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The 13th edition of the “Overture” series of workshops on the Vienna Development 
Method (VDM), its associated tools and applications, was held in conjunction with the 
FM 2015 symposium i . This workshop aims to provide a forum for discussing and 
advancing the state of the art in formal modelling and analysis using VDM and its family 
of associated formalisms including extensions for distributed and real-time systems.  

Although VDM is one of the oldest formal methods to have enjoyed a level of industry 
use, it nevertheless has a lively and youthful research community, which has grown up 
around the development of the Overture open tools platformii. On top of the Overture 
platform the Crescendoiii and Symphonyiv tools from respectively the DESTECSv and 
COMPASSvi projects, as well as the new development that will take place in the new 
INTO-CPS project vii  (see http://into-cps.au.dk/). The platform provides a vehicle for 
activity in modelling and analysis technology including static analysis, interpreters, test 
generation and execution support and model checking. The growth of this community 
has been greatly assisted by the Overture workshop series.  

The 13th workshop reflected the breadth and depth of work in VDM. The invited talk 
by Taro Kurita (Sony) reports the evolution of its VDM usage for their development of 
Mobile Felica IC chips, focusing on the aspect of readability, i.e., formal models as 
documents. 

Research contributions included topics about essential challenges in concurrency and 
real-time aspects. Connection and integration with a variety of directions are also 
covered, including requirements and stakeholders, theorem provers, and test-driven 
development. Last but not least, application and visionary papers are provided to 
promote discussions for next directions of the Overture community. 

We would like to thank the authors for the interesting contributions and the PC 
members and reviewers for their advices to make this workshop valuable and successful. 

 
 

Fuyuki Ishikawa 
Peter Gorm Larsen 

http://overturetool.org/workshops/13th-Overture-Workshop.html


 

i The 20th International Symposium on Formal Methods (FM 2015): 
http://fm2015.ifi.uio.no/ 
ii Overture Tool: http://overturetool.org/ 
iii Crescendo Tool: http://crescendotool.org/ 
iv Symphony IDE: http://symphonytool.org/ 
v DESTECS Project: http://destecs.org/ 
vi COMPASS Project: http://www.compass-research.eu/ 
vii INTO-CPS Project: http://into-cps.au.dk/ 
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Advance in VDM Application to Development of
Mobile FeliCa IC Chip Firmware

- Toward Readable VDM Specification for
Reliable System and Good Relationships

(Extended Abstract for Invited Talk)

Taro Kurita

Sony Corporation, Japan taro.kurita@jp.sony.com

“FeliCa” is a contactless IC card technology developed by the Sony Corpo-
ration and is widely used in Japan. In particular, Mobile FeliCa IC chips are
embedded in over 250 million mobile phones. Their applications, including elec-
tronic money, train tickets, identifications, door keys, and so on, form an essential
foundation for business and daily activities in Japan.

Given the significance of the system, VDM was applied to the development
of the second generation of its firmware [1, 2]. It successfully contributed to
resolution of problems in the early phases, such as vagueness in the specification.

This talk discusses the succeeding development of the third generation started
in 2007. This development involved many features, such as enhancement of the
encryption mechanisms and adaptation of the global standard of Near Field
Communication (NFC). The implementation code was three times the LOC of
the second-generation. The usage of VDM was improved especially for maintain-
ability and understandability, i.e., to facilitate the iterative process and commu-
nications among involved teams.

In the third generation, the VDM specification was considered as the sole
specification document that worked as the reference for various development
activities. In other words, it was not wrapped or hidden by natural-language
documents, and was referred to by more engineers including those from external
partner companies. This change eliminated costly and error-prone maintenance
for two versions of the documents in the natural language and VDM. On the
other hand, this change made readability of the VDM specification indispensable,
though it had been found significant in the previous development.

To improve the readability, the specification convention was defined. This is
like coding conventions, however, has different features. One of the most impor-
tant and novel features was separation of the specification part and the mock-up
part in the VDM model. The former part represents decisions that affect the
following development activities and thus should be understood by the readers.
The latter part is to make the model runnable with the interpreter for valida-
tion through specification animation or testing. Separation of these two parts
is enabled by introducing auxiliary functions that denote abstract data opera-
tions (e.g., data addition) without depending on specific data structures (e.g.,
set union or sequence concatenation).
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Table 1. Comparison of the Second and Third Generations

Generation C Implementation VDM Specification
[LOC] [LOC]

Second 40,876 39,315

Third 126,944 55,400

(LOC excludes comments and blank lines)

Generation Deficiencies by Deficiencies by Productivity Debug density
description comprehension [LOC/Man-month] [errors/kLOC]

Second 2% 16.3% 1,000 11

Third 0% 10.9% 1,000 11

There were other improvements including the following ones.

