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Abstract— The recent trends in the automotive industry
towards autonomous vehicles bring the problem of pedestrian
avoidance to the forefront of a long list of safety concerns. In
this paper we propose a closed-form solution to this problem
by explicitly computing closed-form expressions for subsets of
the state space where an autonomous vehicle is guaranteed to
avoid collisions with a pedestrian. These sets, being controlled
invariant, immediately lead to control laws for pedestrian
avoidance.

I. INTRODUCTION

In this paper we discuss a particular type of collision
avoidance problem involving an autonomous vehicle and a
pedestrian. Our motivation stems from the recent interest in
autonomous and semi-autonomous vehicles that are expected
to populate our roads in the future. One important advantage
of autonomous and semi-autonomous vehicles is the potential
for avoiding collisions due to distracted driving. However,
avoiding collisions with pedestrians is especially challenging
since pedestrians are difficult to detect through existing
sensors while their intentions and behavior are often difficult
to predict.

Several different collision avoidance problems have been
investigated in the literature. Closer to the methods described
in this paper are those papers that model collision avoidance
as a game between a pursuer and an evader. In particular,
the homicidal chauffeur game, in which the chauffeur tries
to run over a pedestrian, is a particularly good description
of our problem provided that we reverse the roles of the
chauffeur and the pedestrian. Devising a strategy to avoid a
collision with a pedestrian requires us to treat the pedestrian
as the (homicidal!) pursuer while treating the (autonomous)
chauffeur as the evader. This game has also been called
the suicidal pedestrian differential game in [1]. A wealth
of knowledge is available on the solution of the homicidal
chauffeur game. Isaacs’ book [2] provides a very readable

This work was partially supported by the NSF CPS Frontiers project
1239085.

Yasser Shoukry is with both the UC Berkeley Electrical En-
gineering and Computer Science Department, Berkeley, CA and
the UCLA Electrical Engineering Department, Los Angeles, CA,
yshoukry@eecs.berkeley.edu

Paulo Tabuada is with the UCLA Electrical Engineering Department, Los
Angeles, CA, tabuada@ee.ucla.edu

Stephanie Tsuei and Mark B. Milam are with NG Next,
Northrop Grumman, Redondo Beach, CA, {Stephanie.Tsuei,
Mark.Milam}@ngc.com

Jessy W. Grizzle is with the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann Arbor, MI, USA.,
grizzle@umich.edu

Aaron D. Ames is with the Department of Mechanical and
Civil Engineering, California Institute of Technology, Pasadena, CA,
ames@caltech.edu

xe

ye
✓e

�e

l

Ve

Fig. 1. Graphical description of the state variables used to mode the
autonomous vehicle (evader).

account of the results known in the sixties whereas a survey
of recent results can be found in [3].

Despite a considerable amount of research on pursuit
evasion games it is not always possible to obtain a closed-
form solution that characterizes the escaping strategy for the
evader. For this reason, several computational approaches
have been investigated in the literature such as sampling
based methods [4] or reach-set techniques [5]. The contri-
bution of this paper is to show that through very elementary
arguments we can compute closed-form expressions for
controlled-invariant sets that exclude collisions. Compared
to the previously mentioned computational approaches, the
simpler solution described in this paper has a smaller com-
putational cost but is only applicable to the specific collision
avoidance problem in this paper.

References [1], [6], [7] provide complete solutions for the
pedestrian avoidance problem for the simpler case when the
vehicle is modeled as a unicycle. In this paper, we consider
the more realistic front-wheel drive kinematics and construct
a closed-form expression for a controlled invariant set that
excludes collisions. Since the set is controlled invariant, it is
possible to remain in the set forever thereby forever avoiding
collisions. Moreover, controlled invariant sets naturally de-
fine feedback control laws for collision avoidance. It suffices
to pick a control input that forces the evading autonomous
vehicle to remain in the invariant set. For this reason, we
focus on the problem of computing controlled invariant sets
rather than deriving control laws although we return to this
issue in the conclusions section.

