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The usual skin effect observed in magnetically linear medium (l¼ const.) is absent in a

magnetically non-linear medium, leading to wrong predictions of the eddy current field using the

classical approach. For this reason, this paper proposes a thin sheet model, improving the eddy

current field description on the basis of physical ideas in the framework of the saturation wave

model, which describes the dynamic magnetization of the material with rectangular hysteresis

loop. Therewith, the layer-to-layer nature of the magnetization reversal is taken into account. The

hysteresis is modeled by means of a static history-dependent hysteresis model. This leads to a

simplified model of conducting ferromagnetic sheet, which describes magnetization of isotropic

electrical steels. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861682]

I. INTRODUCTION

The accurate prediction of iron losses and magnetization

behavior of electrical steel sheets for various frequencies and

magnetic flux densities taking into account magnetic hystere-

sis, induced eddy currents, and so-called excess (anomalous)

loss is eminent for an accurate design of electrical machines

and other devices containing ferromagnetic cores.

The ideal solution would be a model, which allows pre-

dicting both, the specific loss and the shape of hysteresis

loop at arbitrary magnetization regimes.

Utilizing a magneto-dynamic model (MDM),1 which is

a finite-difference (FD) or finite-element (FE) solver of the

classical Maxwell (penetration or diffusion) equation (1), a

sufficiently accurate description of transients in the lami-

nated non-oriented (NO) steel can be obtained
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where vectors of the magnetic field strength H(x, t) and mag-

netic flux density B(x, t) are directed along the sheet; axis x
is normal to its surface, and q is the specific electrical resis-

tivity of the steel. The magnetic flux density Bk(t) and mag-

netic field Hk(t) in a node k of the computational grid are

linked by a static hysteresis dependence Hh(B), in which the

excess loss caused by the domain structure is reproduced by

a time delay of Bk(t) behind Hk(t).
The solution of the partial derivative equation (1) can be

reduced to the integration of N simultaneous ordinary

differential equations for Bk(t) and Hk(t). Sufficient accuracy

is obtained using 15 to 25 nodes in the FD- or FE-grid.

However, the dimension of the problem increases with the

number of branches, when analyzing devices with branched

magnetic topology. This leads to a complicated and

time-consuming model. Substantial simplification of the

problem, while keeping sufficiently accurate solution, can be

achieved by using a thin sheet model (TSM), which links the

magnetic field at the sheet surface H(t) and the mean mag-

netic flux density B(t) over its cross section.2,3 The magnetic

field H(t) in such a model is represented by the sum of hys-

teresis, induced eddy-current (classical) and excess compo-

nents, H(t)¼HhþHclasþHexc. For example, the TSM in

Refs. 2 and 3 is written by the equation

HðtÞ ¼ HhðBÞ þ
d2
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where d is the sheet thickness and d¼ sign(dB/dt). Among

the advantages of (2) relative to other TSMs is its possibility

to change frequency properties of the model (by choosing a)

and to control the shape of dynamic hysteresis loops by

choosing function g(B).

Model (2) has shown considerable accuracy being

applied to grain-oriented3 and some NO steels (commonly

assumed to have isotropic magnetic properties4 and typically

employed in rotating electrical machines) with sheet thick-

ness 0.1 mm and high silicon content (5.5% and 6.5%).3 At

the same time, this model is less accurate in describing high-

frequency regimes of conventional NO steels, i.e., steels

with the sheet thickness about 0.5 mm and silicon content

not exceeding 3%. One reason is the relatively low electrical

resistivity of these steels and, as a result, the error of the

well-known formula for the so-called classical field4

HclasðBÞ ¼
d2

12q
dB

dt
: (3)

It should be recalled that (3) is valid, strictly speaking,

for a linear dependence B(H) and for negligibly small

derivatives dB/dt, i.e., at low frequencies f. The error of (3)

at elevated frequencies is illustrated in Fig. 1 where curvea)Electronic mail: simon.steentjes@iem.rwth-aachen.de.
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HhþHclas was constructed by summation of the first and sec-

ond terms in (2). It is seen that this curve goes outside the ex-

perimental dynamic loop measured for NO steel with

d¼ 0.5 mm and q¼ 0.43� 10�6 Xm in an Epstein frame

with controlled sinusoidal magnetic flux density. This means

that the third term in (2) should be negative along the lower

segment of the ascending branch (and, respectively, along

the upper segment of the descending branch) that contradicts

the physical meaning of the field component. In this connec-

tion, the TSM was artificially modified in such a way as to

make the eddy-current component in (2) dependent not only

on derivative dB/dt but also on the magnetic flux density

B(t)5
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The power c in (4) was determined in Ref. 5 by the

expression cðBÞ ¼ a1 þ a2dBþ a3B2, where coefficients a1,

a2, a3, and multiplier g0 were found by means of an iterative

technique, in which the loops calculated at peak value Bp

(mainly at Bp¼ 1.5 T) and 2–3 frequencies were fitted to corre-

spondent measured loops. The study of model (4) shows that it

is mainly acceptable at the flux density employed in the itera-

tive fitting procedure, i.e., at Bp¼ 1.5 T. As Bp decreases, the

accuracy of (4) also quickly decreases. Thus, for example, at

Bp¼ 1 T and Bp¼ 0.5 T the error in the specific loss calcula-

tion increases to 25% and 50%, respectively. For this reason,

this paper proposes a TSM where the eddy current field

description is improved on the basis of physical ideas yielding

to a model, which is sufficiently accurate outside the flux den-

sity and frequency range used for parameter identification.