– Use of the Japanese in variable and method names that considerably de-
creased the amount of comments on the VDM specification.

– Management of multiple products in the specification and testing.
– Systematic methods for generating test cases from the VDM specification.

Table 1 shows comparison of the second and third generations. Increase of
the specification lines was moderate by declarative description, even with the
large increase of the implementation lines. Deficiencies caused by the description
and the comprehension were both decreased, while the productivity and debug
density were kept to a similar level.

Our experience demonstrated how readability of the VDM specification can
be improved. We believe the readability is one of the key factors that support
not only construction of reliable systems but also effective and harmonious re-
lationships in the involved teams.
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Abstract. The traceability between a software requirement specification in nat-
ural language and its corresponding formal specification plays an important role
in development and maintenance of software. JODTool is a tool to support the
activities of formal specifiers to bridge from a pre-formal specification to a for-
mal specification. It manages a formal requirement dictionary, which is a set of
tuples of a key-phrase and its definition to keep bi-directional traceability. The
tool provides mainly three functionalities; 1) Key phrase marker 2) Dictionary
editor, and 3) Format converter, on the Overture tool to map key phrases to VDM-
SL/VDM++ specifications. We propose an evolutionary process of a round-trip
between pre-formal specification and formal specification with the tool, and illus-
trate it with a small case study. The tool is seamlessly integrated into the Overture
environment, and it lists concrete ambiguities in the SRS to be resolved, and sup-
ports prioritised modeling in VDM specification.

Keywords: Requirement Specification, Requirement Traceability, Overture tool,
Formal Requirement Dictionary, VDM modeling

1 Introduction

A software requirement specification (SRS) expressed using natural language is the
starting point of software development in most project. It is clear that tenders, con-
tracts, or projects of a certain scale demand an explicit SRS. Natural language usually
contains, however, contradictions and ambiguities, therefore careful reviews and repeat-
ing rewrites are required to achieve an agreement among stakeholders.

On the other hand, formal methods apply the use of mathematical notation in the
specification, and the use of such specifications as a basis for the verified design, of
computer systems [10]. A mathematical verification and practical use of tools are at-
tained by formal methods at early specification phase. Each formal method provides its
own language which has defined semantics to describe specifications. In other words,
formal methods can eliminate ambiguities from natural language description, but con-
siderable training is required to use it well. Therefore, documents in natural language
are commonly used in communications among stakeholders including non software
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engineers thorough the software life cycle, though a formal method is adopted in the
software development.

Traceability is an important feature to use a natural language and a formal method
together, in order to check whether the formal specification is covering the SRS in nat-
ural language. The advantage of requirement dictionary in the specification phase is
well known, however it is often omitted because of its construction cost[2]. We had
proposed a dictionary management tool named JODTool for formal requirements dic-
tionary which manages the map between key phrases in SRS and their definition by
formal language [16]. A formal requirement dictionary is a set of tuples made of a key
phrase as a small semantic chunk and its formal semantic definition, which represents
bi-directional translation between them.

JODTool extends application of lightweight formal method [11] to requirement
specification process. The concept of lightweight formal method is utilisation of ver-
ification tools instead of rigid mathematical proves, which are typically constructed
semi-automatically. The aims to introduce the formal requirement dictionary are;

– The semantic gap of natural language and a program would be buried by a formal
specification.

– Verification by tools in small units to improve reusability and accuracy of corre-
spondence.

– The mapping between a semantic chunk in SRS and its formal definition must be
surjective.

A phrase is not a grammatical meaning here, but the minimum unit which makes
it distinctly different from other phrases in the specification. For example, an “apple”
is the minimum chunk in a system which distinguishes an “apple” and other obstacles,
but if a target system distinguishes a “red apple” and a “green apple”, the minimum
chunk in the specification must be “red apple” and “green apple.” In short, grammatical
knowledge is insufficient to find key phrases and they should be identified by formal
specifiers considering the purpose of the system and domain knowledge.

Formal specifier cannot construct the proper formal model all at once. They will
write and verify a formal specification from important parts considering the priority of
requirements. When the verification is successful, they extend the model to incorporate
other requirements. Formal specifiers develop the specification by repeating this.