II. MODELS

We model the pedestrian avoidance problem as a pursuit-
evasion game where the pedestrian plays the role of the
pursuer and the autonomous vehicle plays the role of the
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evader. The autonomous vehicle (evader) is a front-wheel
drive car whose kinematics is given by [8]:

ẋe = Ve cos θe cosφe (1)
ẏe = Ve sin θe cosφe (2)

θ̇e =
Ve
l
sinφe (3)

φ̇e = SAT(ωe, φe, φe), (4)

where (xe, ye) ∈ R2 denotes the position of the rear axle’s
center, Ve denotes the velocity of the front (driving) wheel,
θe ∈ S denotes its orientation, l denotes the distance between
the front and rear wheels, and φe ∈ S denotes the front wheel
orientation which is assumed to satisfy the following bounds:

−π/2 < φ
e
≤ φe ≤ φe < π/2.

All these quantities are illustrated in Figure 1. The transla-
tional velocity, assumed to be constant, is denoted by Ve ∈ R
while the angular velocity of the steering wheel, treated as
the control input, is denoted by ωe ∈ [ωe, ωe] ⊆ R. We
assume that 0 ∈ [ωe, ωe], i.e., ωe < 0 and ωe > 0. Finally,
the saturation function SAT is defined as:

SAT(ωe, φe, φe) =


0 if φe = φe ∧ ωe ≥ 0

0 if φe = φ
e
∧ ωe ≤ 0

ωe otherwise.

The pedestrian (pursuer) is modeled by:

ẋp = upx (5)
ẏp = upy (6)

‖(upx, upy)‖ ≤ Vp, (7)

where (xp, yp) ∈ R2 denotes the pedestrian’s position and
(upx, upy) ∈ R2 are control inputs. Intuitively, the pedestrian
can move in any direction but its maximum velocity is
bounded by Vp. Note that:

Vp ≤ Ve (8)

is a necessary condition for collision avoidance [1]. Hence,
we assume that such inequality holds throughout the paper.

In order to simplify the equations of motion, we follow
three steps, namely: (i) constructing the error dynamics,
(ii) aligning the error dynamics, and (iii) transforming the
aligned error dynamics into polar coordinates. The details
of these steps are provided below.

Step 1: Constructing the Error Dynamics
It is convenient to simplify the equations of motion by first
considering the error:

ex = xe − xp, ey = ye − yp
and obtaining the error dynamics:

ėx = Ve cos θe cosφe − upx
ėy = Ve sin θe cosφe − upy

θ̇e =
Ve
l
sinφe

φ̇e = SAT(ωe, φe, φe)

Step 2: Aligning the Error Dynamics
Next, we perform a clockwise rotation of θe radians so as to
align the velocity Ve with the ez1 axis. The error dynamics
in the new coordinates:

ez1
ez2
θe
φe

 =


cos θe sin θe 0 0
− sin θe cos θe 0 0

0 0 1 0
0 0 0 1



ex
ey
θe
φe


is given by:

ėz1 = −exθ̇e sin θe + ėx cos θe + ey θ̇e cos θe + ėy sin θe

=
Ve
l
sinφe ez2 + Ve cosφe − vp1 (9)

ėz2 = −exθ̇e cos θe − ėx sin θe − ey θ̇e sin θe + ėy cos θe

= −Ve
l
sinφe ez1 − vp2 (10)

θ̇e =
Ve
l
sinφe (11)

φ̇e = SAT(ωe, φe, φe) (12)

where:

vp1 = upx cos θe + upy sin θe,

vp2 = −upx sin θe + upy cos θe

are the pursuer’s control inputs (velocity). Note that
‖(vp1, vp2)‖ = ‖(upx, upy)‖ ≤ Vp. Note also that the first
two equations do not depend on θe. Hence, we will work
with the first, second and fourth equations and will drop the
third equation.

