BeamAuth:
Two-Factor Web Authentication with a Bookmark

Ben Adida
School of Engineering and Applied Sciences
Harvard University
33 Oxford Street
Cambridge, MA 02138
ben@eecs.harvard.edu

ABSTRACT

We propose BeamAuth, a two-factor web authentication tech-
nique where the second factor is a specially crafted book-
mark. BeamAuth presents two interesting features: (1) only
server-side deployment is required alongside any modern,
out-of-the-box web browser on the client side, and (2) cre-
dentials remain safe against many types of phishing attacks,
even if the user fails to check proper user interface indicators.
BeamAuth is deployable immediately by any login-protected
web server with only minimal work, and it neither weakens
nor interferes with other anti-phishing techniques. We be-
lieve BeamAuth may be most useful in preventing a number
of phishing attacks at high-value single sign-on sites, e.g.
OpenlD providers.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication; K.4.2
[Computers and Society]: Social Issues

General Terms

Design, Human Factors, Security

Keywords

phishing, two-factor authentication, web security

1. INTRODUCTION

Web-based authentication is vulnerable to a staggering
number of social engineering attacks, typically called phish-
ing [19]. Attackers provide a spoofed web page, where the
user is fooled into entering her credentials. The spoof can
take the form of a simple user-interface deception, sometimes
with a URL crafted to resemble the purported destination
in order to trick even users who check the address bar. Re-
cent variants, called pharming attacks [37, 38], are signifi-
cantly more cunning: by spoofing DNS or even IP addresses,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’07, October 29-November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

the attacker’s phishing URL matches ezactly the purported
destination. Pharming attacks are becoming easier to carry
out using, for example, malicious base stations to which wi-fi
users might innocently connect. The only remaining defense
is the SSL certificate warning, which many users ignore [11].

Much recent work proposes defenses against phishing at-
tacks, including site-specific password pre-processing [41],
cryptographic protocols combined with trusted-path user-
interface indicators [12], and altogether novel methods of
web authentication [8]. Unfortunately, all of these solutions
require new client-side code, which greatly limits their de-
ployability until major web browsers implement the feature
and a large portion of web users upgrade accordingly. When
the proposed change is implemented as a browser add-on,
new trust and attack surface issues arise: the add-on usu-
ally has full control over the user’s browser.

At a high level, it is well known that multi-factor au-
thentication is preferable, though not foolproof, in defend-
ing against social engineering attacks. Yet multi-factor au-
thentication is difficult to implement in an out-of-the-box
browser. One extension-free approach to web-based two-
factor authentication is site-image verification, e.g. BankO-
fAmerica’s SiteKey [3] or Yahoo’s sign-in seal [52]: the server
provides a personalized login image to browsers previously
tagged with a long-lasting cookie, and the user is expected
to enter her password only if she notices her expected per-
sonal login image. The long-lasting cookie plays the role
of a second factor, and the login image provides some form
of human authentication of the server requesting the user’s
credentials.

Our solution, BeamAuth, provides second-factor authen-
tication using a specially crafted bookmark instead of a
cookie. We believe this approach provides a few notable
advantages:

1. our token is hidden inside a bookmark rather than a
cookie so that it is less vulnerable to cross-site scripting
(XSS) attacks [9],

2. a bookmark has fewer privacy side-effects than a cookie,
making it less likely to be deleted by routine cookie
deletion, and

3. a user’s multiple browsers and computers can be au-
tomatically set up for BeamAuth using any one of nu-
merous existing bookmark synchronization tools.

Target Audience. Our proposal’s major downside is its re-
quirement of a distinct bookmark for each site protected by
BeamAuth. Thus, BeamAuth is useful mostly to secure a
user’s few high-value sites, i.e. banks or single-sign-on sys-
tems. We believe our approach may be of particular interest
to OpenID [39] and other single-sign-on providers that au-
tomatically redirect users to their login page. Some consider
that such auto-redirect behavior leads to increased phishing
risk [7, 30]. BeamAuth should help alleviate some of this risk
while furthering the goal of a login solution that does not
require browser changes.

1.1 The Fragment Identifier

The fragment identifier is a long-standing and well-specified
web feature for accessing portions of URLSs [6]. As an exam-
ple, the URL http://example.org/stuff#paragraphd spec-
ifies the fragment named paragraph4 within the primary
resource designated by http://example.org/stuff. When
encountering a fragment identifier, web browsers scroll the
viewport to the designated chunk, e.g paragraph4.

In accordance with the specification, major web browsers
never send the fragment identifier over the network: the
primary URL is requested, and the fragment is used only
for client-side scrolling. In addition, when a user navigates
from one fragment identifier to another within the same pri-
mary URL, the page is not reloaded, it is only scrolled ap-
propriately!. If no fragment with the requested identifier
exists, all major browsers simply ignore the fragment identi-
fier, though it remains in the address bar. (It is interesting
to note that browsers also omit the fragment identifier from
the HTTP_REFERER field, though we do not make use of this
property in this work.)

Notably, a page’s JavaScript code can read, update, and
delete the fragment identifier at will, without causing a reload
or causing any data to be sent over the network. All up-
dates are immediately reflected in the address bar, and the
JavaScript code can even choose whether this change should
be reflected in the browser history or if the previous frag-
ment should be forgotten altogether, inaccessible even using
the “back” button.

1.2 Our Contribution: Second-Factor Authen-
tication with a Bookmark

We propose BeamAuth, which treats the fragment identi-
fier as a local cryptographic input to the web page’s JavaScript
code. Alice, the user, installs a bookmark containing a se-
cret token in its fragment identifier: https://site.com/
login#[TOKEN]. She can use this bookmark to reach the
site directly. Alternatively, if she is directed to https://
site.com/login by normal web surfing activity, she can be
prompted to click her BeamAuth bookmark. Since the book-
mark click doesn’t change the primary URL, the page does
not reload or cause any network access 2: the only change is
that #[TOKEN] is now appended to the URL. In either case,
by polling the address bar field, the login page’s JavaScript
notices this fragment identifier, stores the token in a vari-
able, clears it from the address bar, and prompts Alice for
her password. Once entered, this password is cryptographi-
cally combined with the token and used as the credential for
the login.

Lwith some exceptions addressed in Section 3.
2with some exceptions, which we work around in Section 3.