This paper proceeds by providing the related work that this work is based on in Sec-
tion 2. Afterwards the notion of a formal requirement dictionary and its management
possibilities on top of the Overture tool is explained in Section 3. Then the application
procedure of an evolutionary formal modeling process with the tool is presented in Sec-
tion 4. The case study of application to a parking deck system is reported in Section 5,
and some analyses over the result is performed in Section 6. Finally, we summarize our
results in Section 7.

2 Related Work

Tools to manage the mapping between requirements in natural language and program
fragments are available as commercial products. Some tools to manage mapping be-
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tween requirements in natural language and detailed design are available as commer-
cial products, such as Rational DOORS [18], Mingle [19] and Caliber [17]. They store
arbitrary mapping based on the traceability matrix which maps relations among listed
specifications, design in some diagram or documents. However, it is difficult to assure
that all requirements are turned into specification without any kinds of contradictions
in large-scale software development.

The limits of natural language software specifications were pointed out, and the in-
vestigations to what extend formal descriptions can improve has been investigated [15].
Traditional application of formal methods assumes that the conversion into formal spec-
ification from requirements in natural language is one-way. On the contrary, our tool
provides an easy way to support round trip development.

The concept of the domain requirements dictionary is close to the concept of the data
dictionary used in the structured analysis method [3]. The data dictionary in structured
analysis describes the structure of the data used in data flow diagrams, and it must
contain definitions of all the data used.

Formal requirement dictionary is an extension of the requirement dictionary which
is proposed in real time structured analysis [8] It is an extension of the requirements
dictionary to contain a formal definition for each phrase of not only a data structure but
functions or modules. The extension points are:

– Entry is not limited to a word but a key phrase.
– Semantics is defined by a formal language.
– The dictionary can be converted into a formal model.

3 Dictionary runs with Overture tool

3.1 Dictionary Management Tool

We had developed a formal requirement dictionary management tool which is named
JODTool to assist formal specifiers. Current version of the tool supports the guideline
to construct a model with VDM-SL [4] or VDM++ [13].

Key phrases are stored into a dictionary and the user can here complement formal
information in the dictionary. It is implemented as an Eclipse plug-in whose perspective
has a SRS Editor, a Formal Requirement Dictionary Editor, and an Entry Editor. We
successfully integrated JODTool into the Overture tool and propose an evolutionary
process to develop a formal and pre-formal specification over the environment.

Fig.1 shows interface of the tool. The tool provides 3 main functionalities:

Key phrase Registrar: The SRS Editor enables marking of all key phrases in natural
language documents which are entry phrases of the formal requirement dictionary.
As a result, the visibility of key phrases in the documents may be much improved
for the specifiers as shown in Fig. 1.
The mouse selected regions are added to the specified dictionary as an entry phrase
by one click or a short-cut command. Registration is performed easily on an arbi-
trary phrase.
The SRS Editor is able to handle plain text file, HTML files and a limited form of
a Microsoft Excel file.
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Fig. 1. The GUI of the JODTool

Entry Editor: The dictionary data can be edited through the entry editor view. The
view provides basic editing operations such as copy-paste, search, sorting, for the
entry, order of the entry, and dictionaries in the project, respectively.
An entry consists of a natural language part and a formal language part. The natural
language part consists of a key phrase which is represented as a sequence of char-
acters and an informal definition in a natural language. The tuple of key phrase and
its part of speech gives key value in the formal requirement dictionary. The entry
allows regular expressions of the entry phrases.
A key phrase can contains sub-key phrases which are compositions of the concept,
synonyms, or paraphrases. It may also have conjunctions of the key phrase from the
grammatical view. The dictionary provides a small structure to arrange “unstable”
concepts in a natural language.
The formal language part consists of a section and an atomic portion of formal
semantic definition. The entry keeps a bi-directional relation between descriptions
in a natural language and a formal language.

Model Conversion: The tool supports translation from the formal definitions in the
dictionary into a formal specification which can be checked by verification tool
such as the Overture tool [12]3 or VDMTools [5]4.

3 See http.//overturetool.org for details.
4 See http://www.vdmtools.jp/en/ for details.
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The current version of JODTool supports both VDM-SL and VDM++, so the for-
mal specifier can use one of these languages to give a formal definition of the key
phrases.

3.2 Relations among dictionaries

JODTool is equipped with functionality to support requirement analysis and enhanced
traceability including handling of multiple dictionaries. Therefore, a dictionary is reusable
not only the case of two specification sharing the same domain but also they can have
overlapped parts.

Fig. 2. Dictionary reuse

In the case where a term is defined differently in two directories it is possible to
switch the dictionary as shown in Fig. 3.