Step 3: Transformation into Polar Coordinates
The final step is to transform the aligned error dynamics
ez1 , ez2 into polar coordinates er, eδ . Such transformation
(ez1 , ez2) 7→ (er, eδ) is defined as:[

er
eδ

]
=

[√
e2z1 + e2z2

tan−1
ez2
ez1

]
(13)

and its inverse transformation (er, eδ) 7→ (ez1 , ez2) is:[
ez1
ez2

]
=

[
er cos eδ
er sin eδ

]
. (14)

Simple computations lead to the following differential
equation governing the evolution of er is given by:

ėr = Ve cosφe cos eδ − (vp1 cos eδ + vp2 sin eδ) . (15)

Since the pursuer seeks to force a collision, its opti-
mal strategy is the one that minimizes the distance be-
tween the pursuer and the evader er under the constraint
‖(vp1, vp2)‖ ≤ Vp. By inspecting (15) we note that the pur-
suer has control only over the second term, i.e., vp1 cos eδ+
vp2 sin eδ . It is then not difficult to see that the optimal
pursuer strategy is to decrease the radius by a rate equal
to the maximum allowed rate which is equal to Vp, i.e., by
setting:

vp1 cos eδ + vp2 sin eδ = Vp.
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Combining the previous equality with the constraint
‖(vp1, vp2)‖ ≤ Vp, we conclude that the optimal pursuer
strategy can be written as:

vp1 = Vp cos eδ, vp2 = Vp sin eδ. (16)

By substituting in (15), we can write the error dynamics in
polar coordinates as:

ėr = Ve cosφe cos eδ − Vp. (17)

Similarly, the dynamics of eδ can be obtained as:

ėδ =
1

1 +
(
ez2
ez1

)2 d

dt

(
ez2
ez1

)

=
1

e2r
(ez1 ėz2 − ez2 ėz1)

=
−Ve
l

sinφe
(
cos2 eδ + sin2 eδ

)
− 1

er
Ve sin eδ cosφe

− 1

er
(cos eδvp2 − sin eδvp1)

=
−Ve
l

sinφe −
1

er
Ve sin eδ cosφe (18)

where the last equality follows from substituting the optimal
strategy (16) which results in the identities:

cos eδvp2−sin eδvp1 = Vp cos eδ sin eδ−Vp cos eδ sin eδ = 0.

III. A CONTROLLED INVARIANT SUBSET

A. A simple controlled invariant set

We start by identifying a simple controlled invariant set
that will be enlarged in Section III-B.

Proposition 3.1: The set:

S =
{
(er, eδ, θe, φe) ∈ R× S3 |

er > 0, eδ ∈]− π/2, π/2[, φe = 0} .

is controlled invariant1.
Proof: To show that S is controlled invariant, we

start by examining the error dynamics in the (ez1 , ez2)
coordinates. First note that by setting the input ωe to zero
we obtain:

φe(0) = 0 ∧ φ̇e = 0⇒ φe(t) = 0⇒ ėz1 = Ve − vp1

and the constraint |vp1| ≤ ‖(vp1, vp2)‖ ≤ Vp ≤ Ve (see the
discussion preceding inequality (8)) implies ėz1 ≥ 0. Hence,
if ez1 is positive, it will remain positive since its derivative is
non-negative. Now recall the definition of er = ‖(ez1 , ez2)‖2
from which we conclude that the following holds for all time
t:

er(t) = ‖(ez1(t), ez2(t))‖2
(a)

≥ ‖ez1(t)‖2
(b)

≥ ‖ez1(0)‖2
(c)
> 0

where (a) follows from the inverse triangular inequality; (b)
follows from the fact that ėz1 is nonnegative; and (c) follows

1A set S is controlled invariant if (er(0), eδ(0), θe(0), φe(0)) ∈ S
implies the existence of a control strategy for the evader leading to
(er(t), eδ(t), θe(t), φe(t)) ∈ S for all t ≥ 0 and for every control strategy
of the pursuer.

from the constraints eδ ∈] − π/2, π/2[ which implies that
ez1(0) satisfies ez1(0) > 0.

B. Enlarging the simple controlled invariant set through a
collision avoidance maneuver.

We now ask the question, if (er, eδ, θe, φe) /∈ S, is there
a maneuver that brings the state to S while avoiding a col-
lision? In this section, we assume without loss of generality
that the pursuer starts at the origin, i.e., xp(0) = yp(0) = 0.
Indeed, if the pursuer is not located at the origin at time
t = 0, then one can always perform an affine change of
coordinates to place the pursuer at the origin. Such affine
change of coordinates will not affect the model derived in
the previous section.

