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This paper extends the parametric magneto-dynamic model of soft magnetic
steel sheets to account for the phase shift between local magnetic flux den-
sity and magnetic field strength. This phase shift originates from the damped
motion of domain walls and is strongly dependent on the microstructure of the
material. In this regard, two different approaches to include the rate-dependent
effects are investigated: a purely phenomenological, mathematical approach and
a physical-based one. © 2017 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4975996]

I. INTRODUCTION

Soft magnetic steel sheets (SMSSs) are due to their technical as well as economical properties
indispensable in many contemporary electrical devices. Their widespread use requires adequate
modelling of magnetization processes inside SMSSs. Especially for the use in applied engineering,
such models should be adequately simple, whereas the magnetization processes should be described
as accurate as possible. These two goals are in general very difficult to realize in the modelling
process due to complex magnetization processes inside SMSSs. Such processes include hysteresis
and non-linear skin effect due to macro- and microscopic eddy currents. Therefore, the accurate
description of magnetization processes in SMSSs remains a largely unsolved physical and engineering
problem.1

Contemporary models for applied engineering are mostly based on a simplified one-dimensional
description that takes into account the macroscopic eddy currents. Such description is suitable for
thin and long SMSSs, where the simulation of the magnetization process is reduced to the solution
of the well-known diffusion equation. This description links the magnitudes of the magnetic field
strength H and magnetic flux density B in a material with conductivity σ. Due to highly non-linear
and hysteretic relation between H and B, the discussed description can be solved by applying various
approaches, whereas most require spatial discretization of the observed SMSS.2 One of the recent
approaches is represented by the parametric magneto-dynamic (PMD) model. Using the PMD model
in combination with a static, rate-independent hysteresis model the diffusion problem can be solved
effectively, whereas the model is based on sound physical background.2–4 The PMD is especially
convenient when the lamination model has to be incorporated into an electric circuit such as, e.g., for
the simulation of dc-dc converters. Both field- and flux-driven versions exist.2–4

However, all approaches that solve the discussed diffusion problem underestimate the magne-
tization dynamics and consequently the total power loss, especially when modeling materials with
a coarser-grained structure. This underestimation originates from not considering microscopic eddy
currents around moving domain walls in the original problem description. These eddy currents can
become unacceptably large and lead to a lag in the flux density B behind the applied field H.5 This
phenomenon can be taken into account by extending the PMD model using two different approaches.
As the discussed process resembles a viscous-like friction, it can be accounted for in the PMD model
by introducing the notion of the “fast” magnetic viscosity similar to the Landau-Lifshitz-Gilbert
equation for magnetic viscosity.6,7 Alternatively also the rate-dependent model8 can be applied.
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The aim of this paper is to present and analyze both versions of the upgraded PMD model
that appear to be more versatile than existing models. Both discussed extended model versions
significantly increase the prediction of the dynamic magnetization as well as total losses under
arbitrary magnetizing conditions. The model parameters are thought to be material dependent so
it is reasoned that the model can be used to accurately predict losses in a wide range of materials
magnetized under sinusoidal as well as non-sinusoidal flux waveforms.

II. THEORETICAL BACKGROUND

The PMD model bases on the average values of magnetic variables inside individual slices (flux
tubes) of the SMSS, which allows taking into account the distribution of the induced eddy currents
inside all the slices and their influence on the excitation of magnetic field inside the SMSS. The
PMD is expressed in the form of a matrix differential equation (1), where Θ represents a vector of
the magneto-motive forces generated by the applied current ip in the excitation winding, H̄

(
Φ̄

)
is a

vector of average magnetic field strengths as hysteretic functions of the average magnetic fluxes in
the slices and N is a vector with the number of turns np of the excitation winding.

Θ=Nip = H̄(Φ̄)lm + Lm
dΦ̄
dt

. (1)

The matrix of magnetic inductance Lm depends only on the geometric, material properties and on the
discretization of the observed SMSS, i.e., the number of slices N. Magnetic hysteresis enters into the
PMD in the constitutive relation. In this paper the static hysteresis is considered using the Tellinen
hysteresis model.

The microscopic eddy currents are, however, generated by movement of domain walls when
SMSSs are exposed to dynamic magnetizing fields. These currents generate additional losses as well
as influence the dynamic magnetization processes inside SMSSs. Additionally, there are a number
of other mechanisms responsible for the excess loss. As a result, the observed dynamic hysteresis
loops are additionally inflated. Consequently all adequate classical eddy current models typically
underestimate the dynamic loops as well as total power loss inside SMSSs. This deficit is therefore
addressed using one of the so called excess field extension of the discussed classical eddy current
models.

A. Magnetic viscosity

The lag in the flux density B behind the applied field H caused by the discussed microscopic
phenomena can be effectively solved by adding the so-called magnetic viscosity, described by (2),

H(t)=Hh(B) + δ
������

(
Rm

(
1 +

B2

B2
s

))−1
dB(t)

dt

������

1/α

(2)

where Hh(B) represents the magnetic field strength due to the static hysteresis, dB/dt is the change
rate of the magnetic flux density B, δ is a directional variable, whereas Rm, Bs and α are model param-
eters.6,7 The presented description is similar to the Landau-Lifshitz-Gilbert equation for magnetic
viscosity.6,7 Main advantages of the proposed model are that it provides an integral description of
the complex phenomena of underlying excess loss and does not contradict their complex underlying
physics. Furthermore, it is also very flexible and can adequately describe the excess component in
non-oriented as well as grain oriented SMSSs.

