultaneous
achievement of control objectives (represented by CLFs) subject
to conditions on the admissible states of the system (represented
by CBFs). These formulations are illustrated in the context of
adaptive cruise control, where the control objective of achieving
a desired speed is balanced by the minimum following condi-
tions on a lead car and force-based constraints on acceleration
and braking.

I. INTRODUCTION

Adaptive cruise control (ACC) [10] is being developed
and deployed on passenger vehicles due to its promise to
enhance driver convenience, safety, traffic flow, and fuel
economy [13], [14], [23]. ACC is a multifaceted control
problem because it involves asymptotic performance objec-
tives (drive at a desired speed), subject to safety constraints
(maintain a safe distance from the car in front of you), and
constraints based on the physical characteristics of the car
and road surface (maximum acceleration and deceleration).
This control problem is made more challenging by the fact
that the various objectives can often be in conflict, such as
when the desired speed is faster than the speed of the leading
car, and provably satisfying the safety-oriented constraints is
of paramount importance. A variety of solutions have been
proposed (see the survey paper [22]). The most relevant to
the approach taken here is based on model predictive control
[12], [16], which is natural in the ACC setting due to the
existence of multiple control objectives. With a view toward
providing Lyapunov-like conditions for the ACC problem
with proofs of safety, this paper presents a novel approach
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to ACC through the use of barrier functions unified with
control Lyapunov functions through quadratic programs.

Barrier functions—first utilized in optimization [6]—are
now common throughout the control and verification lit-
erature due to their natural relationship with Lyapunov-
like functions [21], [25], their ability to provably establish
invariance of sets [5], [18], [26], and their relationship to
multi-objective control [17]. This paper presents a novel
form of barrier function, B, associated with a set, C, i.e.,
B(x) → ∞ as x → ∂C, and proves that if B satisfies
Lyapunov-like conditions, then forward invariance of C is
guaranteed. In contrast to existing formulations of barrier
functions, which assume invariant level sets of B [21], i.e.,
Ḃ ≤ 0, we allow for B to grow when it is far way from the
boundary of C, i.e., we only require that

Ḃ ≤ γ

B
for γ > 0. This greatly increases the set of possible
barrier functions and, more importantly, sets the stage for the
introduction of control barrier functions (CBF). That is, given
a control system, Ḃ becomes a function of the control input,
and the existence of a control input that satisfies the barrier
function condition implies the forward controlled-invariance
of C. Since B is allowed to grow in a preprescribed fashion,
this greatly increases the available set of control inputs that
satisfy the barrier function condition and, thereby, sets the
stage for the unification of CBFs with control Lyapunov
functions.

Control Lyapunov functions (CLFs), as pioneered in [19],
[4], [20] and studied in depth in [7], utilize Lyapunov func-
tions together with inequality constraints on their derivative
to establish entire classes of controllers that stabilize a given
system. Recently, these results were extended to achieve
rapid exponential convergence in order to stabilize periodic
orbits in hybrid systems, with experimental realization on
bipedal robots [1], [2], [8]. These results motivated the
observation that, since CLF conditions are affine in torque,
they result in quadratic programs (QPs) [9]; this allows for
the consideration of multiple control objectives (expressed
via multiple CLFs) together with force- and torque-based
constraints [3], [15]. This paper extends these ideas through
the unification of CLFs and CBFs through QPs. In particular,
given a control objective (expressed through a CLF) and an
admissible set in the state space (expressed via a CBF), we
formulate a QP that achieves the control objective subject
to conditions that ensure the system stays in the safe set by
inequalities from a CLF and a CBF. The safety critical nature
of ACC will draw upon all of these elements.



II. CONTROL BARRIER FUNCTIONS

This section formulates a notion of control Barrier func-
tions (CBFs). Motivated by [21], we first present a novel
reformulation of barrier functions, in a manner that is anal-
ogous (yet reciprocal) to how Lyapunov functions are used
to establish exponential stability.

