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Abstract – Non-conforming sliding interfaces can be used in finite element (FE) simulations for the 

flexible implementation of the relative motion between stator and rotor of e.g. electrical machines. 

Lagrange multipliers are applied to ensure the continuity of the field across the non-conforming interface. 

A previously proposed approach is extended by time stepping methods to consider eddy-currents. In this 

paper, the formulation is presented and applied to a benchmark problem to validate the approach. 

 
Introduction 

 
Numerical simulation of electrical machines by FE methods requires a flexible implementation of 

the rotor position in the model. Describing the relative motion by Eulerian variables is feasible only 

if the studied problem is invariant in the direction of motion regarding excitation and material 

properties. In addition the convective term can lead to numerical instabilities. Hence, Lagrangian 

variables are chosen to describe the motion between stator and rotor. Common methods to connect 

the moving and stationary parts of the considered domain require re-meshing of specific areas or 

additional constraints for the discretization. For two-dimensional problems the Moving-Band [7] 

approach can be employed where an annulus-shaped band in the air gap between rotor and stator of 

the electrical machine is re-meshed at every time step. But re-meshing is especially in three-

dimensional problems a computationally expensive task and yields supplementary discretization 

errors whereas additional constraints for the discretization circumvent an arbitrary rotor position. 

To avoid this issues the mortar element method with Lagrange multiplier [2], [5] is applied as 

described in [1], [8] and extended to consider eddy-currents. 

 
Methodology 

 
Let   be a two-dimensional domain which is the cross section of a three-dimensional device e.g. 

electrical machine. The quasi-static electromagnetic field problem can be described by the Maxwell 

equations with neglected displacement currents: 

         
  

  
                               

                                         
      

with   the electric field,   the magnetic field,   the magnetic flux density,   the electrical 

conductivity,   the magnetic permeability and     the source current density. By addition of the 

corresponding boundary conditions the problem gets a unique solution. The introduction of the 

magnetic scalar potential   with         ,           
 ,             

  yields 
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                     (1) 

where   denotes the magnetic reluctivity        . 

  Discrete Formulation   

Let us first consider the spatial discretization of the considered domain  . To handle the relative 

motion between stator and rotor by a conforming mesh approach it is necessary to change the mesh 

for the spatial discretization at every time step which e.g. is done by the Moving-Band method. 

Instead we apply a non-conforming mesh approach by dividing the domain   into two 

complementary domains    and    called mortar and slave, e.g. the stator and rotor of an 

electrical machine,          . Let        and        be the corresponding non-

conforming interface. The relative motion between rotor and stator is described by the 

mapping        . The continuity of the field quantities across the non-conforming interface is 

ensured by extending problem (1) with the following boundary conditions which are weakly 

imposed by means of the mortar element method with Lagrange multiplier  : 

          

             
         

       
       
        

(2) 

Discretization in time is done for all unknowns, which are denoted by   in the following, by linear 

interpolation between the time steps with        : 

                        
      

  
 
       

  
                (3) 

We propose to use an implicit Euler scheme for the time stepping       but the presented 

approach also allows the use of any other time stepping scheme including adaptive time stepping. 

The application of the standard Galerkin method transforms the weak formulation into a linear 

equation system. In contrast to the equation system resulting from the conforming formulation this 

equation system is not positive definite and weakly conditioned [6] but can be solved by a 

generalized minimal residual algorithm [3]. To preserve the numerical properties of the conforming 

formulation the saddle-point problem is transferred to a positive definite problem which can be 

solved by standard conjugate gradient methods. The first step is to split the unknowns of the master 

and slave domain into two blocks each. The first block   
  with         contains all unknowns 

lying on the sliding interface    and the second one   
  all other interior unknowns of the 

domain   : 

    
  
 

  
      

   
  
 

  
    (4) 

The resulting saddle-point problem at time step   reads: 
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where the standard stiffness matrix is denoted by S and M, D denote the coupling matrices which 

link the Lagrange multiplier to the magnetic vector potential. The unknowns of the vector potential 

are denoted by   and   
  denotes the excitation of the field problem: 
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   (8) 

In order to transform this equation system into a positive definite system the unknowns 

  
  associated with the non-mortar interface    are replaced by a linear combination of the 

unknowns   
  derived from the last line of the saddle-point problem (5): 

   
     

    
                            

        
      

  
(9) 

With the discrete projection operator between the mortar and non-mortar interface: 

                (10) 

In addition the Lagrange multiplier is extracted from the third line of (5): 

          
       

         
   

  (11) 

By replacing   
  and   in (5) the Lagrange multiplier   is eliminated and the resulting system of 

equations is positive definite and can be solved by standard conjugate gradient methods: 

 

    
     

  

    
     

        
        

 

      
 

  

  
 

  
 

  
 
   

  
 

 
  
 
  (12) 

To assemble the system matrix in the shown way it is necessary to compute the inverse of the 

coupling matrix    which results in an additional computational effort dependent on the number of 

unknowns of the non-mortar interface    and prevents the commonly used element wise assembly 

of the system matrix. The structure of   results from the shape functions   of the Lagrange 

multiplier and has to be computed in advance before the system matrix is assembled. This is not 

necessary if the matrix   exhibits a diagonal structure which inversion is trivial. 