Fig. 3. Dictionary switching

Combined key phrase and sub-key phrases may share the same definition, and in
such cases equivalent terms, or synonyms can be combined. The dictionary format is
extended so that plural keywords can be registered into one entry. If you cannot correct
the SRS directly, the dictionary can be used to resolve such ambiguities.

Variations of main key phrases are also stored in the same entry. Variations are
supposed to be conjugations of verbs or declension of adjectives. The document marker
check the main key phrase, sub key phrases, and all the conjugated forms as the same
part.

7

JODTool on the Overture Tool to manage formal requirement dictionaries



The tool can simultaneously open multiple dictionaries corresponding to different
domains, respectively. The dictionary is stored in an XML form and has a header and
subsequent entries. The dictionary header has following fields:

Domain name: Domain name is an identifier of a domain and it is not limited to a
problem domain, but can be arbitrary text strings.

Organization: Organization is an identifier of a project or an organization. A spec-
ification of the target depends on not only on its domain but its users and their
application environment.

Input language: An input language is the descriptive language of non formal infor-
mation in an entry of the dictionary. You can set multiple input languages in a
dictionary.

Output language An output language is the descriptive language of the formal defini-
tion in an entry of the dictionary.

A specification process is not a one-way transition from an informal SRS to a formal
model. The key phrases and sub key phrases in the dictionary are highlighted in the
SRS editor on the fly as shown in Fig. 4. It becomes easier to provide feedback with
corrections to the SRS, if the formal model is modified.

Fig. 4. Track back to SRS

3.3 Integration with the Overture tool

JODTool has been successfully integrated into the Overture tool, as shown in Fig. 1. We
reorganized the namespace in the plug-in implementation, provided coexistence of the
specification file and the dictionary generated by JODTool with projects of the Overture
tool, delegation of VDM-SL and VDM ++ editor, etc.
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The Overture tool is most popular and standard VDM integrated development en-
vironment built on Eclipse, which includes new features of the VDM languages. The
integration enables formal specifiers to analyze by extracting key phrases of an SRS
in natural language, to construct VDM specifications based on the set of key phrases,
and to generate VDM source files from the dictionary. Overture can the perform syntax
and type checking, and the formal specification and the pre-formal specification can be
modified in a unified way. They can seamlessly continue the repetition to evolve the
formal specification. It is possible to validate the specification by animation of explicit
specifications [14] or by using proof obligations [1].

Defects of the specification found in the above process can be fed back to the SRS
by identification using the reverse mapping of the dictionary. Though VDM modeling
without the dictionary can point out defects in SRS, the formal requirement dictionary
clarify the defects as concrete technical problems of the specification, rather than inabil-
ity of the specifier. It demonstrates which part of SRS contains what type of problem
because of the mathematical background of the formal method.

4 Repetitive Evolution of formal specification

A formal specifier cannot normally construct the proper formal model in one step be-
cause abstraction from a prioritised point of view and good understanding of the target
system are necessary to apply a formal method properly. However, it might take time
to understand the full functionality and the priorities among them in the target system.
Specifiers have to communicate with the domain experts and other stakeholders, and
begin the formal specification from most important part of requirements.

Fig. 5. Suppression of output

In the construction of a formal specification, the specifier describes and verify a
partial formal model. JODTool supports such evolutionary modeling process. VDM
originally provides some notations for transitional modeling, such as the “is not

9

JODTool on the Overture Tool to manage formal requirement dictionaries



yet specified” keyword. JODTool can control the output elements outside the
model as shown in Fig. 5. Thus, the specifier do not hesitate to cut and error over the
constructing model. Essential changes of requirements must act upon the model itself.
When the verification is successful for the partial formal model, they can extend the
model to incorporate other requirements.

We propose that it is possible to develop a formal specification the following proce-
dure in this tool environment:

1. Extract all key phrases in the SRS.
2. Choose the high-priority elements and give them a formal definition.
3. Generate a partial model and verify it.
4. If any defects are discovered fed it back to the SRS.
5. Otherwise no problem is discovered, and the next high-priority elements can be

selected to be incorporated in the model and go to step 3.
6. Finish the repetition if all key phrases are given a formal definition

Formal specifiers develop the specification by repeating this cycle. If eventually all
key phrases are incorporated in the formal model, it can be said that reflection of whole
the SRS into the model was completed. This does not mean the model is complete or the
model is best one, but the specifier can explain objectively that the model contains all
indispensable elements about the target system. It is practically important in application
formal methods that clear indication of the termination condition of modeling process.