Consider a nonlinear system of the form:

ẋ = f(x) (1)

for x ∈ Rn with f assumed to be locally Lipschitz. Given
a set C ⊂ Rn, we determine conditions on functions B :
C → R such that solutions of (1) are guaranteed to say in
C. These conditions will motivate the formulation of control
barrier functions.

A. Motivation

Consider that solutions x(t) of (1) that are forward com-
plete and suppose we have a set C for which we wish to
verify that x(t) ∈ C for all t ≥ 0. For simplicity, further
suppose that

C = {x ∈ Rn : h(x) ≥ 0}, (2)
∂C = {x ∈ Rn : h(x) = 0}, (3)

Int(C) = {x ∈ Rn : h(x) > 0}, (4)

for a smooth (continuously differentiable) function h : Rn →
R. Motivated by methods in optimization [6], consider the
barrier function candidate:

B(x) = − log

(
h(x)

1 + h(x)

)
. (5)

Note that this function satisfies the important properties:

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) =∞.

The question then becomes: what conditions should be
imposed on Ḃ? The conventional answer [21] has been to
enforce Ḃ ≤ 0, but this may not be desirable since it will
force invariance of sub-level sets of B ; in particular, it will
not allow solutions to leave a sub-level sets even if they are
still contained in C. In other words, this condition may be
too strict. We therefore relax this condition to:

Ḃ ≤ γ

B
, (6)

where γ can be positive. This inequality allows for Ḃ to
grow when solutions are far way from the boundary of C.
As solutions approach the boundary, the rate of growth slows.

For (6) to be an acceptable condition, we need to verify
that its satisfaction guarantees that solutions to (1) stay in C.
To see this, we note that viewing B as a function of h yields

Ḃ(h(x)) =
∂B

∂h
ḣ = − ḣ

h+ h2

Therefore, (6) implies that the rate of change in h is bounded
by:

ḣ ≥ γ(h+ h2)

log
(

h
1+h

)

Utilizing the Comparison Lemma [11] implies that:

h(x(t)) ≥ 1

−1 + e

√
2γt+log(h(x(0))+1

h(x(0)) )
2

Therefore, if h(x(0)) > 0, i.e., x(0) ∈ C, then h(x(t)) > 0
for all t ≥ 0, i.e., x(t) ∈ C for all t ≥ 0.

B. Barrier functions

Based on the motivation presented, we wish to formulate
a general notion of barrier functions that give the same
guarantees in a general context.

Definition 1: For the dynamical system (1), a function
B : C ⊂ Rn → R is a barrier runction (BF) for the set C
defined by (2)-(4) for a continuously differentiable function
h : Rn → R if there exist locally Lipschitz class K functions
α1, α2, α3 such that, for all x ∈ Int(C),

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
(7)

Ḃ(x) ≤ α3(h(x)). (8)

The motivation for the conditions on barrier functions is
the following: Condition (7) implies that the barrier function
B essentially behaves like the function 1

α(h(x)) for α a class
K function which satisfies the essential conditions:

inf
x∈Int(C)

1

α(h(x))
≥ 0, lim

x→∂C

1

α(h(x))
=∞.

Moreover, the condition on Ḃ in (8) allows for B to grow
quickly when solutions are far away from ∂C, with this
growth approaching zero as solutions approach ∂C.

Main result. The notion of barrier functions introduced
allows us to state the main result of this paper. First, we
note that since (1) is assumed to be locally Lipschitz, for
any initial condition x0 ∈ Rn there exists a maximum time
interval I(x0) = [0, τmax) such that x(t) is the unique
solution to (1) on I(x0); in the case when f is forward
complete, τmax = ∞. The set C is forward invariant if for
every x ∈ C, x(t) ∈ C for all t ∈ I(x).

Theorem 1: Given a set C ⊂ Rn defined by (2)-(4), if
there exists a barrier function B : C → R, then C is forward
invariant.

Before proving Theorem 1, it is necessary to establish the
following Lemma:

Lemma 1: Consider the dynamical system:

ẏ = α

(
1

y

)
, y(t0) = y0 (9)

with α a locally Lipschitz class K function. For all y0 ∈
(0,∞), the system has a unique solution defined for all t ≥
t0 and given by:

y(t) =
1

σ
(

1
y0
, t− t0

) (10)

where σ is a class KL function.