 

Fig.1: Benchmark problem.                                       Fig.2: Coarse Discretization. 

   
            

  
  

       
    

 

  
  
   

    (6) 



Therefore the function space of   is chosen in a way that the diagonal structure of   is ensured by 

the utilization of bi-orthogonal shape functions [1] and dual Lagrange multiplier spaces 

respectively [4], [5] so that the following relation is verified: 

           
 

  
            

 

  
    (13) 

Where     denotes the Kronecker-Delta and      is a constant value which is dependent on the 

used basis functions on the non-mortar boundary   . 

The presented approach has been implemented in the institute’s in-house FE-package iMOOSE 

[www.iem.rwth-aachen.de] and is applied to a benchmark problem in the next section to analyze 

the accuracy. 

 

Numerical Results 

 
To validate the implemented formulation the benchmark problem shown in Fig. 1 is considered. 

The problem consist of a conducting cylinder with radius r = 0.1m which is surrounded by air. The 

cylinder is centered at the origin of the xy-plane and the surrounding air is modeled as square with 

an edge length equal to 0.4m. The cylinder rotates with a velocity v, has a conductivity of 10 MS/m 

and its permeability equals air. Excitation of the field problem is represented by two dirichlet 

boundary conditions at the top (y = 0.2m) and the bottom (y = -0.2m) with values of       and 

      . The left and right boundaries of the domain correspond to the natural boundary 

condition. Fig. 2 shows an example of a coarse discretization of the described geometry and the 

non-conforming interface   can be observed which is located in the air one layer of elements away 

from the conducting cylinder. 

In Fig. 3 the resulting field solution at a velocity of v = 22 Hz is presented for a fine discretization. 

The mesh consists of approximately 290,000 triangles and the solution shows the resulting field 

after 50 time steps with         . The isopotential lines of the magnetic vector potential are 

drawn for values in the range of          up to        . As depicted in Fig. 4 one can clearly 

observe that the field lines are continuous across the interface   regarding the normal component as 

well as the tangential component of the field as expected with identical magnetic reluctivity on the 

mortar and non-mortar side. 

              

Fig.3: Field solution.                                            Fig.4: Field solution at the interface  . 



 

In the following the convergence of the proposed approach is evaluated. For this purpose we 

generate eight different meshes for the benchmark problem with varying discretization ranging 

from ~700 to ~800,000 numbers of elements. The field solution resulting from the finest 

discretization is used as reference solution to compute deviation in the energy norm H
1
 as well as in 

the L
2
-norm for the different meshes. Linear elements are used in the benchmark problem so that a 

discretization error of order O(h) for the H
1
-norm and order O(h

2
) for the L

2
-norm is expected. The 

computed error norms for the presented non-conforming mortar method approach are given in 

Fig. 5 along with the theoretical order as a function of the number of elements. The energy norm is 

in good agreement with the expected order but the L
2
-norm shows a convergence far below the 

expected order O(h
2
). 

 

Fig.5: Convergence behavior benchmark problem (Mortar). 

 

Fig.6: Convergence behavior benchmark problem (Moving-Band). 



To further analyze this behavior we compare the convergence of the presented approach to a 

conforming method. We utilize the Moving-Band method [7] where an annulus-shaped band in the 

air gap between rotor and stator of the electrical machine is re-meshed at every time step. We 

choose the band for re-meshing in such a way that all elements located at the outside of the former 

non-conforming and now conforming interface   are contained in it and hence one distinct mesh is 

generated at every time step of the simulation. The same benchmark problem is computed by the 

conforming approach and the results are shown in Fig. 6. In contrast to the previous results the 

L
2
-norm shows the expected convergence behavior and corresponds to the theoretical order O(h

2
). 

Following this outcome an error in the computation of the norms or the discretization can be 

excluded so that the observed convergence behavior needs additional investigations. 

 

Conclusions 

 
This paper presents an approach to handle the relative motion between rotor and stator of electrical 

machines by non-conforming sliding interfaces and take eddy currents into account. Non-

conforming sliding interfaces overcome the issues of re-meshing methods to handle the relative 

motion in FE analysis of electrical machines. The approach is based on the mortar element method 

with Lagrange multiplier with bi-orthogonal shape functions to ensure a positive definite system 

matrix. Application to a benchmark problem shows that the continuity of the field quantities 

regarding the normal component of the magnetic flux density and the tangential component of the 

magnetic field strength is fulfilled at the non-conforming interface. Analysis of the convergence 

behavior indicates that the implementation of the presented approach does not reach the theoretical 

predicted order. Future work will therefore include additional studies on this approach. 
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