5 Case study

5.1 The Parking Deck System

We adopted a park deck problem as a case study of our method. A parking deck is a
stacked garage, thus it has multiple parking space in it. The assignment is used in a
course of George Mason University [7], as shown in Fig.6.

The VDM-SL model was composed of 84 lines excluding comments. No errors
were discovered in the VDM model when it was checked by the Overture tool but that
was expected. The main part of the specification is shown in Fig. 7.

The key concept of this model is that “Parking” is defined as a map from a car to
a permit. The relation is quite simple and will not change through this whole system.
Consequently a state component is defined of this type. However, this requires intuition
of the specifier, because this definition stands on an abstraction of car and parking lot.
From the viewpoint of enter/exit management of Park Deck, a car is a simple object and
a permit is a tuple of an ID and its entry time.

All verbs in this example are corresponding to the operations. Thus, every move of
this system changes its state, as they commonly do in embedded systems. The VDM-SL
model was composed from the definitions of key phrases in the dictionary.

5.2 Application of evolutionary process

We applied the procedure in Section 4.
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A parking deck system manages an entry/exit gate, which opens to let a vehicle (i.e.,
car) into or out of the deck and closes when the car has passed through. A driver must
push a button to print a parking permit. When the driver takes the parking permit, the
system raises the gate. The system lowers the gate after the vehicle has passed through.
A permit id and time of entry is printed on the parking permit, and is also encoded on
the permit’s bar code.
When the vehicle leaves the parking deck, the driver inserts the parking permit into a
bar code reader, which scans the bar code, and then transmits the bar code to the parking
system. The parking system calculates a fee that is based on the number of hours that
have elapsed since the vehicle entered the parking deck, and displays the fee to the
operator and driver. The driver must pay the operator with cash or check. The operator
accepts the payment, and if necessary returns change to the driver. Then, the operator
enters a command to raise the gate to allow the vehicle to leave the parking deck.
You may assume that the system has the following external devices at the entry gate: a
sensor to detect the presence of a car, a parking ticket printer to print the parking permit,
an actuator to open and close the gate, and a sensor to detect that the car has departed.
You may assume that the system has the following external devices at the exit gate: a
bar code scanner to read the permit bar code id, a display to show the parking fee to the
operator and driver, an actuator to open and close the gate, and a sensor to detect that
the car has departed.

Fig. 6. Park Deck Problem

1. Extract all key phrases in the SRS.
We have extracted the important key phrases from the SRS using JODTool. Accord-
ing to the statistics of the tool, 8 noun phrase, 7 verb phrases, and 3 state variables
were selected. There were many conjunctions of verbs and synonyms. For example,
we identified “parking deck”, “deck”, “parking system”, “the system” denoted the
same concept.

2. Choose the high-priority elements and give them formal definition.
We adopted a top-down approach to model the informal description of the system.
Only the “ParkingDeck” module was generated in the first iteration. Then, the no-
tion of “Parking” and its related state components and operations to the model was
added in the second cycle. Afterwards other elements were added too and the VDM
model was completed.

3. Generate a partial model and verify it.
You can control the model output by the ability shown in Fig. 5. The Overture tool
runs syntax and type checking process automatically, so the specifier can fix faults
in the formal model in a short amount of time.

4. If any defects are discovered fed these fixes back to the SRS.
We found some synonyms in the SRS so that they are stored in one entry, and
put some key phrases together and built some structures at conceptual level. For
example, key phrases “open”, “close”, “raise”, “lower” were put into “gate” and its
states.
We also added a number of concepts that seemed to be missing. They came from
the level of abstraction, thus most of them were type definitions which were distinct
from the static state component.
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Fig. 7. Formal model using VDM-SL
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If you do not wish to rewrite the SRS for some reason, the specifier can manage the
semantics of each phrase manually.

5. Otherwise no problem is detected in the model and the next level of priorities
can be added to the model and go to step 3.
Repeat the cycle until the model achieve the mutable goal of verification or vali-
dation. Here, verification is the process to confirm elimination of inconsistency in
each model and validation is the process to confirm elimination of inconsistency
among the models of different models.

6. Finish the repetition if all key phrases are given formal definition.
We eventually obtained 7 noun phrase, 5 verb phrases, 3 state components, and 9
others were picked up. Others includes type definitions, constants, and test data.

5.3 Alternate dictionaries

Pick up the billing of the example in sec. 5.1 as an example of refinement.
The entry of the formal domain dictionary is “calculates a fee”, and its formal defi-

nition is Fig. 8.