B. Rate-dependent extension

The rate-dependent extension was originally developed for homogenized and comprehensive
description of all dynamic effects inside SMSSs.9 In this way, impacts of both micro- and macroscopic
eddy currents as well as other effects were taken into account simultaneously. The dynamic effects
are described based on an intuitive differential equation (3), which delays its input (supplementary)
variable Hh with respect to the actual field strength H. The discussed extension depends additionally
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also on the change rate of the magnetic flux density dB/dt, whereas a, b and c are the model parameters.

dHh(t)
dt

= a(H(t) − Hh(t)) − b
dB(t)

dt
+ c

dH(t)
dt

. (3)

Regardless the original intention of the presented model, such model can be also used to extend
classical eddy current models like the PMD. In this way, the discussed extension is used to describe
only the excess component of the field produced, whereas the macroscopic eddy currents are calculated
with the PMD. Such an approach is also more consistent with underlying physics and with the
commonly accepted loss separation theory of SMSSs.

III. RESULTS

For this comparison the original voltage-driven PMD model is extended by the two rate-dependent
extensions (2) and (3) and implemented using MATLAB/Simulink software. Different versions of
the PMD model by applying the discussed rate-dependent extensions are evaluated and compared,
where experimental data (measured voltages) are used directly as the PMD model input. The data of
the evaluated NO soft magnetic steel sheets M400-50A, the experimental setup and the PMD model
are presented in Refs. 3, 4, 9. The classical model without rate-dependent effects is abbreviated in
the figures as “cl.”, whereas the viscosity based extension is abbreviated as “cl. + visc.” and the
mathematic approach as “cl.+ r.d.” The parameters of the viscous-like friction term in (2) Rm and α
are identified from the frequency dependence of the excess loss whereas Bs is given by the saturation
magnetic polarization of the material. More complicated expressions for (2) can be found in Ref. 6.
The parameters of the mathematic model are identified by matching the ascending branch of the major
hysteresis loop measured at 50 Hz, i.e., minimizing the least square error. The obtained parameter
sets are depicted in Table I.

The obtained PMD models are tested for different sinusoidal excitation waveforms for frequen-
cies up to f = 1000 Hz and magnetic flux densities up to Bmax = 1:5T. Different rate-dependent models
are evaluated by comparing the calculated and measured major and minor dynamic hysteresis loops
for the NO steel grade M400-50A. In order to provide a comprehensive analysis, in addition the
classical model without inclusion of rate-dependent effects is evaluated. At 50 Hz (Fig. 1 (left)) the
effect of magnetic viscosity is not significant. This can be observed comparing the three models.
The viscosity-based extension overestimates the loop width, whereas the rate-dependent matches the

TABLE I. Parameters of the Rate-Dependent Extensions.

Rm α Bs in T

Visc. (2) 1 2 1.98
a b c

R.d. (3) 5500 64 0.81

FIG. 1. Comparison of measured and modelled hysteresis loops at 50 Hz (left) and 100 Hz (right) for magnetic flux densities
of 0.5 T, 1.0 T and 1.5 T in M400-50A.
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FIG. 2. Comparison of measured and modelled hysteresis loops at 400 Hz (left) and 1000 Hz (right) for magnetic flux densities
of 0.5 T, 1.0 T and 1.5 T in M400-50A.

measured curve very well with small deviations approaching material saturation. Increasing the
frequency to 100 Hz increases the importance of rate-dependent effects. The classical solution under-
estimates the loop width, i.e., the energy loss. Again the rate-dependent model (3) describes the
hysteresis loop shape accurately.

A further increase in frequency leads to an improved accuracy of the viscosity-based model
(Fig. 2). In contrast, the mathematical model, which was identified at 50 Hz, obeys a completely
different shape at 400 and 1000 Hz near the boots of the hysteresis loops. In general, by introducing
a rate-dependent term in the constitutive law of the PMD it is possible to improve the prediction of
the loop shape, i.e., energy loss significantly, in particular at higher frequencies. The viscosity-based
model allows a good estimation of the loop shape without any additional parameter identification
procedure just using the parameters obtained from the classical excess loss theory in combination with
the saturation polarization. In contrast, the mathematical model performs better at those frequencies
where it was identified. Therefore, it has a smaller predictive value and needs some re-parameterization
or dedicated identification scheme.

IV. CONCLUSION

This paper compares and analyzes two rate-dependent extensions of the PMD model under
sinusoidal magnetization waveforms. The models are compared in terms of identification procedure
and accuracy of the hysteresis loop shape prediction at frequencies from 50 Hz to 1000 Hz and
different magnetic flux densities. The application of the coupled approach (lamination model plus
rate-dependent hysteresis model) allows improving the loss calculation as well as the prediction of
magnetization dynamics without increasing the computational burden or the need for any additional
measurements for parameter identification purposes.
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