Proof: Consider the change of variables z = 1
y . Under

this change of variables, the dynamical system (9) implies
that:

ż = − ẏ

y2
= −

α
(

1
y

)
y2

= −α(z)z2 =: −ᾱ(z).

Since α(z) is a class K function, it follows that ᾱ(z) =
α(z)z2 is a class K function. Therefore, by Lemma 4.4 of
[11], it follows that

z(t) = σ(z0, t− t0)

with σ a class KL function. Converting back from z to y
through y = 1

z yields the solution y(t) given in (10).

We now have the necessary framework in which to prove
Theorem 1.

Proof: Utilizing (7) and (8), we have that

Ḃ ≤ α3 ◦ α−12

(
1

B

)
=: α

(
1

B

)
.

Since the inverse of a class K function is a class K function,
and the composition of class K functions is a class K
function [11], α := α3 ◦ α−12 is a class K function. By
Lemma 1 coupled with the Comparison Lemma [11], we
have that

B(x(t)) ≤ 1

σ
(

1
B(x(t0))

, t− t0
)

for all t ∈ I(x(t0)). This, coupled with the left inequality in
(7), implies that

α−11

(
σ

(
1

B(x(t0))
, t− t0

))
≤ h(x(t)) (11)

for all t ∈ I(x(t0)). By the properties of K and KL
functions, if x(t0) ∈ C and hence B(x(t0)) > 0 it follows
from (11) that h(x(t)) > 0 for all t ∈ I(x(t0)). Therefore,
x(t) ∈ C for all t ∈ I(x(t0)) and thus C is forward invariant.

Motivation revisited. We now have the framework to return
to the motivating example considered in Section II-A. In
particular, we note that the function considered in (5),
subject to the conditions (6), is a Barrier Lyapunov function
(by Definition 1), and therefore Theorem 1 establishes the
invariance of the set C given in (2). This follows from the
fact that

α(r) =
1

− log
(

r
1+r

)
is a class K function. Therefore, in Definition 1, we choose
α1(r) = α2(r) = α(r) and α3(r) = γα(r).

Note that the log barrier function was chosen for motiva-
tion due to its use in optimization; yet, Definition 1 suggests
a simpler class of barrier functions. In particular, if

B(x) =
1

h(x)
(12)

satisfies (6) then B is a barrier function for C with α1(r) =
α2(r) = r and α3(r) = γr.

C. Control Barrier Functions

Utilizing the formulation of barrier functions presented,
it is natural to extend these concepts to the case of control
systems through the use of control barrier functions (CBFs).
It is important to note that control barrier functions have
been considered in the context of existing notions of barrier
certificates [25]. The construction presented here differ due to
the novel formulation of barrier functions, i.e., the condition
that the barrier function is allowed to grow in a preprescribed
fashion increases the available control inputs that satisfy
the control barrier function condition. Ultimately, the true
usefulness of this will be seen when CBFs are unified with
control Lyapunov functions through quadratic programs.

Suppose that we have an affine control system:

ẋ = f(x) + g(x)u (13)

with f and g locally Lipschitz, x ∈ Rm and u ∈ U ⊂ Rm. In
the case when the natural dynamics of the system, ẋ = f(x),
do not stay in a set C, how can a controller be specified that
will ensure containment in C? This motivates the following:

Definition 2: Let C ⊂ Rn be defined by (2)-(4) for a
continuously differentiable function h : Rn → R, then a
function B : C → R is a control barrier function (CBF) if
there exist class K functions α1, α2 and 0 < γ such that

1

α1(‖x‖∂C)
≤ B(x) ≤ 1

α2(‖x‖∂C)
(14)

inf
u∈U

[
LfB(x) + LgB(x)u− γ

B(x)

]
≤ 0 (15)

for all x ∈ Int(C).