Importantly, if Alice is being phished and is thus not at
her real login page, the bookmark click will cause the browser
to load the real login page. If she notices this page load,
Alice may realize she was being phished. However, even if
she doesn’t, her credentials remain safe. If the phishing site
convinces her not to click her bookmark (or she forgets), her
password may be compromised, but this is only one of two
required tokens for login. In other words, it becomes much
more difficult to phish Alice: even if she makes a simple
mistake, her credentials remain safe.

Auto-Redirect Single Sign-On Sites. Each site that uses
BeamAuth requires a setup procedure and some bookmarks-
bar real-estate. Thus, this technique is best left to high-value
sites, like financial institutions or single sign-on systems.
BeamAuth may be particularly interesting for auto-redirect
single-sign-on sites like OpenID identity providers [39], where
Alice may be more easily phished because she is accustomed
to being redirected to her login site by the site requesting
authentication. The BeamAuth bookmark click prevents the
most common phishing attacks in this scenario.

1.3 Limitations

Though we believe BeamAuth provides significantly en-
hanced security against phishing with close-to-optimal de-
ployability, it is by no means perfect.

JavaScript Required. BeamAuth requires JavaScript. A
user who turns off JavaScript cannot get the proposed ben-
efits. Fortunately, the login provider can detect JavaScript
during bookmark setup, and either prompt the user to en-
able it or fall back to another authentication mechanism
which doesn’t require JavaScript.

Certain Attacks May Still Succeed. Malware on the user’s
computer, pharming attacks on non-SSL sites, or pharm-
ing attacks on SSL sites where users pay no attention to
certificate validity indicators may succeed in defeating Bea-
mAuth. These are considered out of scope for this proposal,
though we note that BeamAuth generally does not interfere
with other proposed defenses against these more advanced
attacks.

1.4 Related Work

Anti-Phishing. The range of anti-phishing solutions is vast.
Some techniques focus on detecting spoofed emails in email-
based phishing attacks using cryptographic techniques [4,
46, 2], origin or path-based verification [23, 32, 31, 20],
or heuristics similar to those used for spam detection [42,
33, 35]. Other techniques focus on providing web-browser
toolbars that use various heuristics or collaborative filter-
ing to determine what might be a phishing attack [36, 22].
Both Internet Explorer 7 and Firefox 2 consult databases
of known phishing web sites to warn users. More recently,
techniques have emerged that strengthen the cryptographic
and trusted-user-interface-path capabilities of web browsers
in order to implement more intricate authentication proto-
cols [41, 12, 8]. It takes a whole book to describe the range
of phishing variants and known defenses [25]. We note that
most of these defenses require software-install updates to
either the user’s web or email client.

JavaScript Use of the Fragment Identifier. The fragment
identifier has been usurped in other ways, usually as a mech-
anism to maintain state in a single-page JavaScript web ap-
plication. S5 [34], an HTML slide presentation tool, uses the
fragment identifier to indicate which slide to display, with
the whole slideshow contained in a single HTML file. The
Dojo JavaScript toolkit [27] and other JavaScript libraries
use the fragment identifier to maintain state information, so
that a user may click the forward and back buttons normally
in an AJAX [17] web application without full page reloads.
As far as we know, fragment identifiers have not yet been
used as secure tokens in cryptographic authentication pro-
tocols.

Security in the Web Application Layer. Others have pro-
posed security protocols that make use of existing browser
features in novel ways, effectively building security into the
web application layer. Juels et al. [28] propose to use “cache
cookies” for security: the browser cache stores secret tokens
for two-channel authentication at secure sites, e.g. online
banking. Jackson and Wang [24] explore various existing
browser features to enable secure cross-domain communica-
tion for web mashups. BeamAuth aims to achieve the same
deployability for phishing-resistant web authentication.

Bookmarks for Security. Two recent Internet web post-
ings [7, 30] suggest the use of a bookmark to curtail phish-
ing attacks against OpenlD servers, or generally any web
single sign-on system where users are automatically redi-
rected to their login page. Though these are very interesting
and useful suggestions, our technique is a bit different: we
do not need to change existing single sign-on protocols; we
only tweak how Alice enters her credentials. We also use
the bookmark as more than a server locator: the BeamAuth
bookmark serves as a second authentication factor.

1.5 This Paper

We present the core technical components of the Bea-
mAuth technique in Section 2. Section 3 describes the details
of the protocol, in particular the “user login ritual” and the
initial browser setup procedure. Implementation details and
an overview of performance metrics are described in Section
4. Threats, defenses, comparison to other solutions, and
potential impact are discussed in Section 5.

2. BEAMAUTH BASICS

The core BeamAuth features are relatively simple: a se-
cret cryptographic token is “injected” into the local page
scope via the fragment identifier, a portion of the URL never
sent over the network but accessible from JavaScript code.
In this section, we present these issues in detail, especially
their specific implementation differences across the four ma-
jor browsers: Internet Explorer (6 and 7), Firefox (1.5 and
2.0), Safari (2.0), and Opera (8 and 9).

2.1 The URL Fragment Identifier

A URL [6] may contain a fragment identifier, which, as its
name implies, addresses a fragment of the resource denoted
by the primary URL. Specifically, a URL with a fragment
identifier looks like:

http://hostname/rest/of /url#fragment_id

The resolution of a fragment identifier within a given docu-
ment depends on the document’s MIME type. In the case
of an HTML document, with MIME type text/html, the
fragment identifier specifies a portion of the HTML page
identified accordingly. Importantly, a web browser will re-
solve the above URL as follows:

1. connect to host hostname on port 80,
2. request /rest/of/url and render the HTML page,

3. scroll the viewport to the position indicated by frag-
ment_id if it exists, ignore it otherwise.

Note how fragment_id is never sent over the network. This
property has been confirmed on all major browsers, and it
is, in fact, part of the URI specification.

Navigation. When a user navigates from one fragment iden-
tifier to another within the same primary URL, the browser
does not trigger a page reload: the page simply scrolls to
the position indicated by the new fragment identifier (or,
again, does nothing if no such position exists). In the two
dominant browsers, Internet Explorer and Firefox, this ab-
sence of reload remains true no matter how the initial URL
was loaded, regardless of the cache preferences on the down-
loaded page: even a page with strict no-cache HTTP headers
that results from a POST operation is not reloaded when only
the fragment identifier changes. Thus, all page state, be it
local JavaScript variables or HTML form inputs entered by
the user, remains unaffected when the fragment identifier
changes.