�
calc_fee : Permit ==> nat
calc_fee(aPermit) == (

def fee = (timestamp() - aPermit.#1) * RATE
in return fee;

)
pre aPermit in set rng pool;

timestamp : () ==> Time
timestamp() == (

return current_time
);
� �

Fig. 8. Formal Billing Operation

Actual calculation part val fee is cut out for this comparison. The problem is that
the meaning of the sentence in natural language

a fee is calculated based on the number of elapsed hours

is ambiguous, so that various interpretations are allowed. For example, the fee calcula-
tion as Fig. 9,

If val fee is defined as that, it is not obvious whether this satisfies the original
specification. If formal definition of the part is Fig. 8, then Fig. 9 satisfies Fig. 8, because
concrete specification is left to the latter phase. Fig. 10 satisfies Fig. 9 in the same way.
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�
val_fee: Time ==> nat
val_fee (time) ==

return time * RATE;
� �
Fig. 9. Refined Formal Billing Operation(1)

�
val_fee: Time ==> nat
val_fee (time) ==

if time <2 then return 1 else return 2 * (time -2) + 2;
� �
Fig. 10. Refined Formal Billing Operation(2)

On the other hand, if formal definition of the part is Fig. 9, it can be proved that
Fig. 10 does not satisfies Fig. 9, because any condition cannot satisfy Fig. 9 in Fig. 10. In
this case, the specifier interpreted the part in natural language as the fee is proportional
to the elapsed time.

6 Discussion

6.1 Bi-directional Mapping of Specification and Model

There have been many investigations about whether formal methods are useful for solv-
ing this kind of problems, and it is well-known as a way to reach improvement and
assurance of software quality [6, 9, 21, 20].

The main difficulty of practicing formal methods is that mathematical knowledge
and intuition is required, whereas native natural language can be used by most stake-
holders without extra training. We propose the developing method using both specifi-
cations in a natural language and in a formal language. The stakeholders who know the
formal method can understand the exact semantics, and those who are unacquainted
with the mathematics can refer to the natural language description which semantics is
captured by the formal method.

The duality of the formal domain dictionary helps co-existence of readability and
rigidness of the specification.

Fig. 11 shows some roles of stakeholders.

Customer: The customer presents requirements to the specifier in natural language
form.

Specifier: The specifier turns the requirements into a formal specification.
Developer: The developer refers to the formal specification and implements a corre-

sponding program.

Formal specifications are desirable to avoid misunderstanding among stakeholders, but
it depends on the familiarity about formal methods of each member.
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Fig. 11. Supposed Development Process

6.2 Evolutionary development

In the software development using formal methods, some steps of refinement are ap-
plied to the specification and finally this leads to executable code. (Horizontal direction
from the left to the right in Fig. 12) If specification n obeys specification m, the relation
is called refinement and it expresses with a v sign.

Another view is a formal model can be obtained from a corresponding specifica-
tion. (Vertical direction from the upper to the lower in Fig. 12) The formal requirement
dictionary gives the mapping between a specification and a model. If the dictionary
changes, the model needs to be changed accordingly. Different dictionaries express dif-
ferent viewpoints of the target. Between the formal models sharing the same formal
language, a.k.a sharing the same formal method, can be proved whether they have the
refinement relation5.

Fig. 12. Relation among specification and models

A formal requirement dictionary gives a mapping from the specification to the
model, thus conditions for existence of such inverse mapping is that mapping is bidi-
rectional. Therefore specifier can notice the necessity to keep consistency when either
side is changed. Mapping must be surjective by definition, i.e. a formal definition can
be given for any semantic chunk in natural language.

If mapping from the specification to the model is not injective, it is trivially not
monotonic, where the same definition is given for multiple semantic chunks. To avoid

5 When they are in different languages but sharing the same mathematical theory, this kind of
relation can be apparently defined, but it is out of scope in this paper.

15

JODTool on the Overture Tool to manage formal requirement dictionaries



this case, a representative should be chosen from the group of chunks with the same
formal definition, and use it in the inverse mapping.

The consistency of the specification in natural language and the specification in for-
mal model and refinement relation between specifications is defined under the condition
of bidirectional mapping from the specification to the model.

7 Conclusion and Future work

This paper introduces the formal requirement dictionary and its integration with the
Overture tool. JODTool manages formal requirement dictionary and which runs with
the Overture tool to verify and validate VDM models. The dictionary ensure traceabil-
ity between SRS in natural language and its corresponding formal model. It supports
specifier’s task and relations among formal requirement dictionaries.