Consider the case when eδ(0) lies in the second quadrant,
i.e., π/2 ≤ eδ(0) ≤ π, and in order to avoid a collision,
we need to decrease the angle eδ until eδ becomes eδ(tf ) =
π/2 − ε, for some small enough ε ∈ R+ (recall that the
definition of S does not include eδ(tf ) = π/2), at some
time tf . At this point tf , and in order to enter the controlled
invariant set, we need to ensure that the steering angle φe(tf )
is also equal to zero. Note that the dynamics of the steering
angle φe suffers from a saturation behavior. Therefore, in
order to decrease eδ while achieving φe(tf ) = 0, we consider
a simple maneuver that consists of the following four steps:

(i) Increase the wheel angle φe by setting the input ωe
to its maximal value ωe = ω until φe reaches its
maximum limit φe at time t1.

(ii) Sustain the wheel angle at its maximum value for some
time t2 − t1 by setting the input ωe to zero until the
angle eδ reaches some critical value eδ,cr.

(iii) Decrease the steering wheel angle φe by setting the
input ωe to its minimal value ωe = ω until φe becomes
zero at time tf .

(iv) Sustain the wheel alignment at φe(tf ) = 0 by setting
the input ωe = 0.

To summarize, we consider the following maneuver:

ωe =


ω φe ≤ φe, (t < t1)

0 φe = φe ∧ eδ < eδ,cr, (t1 ≤ t < t2)

ω φe ≥ 0 (t2 ≤ t < tf )

0 eδ = 0 ∧ φe = 0 t = tf
(19)

The reverse sequence is also considered whenever the angle
eδ(0) lies in the third quadrant, i.e., −π/2 ≤ eδ(0) ≤
−π. Similar maneuvers also can be carried for the first
and fourth quadrant when the steering angle is not equal
to zero. Note that this maneuver is parametrized by the
value of t1, eδ,cr, t2 and tf . In what follows, we start
by analyzing the error dynamics in order to calculate the
value of eδ,cr. Once calculated, the time instants t1, t2
and tf can be characterized based on the initial condi-
tions of the evader (er(0), eδ(0), φe(0)), or equivalently
(xe(0), ye(0), θe(0), φe(0)).
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IV. MANEUVER CHARACTERIZATION

In order to calculate the exact value of eδ,cr and hence
the values of the time instants t1, t2 and tf , we need to
solve several differential equations to obtain closed-form
solutions. Since these equations are highly nonlinear, we will
work instead with an abstraction that provides the guarantee
that any controlled invariant set for the abstraction is also
a controlled invariant set for the original dynamics. The
abstraction is given by:

˙̂er = Ve cos φ̂e cos êδ − Vp, êr(0) = er(0) = er0, (20)

˙̂eδ =
−Ve
l

sin φ̂e, êδ(0) = eδ(0) = eδ0 (21)

˙̂
φe = SAT(ωe, φe, φe), φ̂e(0) = φe(0) = φe0 (22)

where we used the êr, êδ to denote the abstracted state vari-
ables. Note that the only difference between the abstracted
dynamics (21) and the original dynamics (18) is the absence
of the second term in the êδ dynamics. As we will show
later, this term helps the evader to escape faster. Thus, by
eliminating this term, our solution will be more conservative
(smaller controlled invariant set), however removing this
term leads to a simpler nonlinear dynamics that can be solved
in closed-form. In what follows, we analyze the proposed
evading strategy for the abstracted dynamics.

A. Characterizing the Value of êδ,cr:

Recall that the controlled invariant set S asks for both
the constraints φ̂e = 0 and êδ = π/2 − ε to be achieved
simultaneously. Therefore, while decreasing the value of eδ ,
there exists a critical value êδ,cr at which the steering wheel
angle φ̂e must be decreased (by setting ωe = ω) so that both
êδ and φ̂e become êδ = π/2 − ε, φ̂e = 0 at the same time
instant. In this subsection, we calculate the value of êδ,cr.