There are small exceptions to these otherwise consistent
rules. In Opera, changing the fragment identifier on a page
that results from a POST does, in fact, trigger a reload, this
time as a GET. In Safari, a change in fragment identifier
triggered by an external source, e.g. clicking a bookmark
or manually entering a new fragment identifier rather than
clicking a link within the web page itself, does trigger a
reload even if the primary URL does not change. Because
these two browsers make up a notable 5% of web users [49],
we special-case their support with extra server-side over-
head: any form parameters are stored in a server-side ses-
sion, so that the user can always end up at a GET URL
without any URL parameters.

2.2 JavaScript Features

Fragment Identifiers. In all browsers, window.location.
hash is a read/write JavaScript variable that corresponds to
the fragment identifier as it appears in the browser’s address
bar. Changing the value of this variable updates the address
bar without reloading the page, scrolls the viewport to the
appropriate location (if it exists), and results in the new
URL being added to the browser’s history.

When we want to change the value of this fragment identi-
fier without leaving a trace in the browser history, for exam-
ple to clear a secret token from view, we use a slightly differ-
ent mechanism. The JavaScript function window.location.
replace() updates the URL (including the fragment iden-
tifier) without adding the previous URL to the history. It is
as if the previous URL was never visited.

JavaScript Bookmark. Tt is tempting, for our purposes,
to use a JavaScript bookmark, also known as a bookmarklet
or favelet, which is effectively a small piece of JavaScript
code that is executed when the bookmark is clicked. Some
early prototypes of this work were implemented accordingly.
Unfortunately, this code cannot be expected to behave cor-
rectly, because the bookmark’s JavaScript is executed in the
context of the current page. A malicious page might override
any command, even the standard JavaScript API, thereby
completely altering the behavior of the bookmark code and
likely revealing the secret token to the attacker. (Some vari-
ables are declared constant in the JavaScript specification
and should provide a safe baseline for such techniques, but
most browsers do not respect these constraints, and it is
risky to rely on consistent JavaScript behavior across all
browsers for security purposes.)

2.3 Web Authentication Security

We briefly review the types of attacks that web users most
often face when performing online authentication and how
current HTTP security features address them.

1. passive sniffing: users often access web sites over
open or insecure wi-fi access points, unswitched local
wired networks, or corporate proxies. The URLs they
request and the content they receive are easily snif-
fable when SSL is not used. The damage from these
kinds of attacks is unclear, as most non-SSL-using web
sites are small providers. However, the threat is well
understood: while the W3C does not mandate SSL,
the W3C’s technical advisory group is considering rec-
ommending that login credentials never be sent in the
clear [40].

2. social engineering: users are easily fooled by mali-
cious sites that visually spoof legitimate sites to steal
credentials. Financial institutions are the typical tar-
get, though other e-commerce sites are also targeted
when there is an eventual financial gain. Users gener-
ally don’t check the URL or even the SSL padlock of
their connections [11]. The damage from these attacks
is well documented and significant [19], and carrying
out such an attack is fairly trivial.

The most advanced type of attack in this category is
the pharming attack, where a DNS record or even an
IP address is spoofed to make the user believe she is
visiting the correct site. This type of attack is on the
rise via malicious open wi-fi base stations, which users
tend to trust in their thirst for Internet access “on the
go.” Even when an incorrect SSL certificate raises a
flag, users tend to ignore the warning [11]. This prob-
lem may be somewhat alleviated with Internet Ex-
plorer 7’s strong disincentive to visit inconsistent SSL
sites. However, to our knowledge, there is no reliable
data yet as to whether user behavior is significantly
affected.

3. desktop compromise: a surprisingly high number of
desktop computers are compromised with malware [29].
Users of these compromised machines have zero guar-
antee of any security: all security indicators may be
faked, and all host names may be hijacked. SSL is use-
less. Damage from these attacks is significant, though

carrying out such an attack is typically more involved
than either passive sniffing or social engineering.

SSL is not enough. 1t is clear that SSL is not enough to
protect against desktop compromise attacks. It is also rela-
tively well understood that, for high-value applications, SSL
is still not enough to protect against social engineering at-
tacks, as evidenced by the depressingly high success of such
social engineering attacks. The key issue is that, even with
SSL, the web remains treacherous: a momentary lapse in
judgment, and Alice may be tricked into thinking that two
‘v’s are actually a ‘w’ [11]. As a result, some suggest that
high-value sites resort to two-factor authentication, where
at least one factor is not easily stolen from an inattentive
user.

2.4 Goals of Our Proposal

We aim to make it more difficult to carry out social en-
gineering attacks against customers of high-value web sites.
High-value web sites should have an easy and relatively se-
cure way to implement two-factor authentication without
resorting to browser plugins or physical tokens. We specifi-
cally aim to provide a “safety net” for users, so that a mo-
ment of inattention will not immediately result in identity
theft. In other words, we are attempting to make phishing
significantly more difficult for the attacker. Importantly, we
also aim aim to not interfere with other proposals that may
help address sophisticated pharming attacks, which we do
not address.

3. THE BEAMAUTH PROTOCOL

We consider high-value web sites, including in particular
the single-sign-on use case in its many forms, where Alice
is sent to her login page by a third-party web site, some-
times called the relying party because it relies on an authen-
tication process performed by another party. For example,
Flickr sends its users to Yahoo for authentication, and any
web application can use Yahoo in the same way with Yahoo
BBauth [51]. A growing number of web applications use
OpenID [39] for authentication, where the relying party is
expected to redirect Alice to her OpenlD server. A number
of university networks also use this same technique: Har-
vard University’s PIN system [21] and Stanford’s WebLogin
system [44] are two prominent examples, where peripheral
sites send users to the central login site which, after authen-
tication, redirects the users back to the peripheral site with
an authentication token.

In all of these cases, phishing is of great concern, since
Alice is sent to her login page by the site requesting authen-
tication. It has been noted in particular that OpenID may
make phishing easier because Alice explicitly discloses her
identity provider, and thus the identity provider’s look-and-
feel, to a potentially evil site [7, 30]. We aim to mitigate
phishing attacks in this widespread scenario.