– In a case study, we found 18 key phrases in the SRS in the first cycle. But, there
should be abstract types or constants and finally we had 24 entry in the formal
requirement dictionary. This means that there is a difference between a sufficient
model and a good model.

– The Overture tool provides quick syntax and type check, therefore the formal spec-
ification in VDM quickly achieve a stable model. If you need advanced verification
or validation such as animation, the specifier can do that in the unified environment.

– A formal model with the tool is a good start point to begin refinement. Because
formal requirement dictionary can ensure that all key phrases in the SRS are incor-
porated in the corresponding formal specification.

It is future work to perform examination on larger examples and to confirm reusabil-
ity, considering the generic relation between natural language description and the formal
specification.

Acknowledgment

Thanks to Dr. Hassan Gomaa for the publication of a Park Deck Problem as an example
specification. Construction of the tool is supported by Mr. Yasuharu Yoshimura and
others in Kyushu Business Corporation. This work was partially supported by MEXT
Grant-in-Aid for Scientific Research(S) HBG4220001.

References

1. Aichernig, B.K., Larsen, P.G.: A Proof Obligation Generator for VDM-SL. In: Fitzgerald,
J.S., Jones, C.B., Lucas, P. (eds.) FME’97: Industrial Applications and Strengthened Foun-
dations of Formal Methods (Proc. 4th Intl. Symposium of Formal Methods Europe, Graz,
Austria, September 1997). Lecture Notes in Computer Science, vol. 1313, pp. 338–357.
Springer-Verlag (September 1997), iSBN 3-540-63533-5

2. Daneva, M.: Erp requirements engineering practice: Lessons learned. IEEE Software 21(2),
26–33 (2004)

16

JODTool on the Overture Tool to manage formal requirement dictionaries



3. Demarco, T.: Structured Analysis and System Specification. Yordon Press (1981)
4. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques for Software

Developmen. Cambridge University Press, 2 edn. (2009)
5. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: Advances in Support for Formal Model-

ing in VDM. ACM Sigplan Notices 43(2), 3–11 (February 2008)
6. Gerhart, S., Craigen, D., Ralston, T.: Experience with formal methods in critical systems.

IEEE Software 11(1), 21–28 (1994)
7. Gomma, H.: Course assignments for software modeling and design.

http://mason.gmu.edu/ hgomaa/assignments.html
8. Hatley, D.J., Pirbhai, I.A.: Strategies for Real-Time System Specification. Dorset House

(1988)
9. Hinchey, M.G., Bowen, J.P. (eds.): Applications of Formal Methods. Prentice Hall (1995)

10. Jones, C.B.: Software development based on formal methods. In: Proceedings of the CRAI
Workshop on Software Factories and Ada. LNCS, vol. 275, pp. 153–172. Springer-Verlag
(1987)

11. Jones, C.B., Jackson, D., Wing, J.: Formal methods light. IEEE Computer 29, 20–22 (1996)
12. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture

Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (January
2010), http://doi.acm.org/10.1145/1668862.1668864

13. Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M., Fitzgerald, J.: Validated Designs For
Object-oriented Systems. Springer (2005)

14. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating A Distributed
real time system using VDM. In: Qin, S., Qiu, Z. (eds.) Proceedings of the 13th interna-
tional conference on Formal methods and software engineering. Lecture Notes in Com-
puter Science, vol. 6991, pp. 179–194. Springer-Verlag, Berlin, Heidelberg (October 2011),
http://dl.acm.org/citation.cfm?id=2075089.2075107, ISBN 978-3-642-24558-9

15. Meyer, B.: On formalism in specifications. IEEE Software 2(1), 6–26 (1985)
16. Omori, Y., Araki, K.: Tool support for domain analysis of the software specification in natural

language. In: Proceedings of the IEEE TENCON 2010. pp. T7–3.3(CD–ROM) (2010)
17. Borland: Caliber. http://www.borland.com/products/caliber/
18. IBM: Rational DOORS. http://www-03.ibm.com/software/products/en/ratidoor
19. Thought Works: Mingle. http://www.thoughtworks.com/products/mingle-agile-project-

management
20. Stefania Gnesi, T.M.: Formal Methods for Industrial Critical Systems: A Survey of Applica-

tions. Wiley-IEEE Computer Society (2012)
21. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Practice and Ex-

perience. ACM Computing Surveys 41(4), 1–36 (October 2009)