Given a CBF, we can consider all control values that
satisfy (15):

Kcbf(x) = (16)

{u ∈ U : LfB(x) + LgB(x)u− γ

B(x)
≤ 0},

Considering control values in this set allows us to guarantee
the forward invariance of C via the following straightfoward
application of Theorem 1:

Corollary 1: Given a set C ⊂ Rn defined by (2)-(4)
with associated barrier function B, any Lipschitz continuous
controller u(x) ∈ Kcbf(x) for the system (13) renders the
set C forward invariant.

III. CONTROL LYAPUNOV FUNCTIONS AND QPS

This section gives a brief overview of exponentially stabi-
lizing control Lyapunov functions in the context of nonlinear
systems. This formulation naturally leads to a Quadratic
Program that allows for the unification of control Lyapunov
and control barrier functions.

We now suppose that the dynamics of the system can be
stated as a nonlinear affine control system of the form:

ẋ = f(x, z) + g(x, z)u (17)
ż = q(x, z),



where x ∈ X are controlled (or output) states, z ∈ Z are the
uncontrolled states, and U is the set of admissible control
values for u. In addition, we assume that f(0, z) = 0, i.e.,
that the zero dynamics surface Z defined by x = 0 with
dynamics given by ż = q(0, z) is invariant.

A. Control Lyapunov Functions

In this paper, we will focus on exponentially stabilizing
control Lyapunov functions in order to motivate similar
constructions in the case of barrier functions.

Definition 3: A continuously differentiable function V :
X → R is an exponentially stabilizing control Lyapunov
function (ES-CLF) [1], [2] if there exist positive constants
c1, c2, c3 > 0 such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2 (18)
inf
u∈U

[LfV (x, z) + LgV (x, z)u+ c3V (x)] ≤ 0 (19)

for all (x, z) ∈ X × Z.

Min-Norm Controller. The existence of a ES-CLF yields a
family of controllers that exponentially stabilize the system
to the zero dynamics [7], [20]. In particular, consider the set
of control values:

Kclf(x, z) = (20)
{u ∈ U : LfV (x, z) + LgV (x, z)u+ c3V (x) ≤ 0}.

It follows that for locally Lipschitz controllers u(x, z) satis-
fying:

u(x, z) ∈ Kclf(x, z) ⇒ (21)

‖x(t)‖ ≤
√
c2
c1
e−

c3
2 t‖x(0)‖.

In addition, this yields specific feedback controllers, e.g., the
min-norm controller:

m(x, z) = argmin{‖u‖ : u ∈ Kclf(x, z)} (22)
= argmin{‖u‖ : ψ0(x) + ψT1 (x)u ≤ 0}

where

ψ0(x, z) = LfV (x, z) + c3V (x, z) (23)
ψ1(x, z) = LgV (x, z)T

While controller m(x, z) that minimizes the control effort u
can be stated in closed form as:

m(x, z) =

{
− ψ0(x,z)ψ1(x,z)
ψ1(x,z)Tψ1(x,z)

if ψ0(x, z) > 0

0 if ψ0(x, z) ≤ 0

it is important to note that this closed form solution is the
solution to the quadratic program (QP):

m(x, z) = argmin
u∈U

uTu (24)

s.t. ψ0(x, z) + ψT1 (x, z)u ≤ 0 (CLF)

This formulation leads to a new class of controllers based
upon CLF based QPs; these have been applied to locomotion
and manipulation in bipedal robots [3], and have been
utilized to experimentally achieve robotic walking [9], [8].

B. Combining CLFs and BLCFs via QPs

The advantage to the CLF and CBF formulations is that it
allows for the unification of control objectives (represented
by CLFs) that are regulated to give trajectories within desired
sets (as dictated by CBFs).

Given a ES-CLF, V , and a CBF, B, they can be combined
into a single controller through the use of a QP of the form:

u∗(x, z) = argmin

u=

 u
δ

∈Rm+1

1

2
uTH(x, z)u + F (x, z)Tu

(CLF-CBF QP)

s.t. ψ0(x, z) + ψT1 (x, z)u ≤ δ (CLF)

LfB(x, z) + LgB(x, z)u ≤ γ

B(x, z)
(CBF)

where here H(x, z) ∈ Rm+1×m+1 and F (x, z) ∈ Rm+1

are arbitrary cost functions, that can be chosen based upon
desired (state based) weighting of the control inputs.