3.1 The Bookmark

With BeamAuth, we transform a typical browser book-
mark into a second factor for web-based authentication, us-
ing a secret token in the bookmarked URL’s fragment iden-
tifier:

http://site.com/login#[username|secret_token]

The User Login Ritual. Alice may reach a site she wishes
to visit either by normal navigation (e.g. entering a URL in
the address bar, clicking a link, etc.), or by choosing one of
her bookmarks. Assuming Alice has already set up her Bea-
mAuth bookmark at a particular site, we consider her login
ritual when she happens upon the login page by navigation
or manual URL entering, and we note that it is only slightly
more complicated than the typical username/password pro-
cess:

1. The web site prompts Alice: “click your BeamAuth
Bookmark.”

2. Alice clicks her bookmark, which updates the login
page with her username, and the page now prompts
her for her password.

3. Alice enters her password and clicks “Submit.”

4. If both the bookmark token and the password are cor-
rect, Alice is correctly logged in.

Note how, by including Alice’s username in her bookmark,
this process may be immediately advantageous to Alice: she
has less typing to do. This optimization should probably
not be used if Alice’s username has some external secret sig-
nificance, e.g. a social security number, as an attacker who
gains momentary physical access to Alice’s machine could
then read this data easily.

Interestingly, if Alice chooses to use her bookmark as one
might expect — to reach her site in the first place — the login
ritual skips immediately to Step 3. The two-factor protec-
tion remains, and Alice’s username is also filled in automat-
ically.

Setting up the Bookmark. To set up the BeamAuth book-
mark within her browser, Alice must follow an initial au-
thentication process that is inherently more involved than
the everyday login. This should be done using a second-
channel authentication mechanism, using, for example, a cell
phone SMS [50], or an email mail-back [16]. We specifically
recommend the email mail-back option, as it requires only
an email client, which can easily provide a clickable URL
containing a verification code that sends Alice right back to
her browser. Many web sites already perform a mail-back
verification to ensure that the user’s email address is correct:
BeamAuth can easily bootstrap off this existing process.

When Alice clicks on this verification URL, the web page
she reaches provides her with a link that she can easily drag-
and-drop onto her bookmarks/favorites toolbar. Of course,
the verification link sent via email should be secure in au-
thentication and in content: the verification code in the
URL should never be sent in the clear. This can be achieved
using SSL, so that a verification URL sent by email looks
like:

https://site.com/confirm?vc=<verification_code>
It can even be done by placing the actual token in the frag-
ment identifier, so that the token is truly never sent over the

network, never logged by the web server, etc.:

https:
//site.com/get-bookmark# [username|secret_token]

The get-bookmark page is then a simple HTML template
with bundled JavaScript that fills in the template on the
client side by extracting the secret token in the fragment
identifier:

bookmark_link.href =
‘https://site.com/login’ + window.location.hash;

Re-Initialization and Multiple Computers. Though it is
less likely than a cookie deletion, it is certainly possible that
Alice will delete her BeamAuth bookmark by mistake. It is
also very likely that Alice uses more than one browser, on
more than one computer. All of these cases amount to the
same problem: how often does Alice need to perform the
initialization procedure, and will this be an impediment to
using BeamAuth? Significant user testing will be required
to answer these questions, but a few signs indicate that, for
high-value sites, the situation may well be acceptable.

The simplest approach is to instruct Alice to keep the
signup email around until she has set up all of her web
browsers. She can visit the setup page and install the Bea-
mAuth bookmark once on every browser she uses. If she loses
the signup email, the BeamAuth-protected web site can lead
Alice through a sequence of verification questions—similar
to SiteKey [3]—and eventually send her a new copy of the
signup email. Note that the token is always sent via a sec-
ond channel, even if the verification questions are answered
via the primary web channel.

Note also that bookmark synchronization is useful for
many other purposes, not just BeamAuth. Google’s Browser-
Sync [18] provides encrypted bookmark synchronization for
Firefox, while Sync2It [45] provides the same functionality
for all browsers, and Apple’s dotMac [13] provides it for Sa-
fari. Any of these solutions is a good way to enable Alice to
initialize one browser and synchronize the BeamAuth book-
mark to all of her other browsers. Though BeamAuth makes
special use of the fragment identifier, the “secret sauce” is in
the site’s JavaScript, not in the bookmark itself: the Bea-
mAuth bookmark will be synchronized just like any other.

3.2 The Mechanism

A BeamAuth login page contains JavaScript that regu-
larly polls the value of the fragment identifier (entirely lo-
cally, causing neither network activity nor server-side pro-
cessing). When Alice clicks her bookmark, the URL is up-
dated (without reloading) to include the token [usernamel|
secret_token], and the BeamAuth JavaScript poller reads
this token from the fragment identifier. It then fills in the
login form with Alice’s username, and saves the secret token
into a local variable. The JavaScript then clears the frag-
ment identifier so that the secret token is no longer visible
in the URL address bar nor the browser’s history.

When Alice submits the form with her password, the Bea-
mAuth JavaScript code intercepts the form submit, HMAC’s
the password with the secret token, and securely submits
this resulting credential to the server. Security of this trans-
fer is ensured either via SSL or, if SSL is not available, using
some kind of challenge-response approach such as that im-
plemented by Yahoo [15].

Interestingly, the server need only store

h MacCsecret_token (paSSU)OTd)

never the password in the clear. This is effectively the same
thing as keeping passwords stored hashed with a salt, a
common recommendation for any password-based login sys-
tem, except the salt-and-hash operation is performed on the
client side in JavaScript, with the salt provided via a sec-
ond channel—the bookmark. The security of this setup is
not weakened, because we expect that the transfer of the re-
sulting hmacsecret_token (Password) will be secured either by
SSL or by an extra layer of HMAC-based challenge-response.
The server may also store secret_token if it wants to let Al-
ice regenerate a bookmark in the future without invalidat-
ing her other already installed bookmarks (e.g. on her other
computers.)

Behavior under Attack. At a high level, we note that it
is difficult for Alice to be tricked into revealing her secret
token, because it is hidden inside her bookmark. This token
appears in the address bar only for a short period of time,
usually never long enough for Alice to even see it, and is then
removed from the address bar and from the browser’s his-
tory when the login page’s code calls the window.location.
replace() standard function call.