In order to calculate the value of êδ,cr, we need to consider
the dynamics of the last phase. In the last phase, and starting
from φ̂e(t2) = φe and êδ(t2) = êδ,cr, we set ωe = ω for
time t̂2 ≤ t < t̂f . Therefore, in this time period, we have:

˙̂
φe = ω ⇒ φ̂e(t) = ω(t− t̂2) + φe.

This phase will take an amount of time t̂f − t̂2 obtained as
follows:

φ̂(tf ) = 0⇒ 0 = ω(t̂f − t̂2) + φe ⇒ (t̂f − t̂2) =
−φe
ω

.

(23)

Recall that ω is negative and so the term (t̂f− t̂2) is positive.
Within this time period, the angle êδ(t) decreases as:

˙̂eδ =
−Ve
l

sin
(
ω(t− t̂2) + φe

)
⇒

êδ(t) =
Ve
lω

cos
(
ω(t− t̂2) + φe

)
+

(
êδ,cr −

Ve
lω

cosφe

)
.

This phase should end when êδ(t̂f ) = π/2− ε. We can use
this fact in order to determine the critical value eδ,cr at which

the third phase starts:

êδ,cr =
(π
2
− ε
)
+
Ve
lω

(
cosφe − cos

(
ω
(
t̂f − t̂2

)
+ φe

))
=
(π
2
− ε
)
+
Ve
lω

cosφe (24)

where the second equality follows from (23).

B. Characterizing the Value of t̂1:

Recall that the time instant t̂1 signals the end of the first
phase in which we increase the steering angle φ̂e from its
initial position φ̂e(0) = φe0 to the maximum value φ̂e(t̂1) =
φe. Within this time period 0 ≤ t < t̂1, we have:

˙̂
φe = ω ⇒ φ̂e(t) = ωt+ φe0.

We end this phase whenever the angle φ̂e(t̂1) reaches its
maximum, that is:

φ̂e(t̂1) = φe ⇒ φe = ωt̂1 + φe0 ⇒ t̂1 =
φe − φe0

ω
. (25)

Within this time period, the angle êδ decreases as follows:

˙̂eδ =
−Ve
l

sin (ωt+ φe0)⇒

êδ(t) =
Ve
lω

cos (ωt+ φe0) +

(
eδ0 −

Ve
lω

cosφe0

)
= eδ0 −

Ve
lω

(cosφe0 − cos (ωt+ φe0)). (26)

C. Characterizing the Value of t̂2:

Recall that the time instant t̂2 signals the end of the second
phase, during which the steering angle was sustained at its
maximum value φe(t) = φe for t̂1 ≤ t < t̂2. During this
time period, the angle êδ decreases by:

˙̂eδ =
−Ve
l

sinφe︸ ︷︷ ︸
constant

⇒ êδ(t) = êδ(t̂1)− (t− t̂1)
Ve
l
sinφe.

Recall also that angle êδ achieves its critical value êδ,cr at
time t̂2. Therefore:

êδ,cr = êδ(t̂1)− (t̂2 − t̂1)
Ve
l
sinφe ⇒

t̂2 − t̂1 =
l

Ve sinφe

(
êδ(t̂1)− êδ,cr

)
.

By substituting the values of t̂1, êδ(t̂1) and êδ,cr from (25),
(26) and (24), respectively, we obtain the value of t̂2 which
is shown in (28).

D. Characterizing the Value of t̂f :

Combining the values of t̂1, t̂2 along with (23) we can
compute the final value of t̂f as shown in (29).
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t̂1 =
φe − φe0

ω
(27)

t̂2 = t̂1 +
l

Ve sinφe

(
eδ0 −

Ve

lω
(cosφe0 − cos

(
ωt̂1 + φe0

)
)−

(π
2
− ε
)
−
Ve

lω
cosφe

)
(28)

t̂f = t̂2 +
−φe
ω

(29)

E. Characterizing the Enlarged Controlled Invariant Set

In the previous subsections, we were able to character-
ize the maneuver parameters calculated as function of the
initial conditions φe0 and eδ0. We now characterize how
the distance êr evolves along the different phases of the
maneuver as a function of the initial condition er0. The
controlled invariant set R then constitutes of all the initial
conditions (er0, eδ0, φe0) for which the distance êr remains
strictly positive for the time period 0 ≤ t ≤ t̂f . For this
end, we need to evaluate the dynamics of êr along the three
phases. This can be done by integrating:

˙̂er = Ve cos φ̂e cos êδ − Vp

after substituting the corresponding values of φ̂e and êδ .
1) Phase 1: The decrease in the distance between the

evader and the pursuer through this time period can be
calculated as:

êr(t) = er0 − Vpt+ Veαω (0, t, φe0, eδ0) (30)

where:

αω(τ, τ
′, a, b) =

∫ τ ′

τ

cos (ωt+ a) .

cos
(
b− Ve

lω
(cos a− cos (ωt+ a))

)
dt.

(31)

Note that the the term
∫
cos(cos t)dt can not be evaluated in

closed-form as it gives rise to the hypergeometric function.
Although the previous integration can be computed numeri-
cally for given a, b, τ, τ ′ parameters, for the sake of finding
a closed-form description of the safe set, we continue by
bounding the previous integration as follows. First, recall
that cos θ takes values in the set [−1, 1], hence:

−1≤cos (ωt+ φe) cos
(
eδ−

Ve
lω

(cosφe−cos (ωt+ φe))
)
≤1.

Using this fact, we can bound αω(τ, τ ′, a, b) as:

−(τ ′ − τ) ≤ αω(τ, τ ′, a, b) ≤ τ ′ − τ. (32)

Substituting (32) in (30) we conclude that:

êr(t) ≥ er0 − (Vp + Ve)t.

2) Phase 2: Unlike the previous analysis, we can calculate
the exact decrease in the distance êr during phase 2 as:

˙̂er = Ve cosφe cos

(
êδ(t̂1)− (t− t̂1)

Ve
l
sinφe

)
− Vp ⇒

êr(t) = êr(t̂1)− Vp(t− t̂1) + Veα2(t̂1, t, φe, êδ(t̂1))

where:

α2(τ, τ
′, a, b) =

∫ τ ′

τ

cos a cos

(
b− (τ ′ − τ)Ve

l
sin a

)
dt

= cos a

∫ τ ′

τ

cos

(
b− (τ ′ − τ)Ve

l
sin a

)
dt

= − l cos a

Ve sin a
sin

(
b− (τ ′ − τ)Ve

l
sin a

)
= − l cot a

Ve
sin

(
b− (τ ′ − τ)Ve

l
sin a

)
from which we conclude that:

êr(t) = êr(t̂1)− Vp(t− t̂1)

− l cotφe sin
(
êδ(t̂1)− (t− t̂1)

Ve
l
sinφe

)
.

3) Phase 3: Similarly to Phase 1, the decrease in the
distance êr can be calculated as:

êr(t) = êr(t̂2)− Vp(t− t̂2) + Veαω(t̂2, t, φe(t̂2), δe(t̂2))

≥ êr(t̂2)− (Vp + Ve)(t− t̂2).

Combining all the results together, we conclude that at the
end of the proposed maneuver, the distance êr(t̂f ) can be
bounded as:

êr(t̂f ) ≥ er0 − t̂fVe − (t̂1 − t̂2 + t̂f )Vp

− l cotφe sin
(
êδ(t̂1)− (t̂2 − t̂1)

Ve
l
sinφe

)
. (33)

We denote the right hand side of the previous inequality as
êr(xe0, ye0, θe0, φe0). Indeed, if by the end of the maneuver
the distance êr(xe0, ye0, θe0, φe0) is strictly positive, then the
car would have escaped from the pursuer (pedestrian) and
entered the controlled invariant set. The preceding discussion
can be summarized in the following result.

Proposition 4.1: Consider an evader (car) modeled by the
abstracted dynamics in equations (20) through (22) and a
pursuer (pedestrian) modeled by equations (5) through (7).
If, at time t = 0, the evading car is in the set:

R = S ∪
{
(xe, ye, θe, φe) ∈ R2 × S2 | êr(xe, ye, θe, φe) > 0

}
then there is a control strategy for the evader such that for
every control strategy of the pursuer no collision occurs.
Moreover, the strategy for the evader is given by (19) with
t1 = t̂1, t2 = t̂2, tf = t̂f and t̂1, t̂2, t̂f given by (27), (28),
and (29), respectively.