The form of the QP CLF-CBF QP together with Theorem
1, Corollary 1, and the results of [15] yields the following
result:

Theorem 2: Given a set C ⊂ Rn defined by (2)-(4) with
B an associated control barrier function, for any positive
definite H(x, z), the control law u∗(x, z) obtained by solving
the QP (CLF-CBF QP) is Lipschitz continuous and renders
the set C forward invariant.

Note that the QP (CLF-CBF QP) is guaranteed to have a
solution based on the fact that we are relaxing the control ob-
jective, expressed via V , through δ. The consequence of this
is that, while the set C will be rendered forward invariant, the
control objective may not necessarily be archived. Practically
speaking, if the control objective and the barrier function do
not conflict, they will be simultaneously achievable. This will
be justified further in the context of the adaptive cruse control
problem.

IV. ACC PROBLEM SETUP

The remainder of this paper will be devoted to considering
the adaptive cruse control (ACC) problem in the context
of CBFs. We begin by setting up the dynamics of the
automobile based upon [10] and [14]. We begin with the
point-mass model of a vehicle moving in a straight line. We
assume the dynamics of the vehicle are given by the model:

m
dv

dt
= Fw − Fr (25)

where m is the mass of the vehicle (in kg), v is the velocity
of the vehicle (in m/s), Fw is the wheel force in Newtons
and Fr is the aerodynamic drag, also referred to as the rolling
resistance, again in Newtons. In this case, we will assume
the empirical form of the rolling resistance given by:

Fr = f0 + f1v + f2v
2 (26)

where f0, f1 and f2 are determined empirically.
In the context of the simple formulation that will be

presented here, we consider a second vehicle moving at a



constant speed, v0. The distance between the vehicle that is
being controlled at the second vehicle is given by:

d

dt
D = v0 − v (27)

where v is governed by (25).
The equations governing the system can be converted to

an ODE. Let x = (x1, x2) with x1 the position of the vehicle
and x2 = ẋ1 the velocity. Define z = D to be the distance
between the vehicle and the second vehicle traveling at a
constant velocity. The dynamics of the system then become:

ẋ =

[
x2
− 1
mFr

]
︸ ︷︷ ︸

f(x,z)

+

[
0
1
m

]
︸ ︷︷ ︸
g(x,z)

u (28)

ż = v0 − x2︸ ︷︷ ︸
q(x,z)

,

where u = Fw is the control input and Fr = f0+f1x2+f2x
2
2.

Given the simple model introduced, we now present a
series of control objectives and constraints that are necessary
in the context of ACC. These will be divided into three
classes of constraints: hard control objectives, soft control
objectives, and force constraints.

Hard Constraints: These represent constraints that must not
be violated under any condition. For ACC, this is simply the
constraint: “keep a safe distance from the car in front of
you”. More concretely, there are numerous formulations of
this concept including Time Headway and Time to Collision
[24]. In the context of this paper, to start with a simple
formulation, we will use the general rule stated in [24]: the
minimum distance between two cars is “half the speedome-
ter.” This translates into the hard constraint (with D in m
and v in km/hr):

D ≥ v

2
. (HC1)

Soft Constraints: In the context of adaptive cruise control,
in the case when adequate headway is assured, the goal is
to achieve a desired speed, vd. Or in other words:

Drive v − vd → 0. (SC1)

This translates into a soft constraint since this speed should
only be achieved in the case when the hard constraints are
satisfied.

Force Constraints: These constraints describe allowable
wheel forces that are consistent with the driver convenience
aspect of ACC; these are typically much less than the
peak forces that can be generated by the car in emergency
situations. Supposing that we do not want to accelerate or
decelerate more than some fraction of g, we can write the
constraints on acceleration and deceleration as an inequality:

−cdg ≤
Fw
m
≤ cag (FC)

where cd is the factor of g for deceleration and ca is the
factor of g for acceleration. For example, it may be desirable

to avoid accelerating and decelerating faster that 0.3g, in
which case cd = ca = 0.3.