If Alice is being phished, she may forget to click her book-
mark and reveal her password to the attacker, or she may re-
member to click her bookmark and be immediately whisked
away to the real login site (again assuming no DNS or IP
spoofing, or at least a user who takes the SSL certificate
warning seriously.) The security of BeamAuth relies on the
fact that it takes both tokens to log in, and that it is diffi-
cult to trick Alice into revealing her bookmark token. We
explore attacks in greater detail in Section 5.2.

3.3 Limitations

The URL of the login page must match exactly what the
bookmark expects, otherwise a reload will be triggered. If
the login page needs certain parameters, they should thus
be sent via POST.

Unfortunately, Safari and Opera do not fully support this
approach. In Opera, the login page must be loaded via a
GET operation if the local secret-token injection is to suc-
ceed without a page reload. In Safari, the page will always
reloads on a bookmark click. Thus, for both of these web
browsers, the login server should store any parameters in a
server-side session, so that a page reload will not mistakenly
delete them. This work-around requires more server-side
state. As Safari and Opera together make up about 5%
of the browsing public, it is important to build this work-
around, but it is also reassuring that the extra overhead will
be required only for a small fraction of users.

4. IMPLEMENTATION

In this section, we describe our BeamAuth implementa-
tion, which is fully functional online and available at:

http://ben.adida.net/projects/beamauth/

4.1 Setup

Hosted Server and Web Client. We used a typical shared-
hosting provider, using a small portion of a quad-processor
Intel Xeon 3.2Ghz server with 4GB of RAM, located in
Houston, Texas. We tested Firefox 2.0.1, Safari 2.0.3, and
Opera 9 on a Macintosh Powerbook G4 running at 1.5Ghz

with 1.5 GB of RAM. We tested Internet Explorer 6 and 7
on Windows XP Professional running on a 1.8Ghz Intel Core
Duo with 1 GB of RAM. Both client PCs were connected
via a Comcast home broadband connection in Boston, Mas-
sachusetts.

Web Server and Application Logic. We use Python 2.4 [47]
as the back-end programming language, with the CherryPy
web environment [10] that simply maps URLs to Python
class methods. The code is simple enough that it should be
fairly easy to read even if one is not familiar with Python
or CherryPy. We use the Apache [5] web server to handle
all HTTP requests, with a mod_proxy interface to bridge
Apache and CherryPy. We built the server-side BeamAuth
features using the built-in CherryPy session support and the
built-in Python HMAC API. The back-end code, including
the mail-back implementation, contains approximately 200
lines of BeamAuth-specific code plus a few HTML templates
and generic utilities to render these templates.

JavaScript. We use a JavaScript library [26] that imple-
ments HMAC-SHA1. Note that, while SHA1 has recently
been shown to have certain weaknesses [48], its security in an
HMAC setting has not been compromised. If it were to be
compromised, a move to SHA256 would be fairly straight-
forward and only slightly more computationally intensive.
Our small BeamAuth JavaScript library implements:

e polling, reading, and updating the fragment identifier,

e performing the login process, including Ul updates,
HMAC, and an HMAC-based challenge-response.

Our BeamAuth-specific JavaScript, not counting the HMAC
library, is less than 50 lines of code.

4.2 Performance

We evaluated client- and server-side computational needs
for performing HMACs. We determined that, on the slowest
browser (Safari) using the specified Mac laptop, an HMAC
operation requires just under 50ms. As this is entirely client-
side computation, it is negligible and barely noticeable to the
user. On the server side, in Python, one HMAC operation
took 300us on our setup, a modest computational require-
ment compared to the average database query.

S. DISCUSSION

We first explore, in greater detail, the threat model we
considered. We then examine specific attacks and how Bea-
mAuth fares. We briefly compare BeamAuth to site-image
systems such as SiteKey [3], and we briefly note the inter-
esting aspect of no-install security deployment.

5.1 Threat Model

We attempt to protect authentication credentials against
phishing attacks, including the simplest user-interface de-
ceptions, deceitful URLs, and pharming attacks that omit
the SSL component on sites that are SSL-enabled. We specif-
ically point out that we do not try to defend against some
of the more involved attacks, including malware that effec-
tively turns a user’s machine against her, or pharming at-
tacks that use SSL and expect the user to ignore the certifi-
cate warning. Certainly, these other attack vectors are worth

considering, though we believe that defending against them
likely requires significant changes to browser code. We’ve
attempted to provide a strong defense against a large class
of attacks using only existing deployed web browsers.

We assume that a site implementing BeamAuth will not
allow logging in with only one of the two authentication
factors. When one of the authentication factors needs to be
recovered or reset, it must happen via a secondary channel,
e.g. SMS, voice, or email. We specifically recommend email
and explore potential attacks accordingly.

We do not attempt to prevent denial of service attacks:
we accept the possibility that a user may get frustrated and
may believe she can no longer log in, as long as this frus-
tration does not lead to a trivial compromise of both her
authentication factors.

We also do not attempt to protect against attackers that
convince Alice she has successfully logged in when she, in
fact, has not, and then proceed to request further confiden-
tial information from her. Our focus is on preventing the
attacker from successfully impersonating Alice to the Bea-
mAuth-protected site.

5.2 Specific Attacks

Phishing with a Deceitful URL, Discouraging the Book-
mark Click. In a classic, unsophisticated phishing attack
where the URL is made to look similar to the purported
destination with exactly the same appearance and instruc-
tions, Alice will click her bookmark and be whisked away
to her true login site. Her credentials remain safe. If Alice
forgets to click her bookmark, possibly because the phish-
ing site omits that instruction or actively encourages her not
to click, she may reveal her password to the malicious site.
Because her bookmark token remains safe, this should not
allow the attacker to log in on her behalf. However, it may
be problematic if Alice uses this same password at another
site that requires only a single authentication token.

Overriding Page Unload. Surprisingly, a site can include
JavaScript that locks the user in and prevents her from leav-
ing, even if she clicks on her bookmark:

window.onunload = function() {
window.location =
‘http://evil.com/stay-here’;
};

In this case, when Alice clicks her BeamAuth bookmark,
she may think she is being taken to her login site, when in
fact the malicious JavaScript interception has sent her to
a spoofed post-bookmark-click page. Though she will not
see her username automatically filled into the login form,
she may ignore this inconsistency and fill it in herself, enter
her password, and submit the form. In this case, as in the
previous, Alice’s password is compromised. However, again,
her BeamAuth secret token, and thus her login, remain safe.