It is worth mentioning that the previous result can
be extended directly beyond point capture by consider-
ing the vehicle dimensions. That is, if h denotes the car
length, a sufficient condition for evading the pursuer is that
êr(xe0, ye0, θe0, φe0) is strictly larger than h.
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Fig. 2. Effect of changing the upper bound ω on the wheel angular velocity. The controlled invariant set is represented in blue for a pursuer located at
the origin, θe(0) = 0rad, φe(0) = 0 rad, l = 4.80 m, φe = −φe = 0.418879 rad, Ve = 15.646 m/s, and Vp = 1.34 m/s.

V. COLLISION AVOIDANCE FOR THE ORIGINAL
DYNAMICS

In this section, we strengthen the previous result by con-
sidering the original dynamics of the evader (car) described
in (1)-(4), or equivalently (17), (18) and (12), instead of
the abstracted dynamics. In particular, we show in this
section that the analysis carried over the abstracted dynamics
leads to a conservative, i.e., under approximation, of the
controlled invariant set R. Therefore, by applying the same
maneuver—designed for the abstracted dynamics—on the
original dynamics, one can always escape from the pursuer.
This is captured by the following theorem.

Theorem 5.1: Consider an evader (car) modeled by equa-
tions (1) through (4) and a pursuer (pedestrian) modeled by
equations (5) through (7). If, at time t = 0, the evading car is
in the set R defined in Proposition 4.1, then there is a control
strategy for the evader such that for every control strategy of
the pursuer no collision occurs. Moreover, the strategy for
the evader is given by (19) with t1 = t̂1, t2 = t̂2, tf = t̂f
and t̂1, t̂2, t̂f given by (27), (28), and (29), respectively.

Proof: First, we recall that the approximate dynamics
are obtained from the original dynamics by ignoring the term
1
er
Ve sin eδ cosφe in (18), i.e.,

ėδ = ̂̇eδ − 1

er
Ve sin eδ cosφe.

Now it follows from the fact that φe lies in the range
−π/2 < φe < π/2 (recall the assumptions on the model
after equation (4)) that cosφe is always positive. It also
follows from the definition of er that 1/er is also positive.
Therefore, the sign of the term 1

er
Ve sin eδ cosφe depends

only on sin eδ .
Consider the case when eδ lies in the second quad-

rant. In this case, sin eδ is positive and hence the term
− 1
er
Ve sin eδ cosφe is negative. This in turn implies that:

ėδ ≥ ̂̇eδ. (34)

Now recall that the maneuver (19) is designed to decrease eδ
whenever eδ starts in the second quadrant until it enters the
first quadrant and hence escape from the pursuer. Combining

this fact along with (34), which shows that eδ decreases faster
than êδ , we conclude that eδ reaches the first quadrant faster
than êδ . That is, by applying the maneuver (19) to the actual
evader dynamics, we guarantee that the evader enters the set
S faster than the calculated t̂f and hence escapes from the
pursuer. Similar arguments can be made whenever eδ lies in
the third quadrant.

VI. NUMERICAL RESULTS

In this section we numerically illustrate the proposed
maneuver. In particular, we show the controlled invariant
set for a pursuer located at the origin and for different
model parameters. In what follows, we assume that the car
is moving with a speed Ve = 15.6464 m/s (equivalent
to the speed limit of 35 mph in US cities), a pedestrian
moving with a speed Vp = 1.34 m/s (average walking
speed), car length l = 4.8 m/s (current average car length),
ωe = 0.418879 rad/s (equal to spinning the steering wheel
with one complete spin per second and a standard steering
ratio between the steering wheel and the car wheels of
15 : 1).