V. FORMALLY ENCODING ACC CONSTRAINTS AS QPS

We now formulate hard constraints, soft constraints and
force constraints as a Quadratic Program. This will be
done through the conversion of hard and soft constraints
into control Lyapunov functions (CLFs) and Control Barrier
Functions (CBF). In addition, the force constraints will
be utilized to construct an additional CBF that imply the
satisfaction of force bounds. Finally, we will combine the
constraints presented above to formulate a CLF-CBF based
QP for ACC. Simulation results for the QP-based controller
will be presented.

A. Soft Constraints as Control Lyapunov functions (CLFs)

We begin by formulating the soft constraint, speed regu-
lation, as a CLF. The soft constraint (SC1) can be written as
velocity based output:

Drive y(x, z) := x2 − vd → 0. (SC1)

It is easy to verify that this is a relative degree 1 output since:

ẏ = − 1

m
Fr︸ ︷︷ ︸

Lfy

+
1

m︸︷︷︸
Lgy

u

Picking the control input

u =
1

Lgy
(−Lfy + µ) = Fr +mµ

results in
ẏ = µ.

Therefore, picking the Lyapunov function candidate V (y) =
y2, expressed in terms of the output dynamics, yields:

V̇ (y) = 2yẏ = 2yµ.

and therefore

µ = −ε
2
y ⇒ V̇ (y) = −εV (y)

The end result is that V is a ES-CLF in the output dynamics,
with c1 = c2 = 1 and c3 = ε.

The trivial construction of V can also be used to motivate
the conversion of the Lyapunov function back to the u
dynamics of the system. In particular, we note that

V̇ (y) = −2y

m
Fr︸ ︷︷ ︸

LfV

+
2y

m︸︷︷︸
LgV

u

where Fr can be stated as a function of y via:

Fr(y) = f0 + f1(y + vd) + f2(y + vd)
2

We need only verify that1

inf
u∈R

[LfV (y) + LgV (y)u+ εV (y)] ≤ 0

1Note that we will first search for any control input u ∈ R; later, through
the use of force constraints, u will be restricted to a subset of inputs.



but this holds since we can find a specific example of u ∈ R
for which it is satisfied. Namely,

u = −εm
2
y + Fr(y).

These constructions indicate that we have a valid ES-
CLF function V . Moreover, this function can be converted
to constraints of the form (23) with

ψ0(y) = −2y

m
Fr(y) + εy2 (29)

ψ1(y) =
2y

m

and converting back to the (x, z) dynamics (28) yields:

ψ0(x, z) = −2(x2 − vd)
m

Fr(x) + ε(x2 − vd)2

ψ1(x, z) =
2(x2 − vd)

m
(30)

Summary. The end result of these constructions is the final
formal form of the soft constraint (SC1), stated as a CLF
constraint:

ψ0(x, z) + ψ1(x, z)u ≤ δsc (SC1-CLF)

where δsc is a relaxation factor for the soft constraint. Note
that it is this relaxation factor that makes the constraint a
soft constraint, i.e, setting δsc = 0 would make the constraint
“hard” in that it would force exact exponential convergence
at a rate of ε.

B. Hard Constraints as Control Barrier Functions (CBFs)

The goal is to construct an inequality constraint that
enforces the hard constraint (HC1). For this, we utilize
barrier functions as introduced in Sect. II. In particular,
(HC1) results in a constraint of the form:

z ≥ 1.8x2 (HC1)

for the (x, z) dynamics (28); here, the factor of 1.8 is a
result of converting units to m and s. Correspondingly, we
consider the function h(x, z) = z − 1.8x2, which yields the
admissible set C as defined in (2)-(4). We choose the CBF
candidate as B given in (5). To verify that this is a valid
CBF, we must verify that

inf
u∈R

[
LfB(x, z) + LgB(x, z)u− γ

B(x, z)

]
≤ 0 (31)

for (x, z) ∈ Int(C) and 0 < γ. To establish (31), note that

Ḃ(x, z, u) = − 1.8Fr(x) +m(v0 − x2)

m(1− 1.8x2 + z)(−1.8x2 + z)︸ ︷︷ ︸
LfB(x,z)

+
1.8

m(1− 1.8x2 + z)(−1.8x2 + z)︸ ︷︷ ︸
LgB(x,z)

u

For (x, z) ∈ Int(C), it follows that 1.8x2−z < 0. Therefore,
the feedback control law

u(x, z) = − 1

LgB(x, z)

(
LfB(x, z)− γ

B(x, z)

)

provides a specific example of a u ∈ R satisfying (31). As
a result, B is a valid CBF.