Importantly, the malicious JavaScript interception cannot
access the URL to which the user intended to navigate: a
call to window.location yields the current URL, not the
new one. Thus, a malicious web site can prevent a user
from navigating to another site, but it cannot determine to
which site the user meant to navigate: the BeamAuth token
remains safe.

Malicious Bookmark Replacement. An attacker might
trick Alice into replacing her BeamAuth bookmark with a
malicious one, using, for example, a spoofed email that mim-
ics the BeamAuth setup email. No matter how intricate a
procedure the attacker asks Alice to perform, one important
point remains: without a significant browser bug, an at-
tacker cannot access the content of Alice’s bookmarks, and
thus her BeamAuth token. However, this scenario can cer-
tainly become another mechanism for the attacker to steal
Alice’s password. Again, Alice’s BeamAuth token, and thus
her login, remain safe.

Spoofing the Browser Interface. An attack could spoof
the browser interface [53] by opening up a new browser win-
dow, hiding the bookmarks bar, and displaying its own fake
bookmarks bar. Though the attacker would be hard-pressed
to know what bookmarks Alice is supposed to have, there
is a chance it could fool Alice into clicking its fake book-
mark rather than Alice’s real BeamAuth bookmark. This
case then reduces to the previous attack, where the attacker
convinces Alice to replace her BeamAuth bookmark. Alice
may compromise her password, though her BeamAuth token
should remain safe.

Explicit Bookmark Theft. An attacker might use the above
onunload hijacking attack to frustrate Alice because she can
no longer log in. The attacker may then follow up and ask
Alice to reveal the contents of her BeamAuth bookmark as
part of a purported debugging process. BeamAuth attempts
to mitigate this attack: the token is cleared from the ad-
dress bar within milliseconds of the bookmark click, so that
Alice would have to manually copy and paste the BeamAuth
bookmark content and send it to the attacker. For high value
sites, this attack cannot be discounted. It will be important
to tell users to never, under any circumstance, send the con-
tent of their bookmark to anyone, even someone claiming to
be a customer service agent. Even then, one cannot expect
this to be foolproof: a determined attacker may convince
Alice to manually send him her bookmark token, in which
case BeamAuth has been defeated.

Attacking the Email Account. Given the high value of the
BeamAuth token sent via email, an attacker might opt to at-
tack Alice’s credentials for accessing her email account. If
the attacker succeeds, then the BeamAuth token is compro-
mised, and the attacker might then succeed at obtaining
Alice’s password through normal phishing means. In other
words, if an attacker can compromise both Alice’s web and
email channels, he can successfully defeat BeamAuth.

Using the Victim’s Computer. An attacker might tem-
porarily gain access to Alice’s computer, e.g. while she is
at lunch. This attack is worth considering specifically be-
cause the BeamAuth token is inside a bookmark, which is
easily accessible to an attacker sitting in Alice’s chair. For-
tunately, the attacker will not be able to immediately log
in as Alice, as he still needs her password. However, an at-
tacker can steal Alice’s full credentials if he gains access to
Alice’s computer and later phishes her for her password.

A usually benign variant of this situation is when a fam-
ily shares a common computer and even a single account to
this common computer: all bookmarks are shared between

users. In this case, each family member would have their
own BeamAuth bookmark for each site. Each account re-
mains protected by the family member’s password, though
it is certainly easier for one family member to steal another’s
credentials, since one authentication factor is immediately
compromised.

Pharming Inattentive Users. An attacker who hijacks a
DNS entry or spoofs an IP address can effectively intercept
and respond to HTTP requests, including the BeamAuth
bookmark click, destined for the legitimate login host. By
sending down malicious code that reads the fragment identi-
fier, an attacker can thus compromise the BeamAuth token.
If the protected site does not use SSL, BeamAuth is com-
pletely vulnerable to this kind of attack. If the protected
site uses SSL, BeamAuth remains vulnerable, except when
users are attentive enough to take the browser’s certificate
warning seriously.

Malware and Client Compromise. An attacker who in-
jects untrusted code into the user’s client computer can com-
pletely control the system, read the browser’s bookmark
content, and keylog the user’s password. BeamAuth is com-
pletely vulnerable to this kind of attack.

5.3 Comparison to Long-Lasting Cookies

Other two-factor web authentication techniques that do
not require additional client-side code exist, e.g. BankO-
fAmerica’s SiteKey [3] and Yahoo’s Sign-In Seal [52]. In
these schemes, the second-factor token is stored as a long-
lasting cookie, sent only over SSL. A browser is initialized
with this long-lasting cookie if the user successfully answers
a number of verification questions. It is worth noting that a
recent study [43] showed that users are still highly vulnera-
ble to phishing with such site-image systems.

Second-Channel Setup. One important difference between
such site-image systems and BeamAuth is the means by which
the second factor is set up. In BeamAuth, we opt for a com-
pletely separate communication channel—email—so that a
successful man-in-the-middle attack would require intercept-
ing both a web and email connection. We note, of course,
that site-image systems could adopt the same technique for
their long-lasting cookie setup, and that such a defense could
mitigate some of the concerns, as a phisher would not be im-
mediately able to carry out a man-in-the-middle attack.

Cross-Site Scripting. A more fundamental difference is Bea-
mAuth’s use of a bookmark rather than a cookie to hold
the token. A cookie is vulnerable to cross-site scripting at-
tacks [9]: if an attacker finds a way to inject HTML and
JavaScript into a target server’s web space, a user who vis-
its this page could have his cookie hijacked and sent to the
attacker.

A BeamAuth bookmark, on the other hand, cannot be ac-
cessed unless it is explicitly clicked: it takes a deep browser
bug or a pharming attack, not just a single-web-site bug,
to reveal the contents of a bookmark to an attacker. Thus,
in site-image systems, every web page at the protected host
must be checked for potential XSS vulnerabilities, while in
BeamAuth, only the login page needs to be verified. Of
course, it’s a good idea to check all web pages for cross-
site scripting vulnerabilities regardless, but a BeamAuth-

style bookmark token reduces this particular attack surface
significantly.