We start by showing the controlled invariant set, calculated
using (33), in Fig. 2 (a) when the car starts with a steering
angle φe(0) = 0 and orientation θe(0) = 0. We can see that
when the pursuer is behind the evader (positive x axis) the
evader is safe as it can simply drive forward at maximum
speed. When the pursuer is in front of the evader, the white
area describes all the values of (xe, ye) for which the pursuer
can force a collision. This region must be avoided by the
evader. Next, we study the effect of changing the saturation
limits of the wheel angular velocity ωe (input to the system).
Intuitively, as the evader can steer its wheels faster, it can
turn away from the pursuer faster and thus also escape faster.
This intuition is mirrored in Fig. 2 where we can appreciate
how the size of the controlled invariant set (represented in
blue) increases as ωe increases.

Finally, we study the effect of using the abstract dynamics
when calculating the controlled invariant set. We split this
study into two parts: (i) the effect of abstraction performed
when calculating the integral (31) and (ii) the effect of
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ignoring the the second term in the êδ dynamics (18).
First, we consider the effect of the abstraction performed

when calculating the integral (31). Recall that this integral
can not be analytically evaluated and hence we relied on
coarse upper and lower bounds for the integral. However,
we note that such integral can be evaluated numerically for
given car parameters. In Fig. 3 we show the difference in the
controlled invariant set between the closed-form expression
and the numerically computed controlled invariant set. Recall
that the numerical integration is not used to determine the
maneuver parameters (t1, t2 and tf ) but rather to evaluate
whether a particular vehicle state (x, y, θe, φe) belongs to the
controlled invariant set or not. This in turn affects when the
avoidance maneuver needs to be carried over. Fig. 3 shows
that an autonomous vehicle located at y = 0 and facing
a pedestrian can avoid collision provided their distance is
greater than 50 meters when using the over-approximated
integral. This distance reduces to about 20 meters when using
the numerically evaluated integral. These results suggest
that, based on the computational power available in the
autonomous vehicle, performing numerical integration online
(or via the help of pre-computed lookup tables) in the car
leads to less conservative estimates of the invariant set and
thus of when to initiate an evasive maneuver.

To study the effect of ignoring the the second term in the
êδ dynamics, we numerically compute the evolution of er
for both the original dynamics and the abstract dynamics
when the proposed evasion maneuver is applied. Fig. 4
shows the evolution of er for the two dynamics when
the autonomous vehicle starts from xe = −25 m, y0 =
0 m, θe = 0 rad, φe = 0 rad. The results shown in Fig. 4
suggests that the maximum difference in the evolution of er
is around 5 m. Comparing this result with the one in Fig. 3
(which shows a difference of 30 m), we conclude that the
abstraction performed in calculating the integral (31) has a
greater effect on the conservativeness of the results compared
to the effect of ignoring the second term in the êδ dynamics.
Repeating the same experiment multiple times using different
initial conditions leads to similar results.

-60 -50 -40 -30 -20 -10 0 10

-60

-40

-20

0

20

40

60

x

y

-60 -50 -40 -30 -20 -10 0 10

-60

-40

-20

0

20

40

60

x

y

Fig. 3. Effect of over approximating the integral (31): (left) controlled
invariant set computed using the closed-form expression (33) and (right)
controlled invariant set computed using numerical integration.

VII. CONCLUSIONS

In this paper we presented a closed-form expression for
a controlled invariant set that leads to a solution of the
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Fig. 4. Evolution of er(t), evaluated numerically, after applying the
proposed evasive maneuver on the original dynamics (blue) versus the
abstract dynamics (red) for the scenario where xe(0) = −25 m, ye(0) =
0 m, θe(0) = 0 rad, φe(0) = 0 rad, Ve = 15.6464 m/s, Vp =
1.34112 m/s.

pedestrian avoidance problem. The straightforward way to
obtain a controller from the controlled invariant set is to
choose a control input that forces the autonomous car to
remain in the invariant set. This strategy typically leads to
very aggressive controllers that enable any input when far
from the boundary of the controlled invariant set and apply
inputs of large magnitude when approaching the boundary.
Less aggressive controllers can be obtained by resorting to
the recently introduced notion of control barrier function [9],
[10]. We are currently investigating how to construct a
control barrier function from the controlled invariant set so as
to enforce collision avoidance while maximizing passenger
comfort.
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