Summary. The end result of these constructions is the final
formal form of the hard constraint (HC1), stated as a CLF
constraint:

LfB(x, z) + LgB(x, z)u− γ

B(x, z)
≤ 0 (HC1-CBF)

Since this is a hard constraint, no relaxation is used, i.e., this
constraint must always be satisfied.

C. Force Based Constraints

The final set of constraints are the force constraints, i.e.,
(FC). These are easily encoded as inequality constraints via:

u ≤ camg (FC1)
−u ≤ cdmg (FC2)

where u = Fw is the wheel force, viewed as a control input.
Since it may be the case that these constraints will conflict

with the torque values needed to satisfy the hard constraint
(HC1-CBF), we introduce a force-based barrier function
allowing the hard constraints and force constraints to be
simultaneously satisfied. In particular, we seek a function hF
such that for all (x, z) satisfying hF (x, z) ≥ 0, there exists
a trajectory of (28) satisfying (HC1-CBF) and the maximum
braking limit in (FC2).

We consider the dynamics (25), and drop the aerodynamic
and rolling resistance terms (26), yielding

mv̇ = u. (32)

Under maximum braking,

v(t+ τ) = v(t)− τcdg (33)

and thus solving for T such that v(t + T ) = v0 (following
at the velocity of the lead car) yields

T =
v0 − v(t)

−cdg
. (34)

Substituting (33) and (34) into (27) gives

D(t+ T ) = D(t) +

∫ T

0

[v0 − v(t+ τ)] dτ (35)

= D(t) +

∫ T

0

[v0 − v(t) + τcdg] dτ (36)

= D(t)− 1

2

[v0 − v(t)]2

cdg
(37)

Hence, if the current headway is D(t), the headway
looking T seconds ahead, which is based on decelerating
at the maximum rate to a following speed of v0, is bounded
by

D(t+ T ) = D(t)− 1

2

[v0 − v(t)]2

cdg
. (38)

Therefore, within the set

CF = {(D, v) | D − 1

2

[v0 − v]2

cdg
≥ 1.8v}



the ACC-controlled car can always brake fast enough to
maintain a half-speedometer headway using an allowed
amount of deceleration.

Expressing the result in the coordinates (x, z), the end
result is the function:

hF (x, z) = −1.8x2 −
1

2

(v0 − x2)2

cdg
+ z (39)

The superlevel set of this function defines the set CF , which
yields a barrier function, BF , utilizing (12).

Summary. The force based constraints are ultimatly ex-
pressed via constraints (FC1) and (FC2) together with the
control barrier function condition:

LfBF (x, z) + LgBF (x, z)u− 1

BF (x, z)
≤ 0 (FC3)

obtained from the force-based CBF BF .

D. The ACC CLF-CBF based QP

Motivated by the constructions in [3], this will be achieved
by combining the above constraints in a way consistent with
the aforementioned ACC objectives. In particular, the end
result will be a CLF-CBF QP of the form:

u∗(x, z) = argmin

u=

 u
δsc

∈R2

1

2
uTHaccu + FTaccu

(ACC QP)
s.t. Aclfu ≤ bclf (CLF)

Acbfu ≤ bcbf (CBF)
Afcbfu ≤ bfcbf (FCBF)
Afcu ≤ bfc (CC)

The remainder of this section will be devoted to constructing
the constraints and cost of this QP.