Browser Initialization. Tt is common for a user to delete
her cookies regularly, in particular because of the privacy
implications of cookies. It is a lot less common for a user to
delete one of her bookmarks, except if she explicitly means to
remove it. Thus, we believe it is less likely that a user would
lose her BeamAuth bookmark than her site-image cookie.
This advantage is partially weakened by the recent use of
Flash cookies [14], a technique which mirrors the cookie in-
side the embedded Flash application, which users clear far
more rarely. However, as these Flash cookies still have signif-
icant privacy implications, it is only a matter of time before
privacy-protection tools allow users to regularly clear these
cookies, too.

Another interesting aspect of bookmarks is that, using
one of the many bookmark synchronization tools mentioned
earlier, it is relatively easy for a user to transmit her Bea-
mAuth bookmark to all of her browsers. There are no known
tools to accomplish this task for cookies. Overall, we expect
the BeamAuth token to be more resilient to regular activity,
multi-browser and multi-computer use.

5.4 Usability Testing

BeamAuth has undergone only very informal user testing
on a handful of willing volunteers. Initial feedback was along
the lines of what was expected: the signup procedure is a
tad tedious, while the login process is relatively straight-
forward. Further usability testing is required, of course, in
particular to better gauge the use across multiple computers
and multiple sites.

5.5 Security in the Web Application Stack

With browsers installed on hundreds of millions of com-
puters, and browser upgrades a fairly rare occurrence with
typically conservative goals, it may become increasingly use-
ful to think about implementing security in the web appli-
cation stack, where the web site developer, rather than only
the web browser developer, can innovate. It will be inter-
esting to think about what small changes can be made to
the browser platform to enable more innovation in the web
application stack, so that the browser need not commit to
one security solution, only to becoming a better platform for
additional security [1].

5.6 Impact on Single Sign-On

Single sign-on is a growing use case which stands to ben-
efit the most from our proposals. In particular, systems
like OpenlD, Yahoo BBauth, and university web-based lo-
gin systems often expect relying parties to redirect users to
the login site for authentication. Users are thus accustomed
to arriving at their login site automatically, which makes the
act of phishing somewhat more likely: an evil relying party
can simply redirect a user to a fake login site.

BeamAuth stands to significantly reduce this specific phish-
ing threat by introducing the “BeamAuth bookmark click” as
an inescapable component of the user login ritual, thereby
redirecting the user away from potential phishing attacks.
BeamAuth is particularly appropriate because, like these sin-
gle sign-on solutions, it works on existing vanilla web browsers
without any add-ons or other additional client-side software.

6. CONCLUSION

Using only existing features of HTTP and modern web
browsers, we have designed and implemented BeamAuth, a
two-factor authentication technique to combat a number of
types of phishing attacks. We believe our proposal makes
the most common phishing attacks noticeably more difficult.
Because our approach requires boomark-bar real estate and
a browser setup procedure, it is best for high-value web sites,
in particular single sign-on sites, where the user is inclined
to make an additional small effort at registration time. Bea-
mAuth exploits the URL Fragment Identifier and its unusual
properties: it is never sent over the network, and changing
it does not trigger a page reload.

Looking ahead, we suspect that the web platform is now
flexible enough for some aspects of application-layer security
to be implemented in JavaScript and HTML. In this model,
new security features can be tested and deployed rapidly, on
a per-web-application basis, without updating the client. It
will be interesting to see if other existing browser features
can be usurped to yield additional security properties.

7. ACKNOWLEDGMENTS

The author would like to thank David Wagner and Chris
Karlof for extensive and insightful feedback on a draft of this
paper, an anonymous CCS reviewer for pointing out that
Alice might as well use the BeamAuth bookmark to reach her
login site in the first place, Filipe Almeida and Ben Laurie
for crucial feedback on an earlier (and broken) version of this
scheme, and a number of folks who provided bleeding-edge
user feedback: Rachna Dhamija, Simson Garfinkel, Susan
Hohenberger, and Alon Rosen.

8. REFERENCES

[1] Ben Adida. The Browser as a Secure Platform for
Loosely Coupled Private-Data Mashups. In W2SP
2007, Proceedings of the First Workshop on Web 2.0
Security Privacy, Oakland, CA, USA, May 2007.

[2] Ben Adida, David Chau, Susan Hohenberger, and
Ronald L. Rivest. Lightweight Email Signatures
(Extended Abstract). In Fifth Conference on Security
and Cryptography for Networks (SCN’06), volume
4116 of Lecture Notes in Computer Science, pages
288-302. Springer Verlag, 2006.

[3] Bank Of America. SiteKey.
http://www.bankofamerica.com/privacy/sitekey/.

[4] Anti-Phishing Working Group. Digital Signatures to
Fight Phishing Attacks.
http://www.antiphishing.org/smim-dig-sig.htm.

[5] Apache Software Foundation. Apache HTTP Server
Project. http://httpd.apache.org, last viewed on
February 3rd 2007.

[6] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifier (URI): General Syntax, January
2005. http://www.ietf.org/rfc/rfc3986.txt.

[7] Kim Cameron. As simple as possible — but no simpler.
http://www.identityblog.com/?p=649, last visited
on February 3rd 2007.

[8] Kim Cameron and Michael B. Jones. Design Rationale
behind the Identity Metasystem Architecture, 2006.
http://www.identityblog.com/wp-content/
resources/design_rationale.pdf.

[9] CERT Advisory CA-2000-02 Malicious HTML Tags
Embedded in Client Web Requests.
http://www.cert.org/advisories/CA-2000-02.html.

[10] Remi Delon. CherryPy HTTP Framework.
http://cherrypy.org, last viewed on February 3rd
2007.

[11] Rachna Dhamija, Doug Tygar, and Marti Hearst.
Why Phishing Works. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing
systems, pages 581-590. ACM Special Interest Group
on Computer-Human Interaction, January 2006.

[12] Rachna Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. In SOUPS ’05:
Proceedings of the 2005 symposium on Usable privacy
and security, pages 77-88, New York, NY, USA, 2005.
ACM Press.

[13] Apple dotMac. http://www.apple.com/dotmac/, last
viewed on 8 May 2007.

[14] Electronic Privacy Information Center. Local Shared
Objects — “Flash Cookies”.
http://www.epic.org/privacy/cookies/flash.html,
last viewed on August 12th, 2007.

[15] Simson Garfinkel. Fingerprinting Your Files. MIT
Technology Review, August 2004.
http://www.technologyreview.com/read_article.
aspx?id=13718&ch=infotech.

[16] Simson L. Garfinkel. Email-Based Identification and
Authentication: An Alternative to PKI? IEEE
Security & Privacy, 1(6):20-26, November 2003.