II. IMPROVED THIN SHEET MODEL

Fig. 2 shows the static major loop of the studied NO

steel as well as a minor symmetrical loop measured at

Bp¼ 0.5 T. It is apparent that their square-loop approxima-

tions (dashed lines in Fig. 2) are more accurate than any lin-

ear approximations of these loops (especially major loop).

This raises the idea that a better description of the magnet-

ization dynamics can be carried out in the framework of the

saturation wave model (SWM) originally proposed by

Wolman and Kaden6 and then further developed in several

works.7,8 The SWM applies to a ferromagnetic material char-

acterized by a steplike magnetization curve with maximum

value Bmax. As a consequence, the model can be applied to a

material with a rectangular hysteresis loop (RHL) with the

height 2Bmax. In accordance with the SWM, the magnetiza-

tion reversal in the RHL material has a layer-to-layer nature

and consists of successions of instant flux reversals in thin

layers of the sheet (from �Bmax to þ Bmax and back). The

potential applicability of the SWM in the TSM is corrobo-

rated by the layerwise flux reversal (Fig. 3) calculated by

means of accurate, but computationally expensive MDM1 at

sinusoidal average flux density with amplitude Bp¼ 1.5 T

and frequencies 50 and 400 Hz.

Similarly to the process in the material with ideally square

loop, maximum flux density in all layers of the sheet, including

magnetic flux density Bsurf at its surface and the magnetic flux

density Bmid in the middle of the sheet, reaches the level of

Bp¼ 1.5 T, i.e., the usual skin effect observed in a magnetically

linear medium is absent here. Therefore, the second term in (2)

is replaced by the expression arising from the SWM

HecðBÞ ¼
d2 B� BTð Þ

8qBmax

dB

dt
: (5)

FIG. 1. The first (Hh) and two first terms (HhþHclas) in (2) compared to a

measured loop (straight line).

FIG. 2. Static loops of NO steel at 1.5 T and 0.5 T as well as a corresponding

RHL approximation of the major loop (dashed lines).

FIG. 3. Flux densities at equidistant points from the surface to the middle of

the sheet (solid curves). Dashed curve is the sinusoidal average magnetic

flux density Ba versus time.
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Here, BT being the magnetic flux density in a turning point,

which is the point where derivative dB/dt changes its sign.

Therewith, the step-by-step character of magnetic flux density

changes in the sheet under arbitrary magnetic flux density

waveforms is accounted for. Dashed curves in Fig. 4 show the

sum of the hysteresis field Hh(B) and the eddy-current field

Hec(B) calculated with (5) for several values of Bmax (2.0, 2.5,

and 3.2 T). As these curves do not (or almost do not) go beyond

the experimental loop, the field Hexc supplementing this sum to

the measured field H(t), is positive at any B(t).
So, the proposed phenomenological model, referred to

as TSM-S, is written as

HðtÞ ¼ HhðBÞ þ
d2 B� BTð Þ

8qBmax
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dt
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Since the static hysteresis loop of the real magnetic ma-

terial is not perfectly square, the value of Bmax can be consid-

ered a variable phenomenological parameter, which is

chosen for a given material along with functions a(B) and

g(B). In order to identify the fitting parameters, at first, the

required g(B) and a(B) are configured for a chosen value of

Bmax, so as the loops calculated for a fixed amplitude Bp

were as close as possible to the loops measured at 3–4 fre-

quencies (ensuring a stable and well-conditioned fitting pro-

cess). Given the symmetry of the steady-state hysteresis

loops, the model-fitting can be made using n points of the

ascending branches. For each such point (i.e., for a given

level Bi), a pair of ai and gi is found so as to minimize the

total deviation in H of calculated loops from experimental

ones for all chosen frequencies. The discrete results from

above calculations can be approximated by splines a(B) and

g(B). The calculations for the chosen Bmax are completed by

building frequency dependences of the specific iron losses

for several values of Bp. After comparing calculated depend-

encies W(f) with experimental ones, the value of Bmax is cor-

rected and the above procedure is repeated until a best fit of

calculated and experimental curves W(f) is achieved.

III. MODEL VERIFICATION

The fitting of model (6) was carried out by using three
dynamic loops with Bp¼ 1.5 T, taken at 50, 200, and 800 Hz.
The best value of Bmax was found to be equal 2.9 T. In Fig. 5,
calculated dynamic loops are compared with corresponding
loops measured at sinusoidal induction. As seen in Fig. 5, the
experimental loops used for model fitting, i.e., the loops at
Bp¼ 1.5 T, are reproduced by the model almost exactly. The
prediction of the loop shapes at lower Bp is satisfactory.

IV. CONCLUSIONS

The motivation for this work is the development of a
time-efficient model of conducting ferromagnetic sheet,
which describes magnetization of isotropic electrical steels
considering magnetic hysteresis, induced eddy currents as
well as excess (anomalous) loss. Sufficiently accurate solu-
tions can be obtained using a TSM. Improvement of the TSM
proposed is achieved by determining eddy current component
of the magnetic field at the sheet surface in the framework of
the method by Wolman and Kaden, which describes the
dynamic magnetization of the material with rectangular hys-
teresis loop. Thereby, the layer-to-layer nature of the magnet-
ization process is taken into account. The effectiveness of the
proposed algorithm is confirmed by modeling a NO electrical
steel with d¼ 0.5 mm and q¼ 0.43� 10�6 Xm characterized
in an Epstein frame with controlled sinusoidal magnetic flux
density. Furthermore, due to its physical identity, the model
is capable of satisfactorily predicting hysteresis loops under
arbitrary magnetization regimes.
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FIG. 5. Predicted and measured dynamical hysteresis loops at 50 Hz (left)

and 800 Hz (right).

FIG. 4. Sum of Hh(B) and Hec(B) calculated for Bmax¼ 2.0, 2.5, and 3.2 T.
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