Inequality Constraints. The inequality constraints for
(ACC QP) follow from the constraints constructed in the
previous section. In particular, following from (SC1-CLF),
we have:

Aclf =
[
ψ1(x, z) −1

]
,

bclf = −ψ0(x, z). (40)

Following from (HC1-CBF), the hard constraints result in:

Acbf =
[
LgB(x, z) 0

]
,

bcbf = −LfB(x, z) +
γ

B(x, z)
. (41)

Finally, the comfort constraints in (FC1) and (FC2) yield the
final set of inequality constraints:

Acc =

[
1 0
−1 0

]
, bcc =

[
camg
cdmg

]
, (42)

and (FC3) results in:

Afcbf =
[
LgBF (x, z) 0

]
,

bfcbf = −LfBF (x, z) +
1

BF (x, z)
. (43)

Parameter Value Units
g 9.81 m

s2

m 1650 kg
f0 0.1 Newton

f1 5 (Newton)(s)
m

f2 0.25 (Newton)(s2)
m

vd 24 m
s

v0 13.89 m
s

ε 10 Unitless
γ 1 Unitless
ca 0.3 Unitless
cd 0.3 Unitless
psc 1e−5 Unitless

TABLE I
TABLE OF PARAMETERS USED IN THE SIMULATION RESULTS.

Cost. The cost will be presented with a view toward achiev-
ing the control objective encoded in the CLF, i.e., achieving
the desired speed, subject to balancing the relaxation factors
that ensure solvability and continuity of the CLF-CBF QP.
In particular, we note that the CLF was constructed by first
partially linearizing the system via the relative 1 degree
output. This was done through the relationship:

u = Fr +mµ

As a result, the cost relative to this control will be chosen
as µTµ, which yields the following function in u:

µTµ =
1

m2

(
uTu− 2uTFr + F 2

r

)
.

This can then be converted into a cost of the form given in
(ACC QP) via:

Hacc = 2

[
1
m2 0
0 psc

]
, Facc = −2

[
Fr

m2

0

]
(44)

Here psc is the penalty for the relaxation δsc.

E. Simulation Results

Simulation results obtained by applying the QP controller
are shown in Fig. 1. For these simulation results, the pa-
rameters given in Table I were used, and the system (28) is
started from the initial condition (x0, z0) = (900, 20, 100).
In particular, two cases are considered:

Case I: In this case, the QP (ACC QP) is solved using
only constraints (CLF) and (CBF) in order to mirror the
QP (CLF-CBF QP) utilized in Theorem 2. In this case, the
CBF constraint (CBF) implies the forward invariance of
the set defined by the hard constraint encoding the ”half
the speedometer” rule (right plot of Fig. 1). The control
objective, encoded through the CLF constraint, is achieved
when it does not conflict with the hard constraint. This is
evidenced by the fact that the speed converges exponentially
to the desired speed, vd, until the distance to the lead car
becomes sufficiently small (left plot of Fig. 1); at this point,
due to the CBF, the speed of the following car converges
to the speed of the lead car, v0, in order to maintain a
safe following distance. Note that in this case, the force
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Case I: CLF and CBF

Case II: CLF, CBF, force−based CBF and force bounds

Fig. 1. Results of the QP based controller for Case I and Case II, including the speed (left) with the desired speed and speed of the lead car indicated by
black lines, the wheel force (middle) with the upper and lower bounds indicated, and the hard constraint (right) where positive values indicate satisfaction.

constraints are violated (as indicated by the middle plot in
Fig. 1), both when the car accelerates and breaks, since no
force-based constraints are utilized.

Case II: In order to guarantee satisfaction of the force
constraints, in this case all of the constraints in (ACC QP)
are utilized. The end result is that, due to the force-based
barrier function (FCBF) and force constraints (CC), the force
constraints are satisfied for all time (as seen in the middle
plot in Fig. 1). Note that, due to the required forces, the speed
converges to vd more slowly, and begins braking earlier
as evidenced by the comparison between velocity profiles
in Fig. 1. Finally, since the force-based barrier function is
conservative, the car maintains a more conservative following
distance (this case be seen in the behavior of the hard
constraint in Fig. 1). Ultimately, the QP based controller
(ACC QP) is able to satisfy all of the control objectives and
constraints for the ACC problem outlined in Sect. IV through
a single unified control methodology.
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