[17] Jesse James Garrett. Ajax: A New Approach to Web
Applications, February 2005.
http://www.adaptivepath.com/publications/
essays/archives/000385. php.

[18] Google. Google Browser Sync. http:
//wuw.google.com/tools/firefox/browsersync/.

[19] Anti-Phishing Working Group. Phishing Activity
Trends, November 2006. http://www.antiphishing.
org/reports/apwg_report_november_2006.pdf.

[20] T. Hansen, D. Crocker, and P. Hallam-Baker.
DomainKeys Identified Mail (DKIM) Message Signing
Service Overview, March 2007. http://www.dkim.
org/specs/draft-ietf-dkim-overview-04.html.

[21] Harvard University. Harvard University PIN System.
http://pin.harvard.edu/, last viewed on February
3rd 2007.

[22] Amir Herzberg and Ahmad Gbara. TrustBar:
Protecting (even Naive) Web Users from Spoofing and
Phishing Attacks. Cryptology ePrint Archive, Report
2004/155, 2004. http://eprint.iacr.org/2004/155.

[23] IETF. MTA Authorization Records in DNS (MARID),
June 2004. http://wuw.ietf.org/html.charters/
OLD/marid-charter.html.

[24] Collin Jackson and Helen Wang. Subspace: Secure
Cross-Domain Communication for Web Mashups. In
Proceedings of the 16th international conference on
World Wide Web (WWW 2007), Banff, Canada, 2007.

[25] Markus Jakobsson and Steven Myers. Phishing and
Countermeasures: Understanding the Increasing
Problem of Electronic Identity Theft.
Wiley-Interscience, 2006.

[26] Paul Johnston. A JavaScript implementation of the

[30]

[31]

[32]

[37]

[38]

[39]

Secure Hash Algorithm.
http://pajhome.org.uk/crypt/md5.

JotSpot. DojoDotBook. http://manual.dojotoolkit.
org/WikiHome/DojoDotBook/BookO.

Ari Juels, Markus Jakobsson, and Tom N. Jagatic.
Cache cookies for browser authentication (extended
abstract). In S&P, pages 301-305. IEEE Computer
Society, 2006.

Brian Krebs. Microsoft Releases Windows Malware
Stats, June 2006.
http://blog.washingtonpost.com/securityfix/
2006/06/microsoft_releases_malware_sta.html.
Ben Laurie. OpenlD: Phishing Heaven.
http://www.links.org/?p=187, last visited on
February 3rd 2007.

J. Levine and A. DeKok. Lightweight MTA
Authentication Protocol (LMAP) Discussion and
Comparison, February 2004. http://www.taugh.com/
draft-irtf-asrg-lmap-discussion-01.txt.

John R. Levine. A Flexible Method to Validate SMTP
Senders in DNS, April 2004.
http://wuwl.ietf.org/proceedings_new/04nov/
IDs/draft-levine-fsv-01.txt.

Justin Mason. Filtering Spam with SpamAssassin. In
HEANet Annual Conference, 2002.

Eric A. Meyer. S5: A Simple Standards-Based Slide
Show System.
http://meyerweb.com/eric/tools/s5/, last viewed
on October 26th, 2006.

T.A. Meyer and B. Whateley. SpamBayes: Effective
open-source, Bayesian based, email classification
system. In Conference on Email and Anti-Spam 2004,
July 2004.

Netcraft. Anti-Phishing Toolbar.
http://news.netcraft.com/archives/2004/12/28/
netcraft_antiphishing_toolbar_available_for_
download.html.

Gunter Ollmann. The Pharming Guide. http://www.
ngssoftware.com/papers/ThePharmingGuide.pdf.

V. Ramasubramanian and E. Sirer. Perils of transitive
trust in the domain name system. In Proceedings of
the 2005 Internet Measurement Conference (IMC
2005), Berkeley, CA, USA, 2005.

D. Recordon and B. Fitzpatrick. OpenID
Authentication 1.1, May 2006. http://openid.net/
specs/openid-authentication-1_1.html.

(40]

[41]

42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

Ed Rice. Passwords in the Clear, 2006. http://www.
w3.0rg/2001/tag/doc/passwordsInTheClear-52, last
viewed on February 3rd 2007.

Blake Ross, Collin Jackson, Nicholas Miyake, Dan
Boneh, and John C. Mitchell. Stronger Password
Authentication Using Browser Extensions. In

P. McDaniel, editor, 14th USENIX Security
Symposium, 2005.

M. Sahami, S. Dumais, D. Heckerman, and

E. Horvitz. A Bayesian Approach to Filtering Junk
E-Mail. In Learning for Text Categorization: Papers
from the 1998 Workshop, May 1998.

Stuart Shechter, Rachna Dhamija, Andy Ozment, and
Ian Fischer. The Emperor’s New Security Indicators.
In S&P. IEEE Computer Society, 2007.

Stanford University. Stanford WebAuth.
http://www.stanford.edu/services/webauth/, last
viewed on February 3rd 2007.

Sync2it. http://wuw.sync2it.com/, last viewed on 8
May 2007.

Tumbleweed Communications. Digitally-Signed Emails
to Protect Against Phishing Attacks.
http://www.tumbleweed.com/solutions/finance/
antiphishing.html.

Guido van Rossum. The Python Programming
Language. http://python.org, last viewed on
October 26th, 2006.

Xjaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu.
Finding Collisions in the Full SHA-1. In Victor Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in
Computer Science, pages 17-36. Springer, 2005.
Wikipedia. Usage share of Web Browser. http://en.
wikipedia.org/wiki/Usage_share_of_web_browsers,
last visited on February 3rd 2007.

Min Wu, Simson L. Garfinkel, and Robert Miller.
Secure Web Authentication with Cell Phones.
http://groups.csail.mit.edu/uid/projects/
cellphone-auth/.

Yahoo. Browser-Based Authentication.
http://developer.yahoo.com/auth/, last viewed on
October 26th, 2006.

Yahoo. What is a sign-in Seal? http://security.
yahoo.com/article.html?aid=2006102507, last
viewed on 8 May 2007.

Zishuang (Eileen) Ye and Sean Smith. Trusted Paths
for Browsers. In Dan Boneh, editor, USENIX Security
Symposium, pages 263-279. USENIX, 2002.