17

JODTool on the Overture Tool to manage formal requirement dictionaries



VDM Animation for a Wider Range of Stakeholders

Tomohiro Oda1, Yasuhiro Yamamoto2, Kumiyo Nakakoji1,3, Keijiro Araki4, and Peter
Gorm Larsen5

1 Software Research Associates, Inc. (tomohiro@sra.co.jp)
2 University of Tokyo (yxy@acm.org)

3 Kyoto University (kumiyo@acm.org)
4 Kyushu University (araki@csce.kyushu-u.ac.jp)

5 Aarhus University, Department of Engineering, (pgl@eng.au.dk)

Abstract. Formal specification serves as reference to reliable definitions of con-
cepts in a development. However, only a limited number of stakeholders are
fluent in using formal specification languages. Animation is a promising tech-
nique to have stakeholders from different backgrounds understand what a for-
mal specification means. This paper introduces three alternative tools for anima-
tion extended from VDMPad; Lively Walk-Through for the design of User In-
terfaces (UIs), Cloudly Walk-Through for presenting system’s overview to non-
engineering stakeholders, and Webly Walk-Through for Application Programmer
Interfaces (APIs) for web applications.

1 Introduction

The number of lightweight applications of formal methods has increased in recent years
[4, 18, 17]. The VDM dialects are some of the most frequently used specification lan-
guages suitable to lightweight use of formal specification [5]. This is also caused by
VDM being supported by matured and well-maintained IDEs, namely the Overture tool
[7] and VDMTools [2]. Different case studies report that animation plays important
roles in both modeling and testing [11]. We have been working on expanding use of
VDM interpreters [8, 12]. VDMPad is a simple web-based IDE for exploratory process
of authoring VDM specification at the earlier stages of the formal specification phase
[14, 15]. This paper introduces three new approaches that pioneer new dimensions of
VDM animation. We believe that wider range of uses of specification animation over
development phases will enhance the applicability of VDM.

After this introduction Section 2 motivates the new approaches by explaining how
VDM modellers with advantage can collaborate with stakeholders that do not possess
capabilities to use a formal notation. Afterwards Section 3 presents a small VDM-SL
example for modelling a TV remote with zapping functionality. Section 4, 5 and 6 in-
troduce our systems, Lively Walk-Through, Cloudly Walk-Through and Webly Walk-
Through in that order. Afterwards, Section 7 describes related work. Finally, it is dis-
cussed how animation-based systems can enable collaboration between formal engi-
neers and other stakeholders.
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2 VDM Animation for Multidisciplinary Teams

A software development project is inherently multidisciplinary by roles and phases.
Some stakeholders have fluency of formal specification languages while others do not.
Animation instead can be one of the common languages that can be understood by
people with different expertise.

Clients are typically influent of formal languages although their knowledge, ex-
perience and visions are necessary to produce a right software product. One possible
solution is that a few client representatives acquire basic reading skills of a formal
notation [1]. Otherwise formal engineers explain the formal specification and its im-
plications to customers in a natural language and the unambiguous nature of formal
specification does not directly benefit the clients.

The gap of fluency also exist with software developers that have not been trained in
understanding formal specifications. Programmers, who read formal specification and
implement it, and test engineers, who read formal specification and conduct software
testing, are familiar with formal grammars through programming languages. Some of
the remaining stakeholders, such as sales representative, User Interface (UI) designers
and documention writers, may have difficulty to read formal expressions regardless
of the fact that they can benefit from clear and rigorous representation of the formal
specification.

A formal specification can play a major role in software development as a refer-
ence to reliable definitions of key concepts. Formal specifications have two levels of
abstraction: the application domain and the language. While the abstraction of the lan-
guage may unfortunately bring the gap of fluency into the team, the abstraction of the
application domain can be and should be understood by most stakeholders. Animation
is a technique that visualizes the abstraction of the application domain. Formal spec-
ification enables many techniques such as proofs and automated generations. Among
them, animation is one particular technique that can be understood by a wider range of
stakeholders.

3 Example Specification: TV remote with zapping function

The specification below is an executable VDM-SL specification for a TV remote con-
troller with zapping support.

A user has a series of favourite TV stations for channel-zapping. The user can man-
age a channel list for zapping (called a zap list below) by adding or deleting the current
channel to or from the zap list. The user can start zapping by startZap, and traverse
through the zap list back and forth by pressing prevZap or nextZap.

This specification will be used as an example throughout this paper to exhibit dif-
ferent usages of animation capabilities.�
types
channel = nat

inv channel == channel >= 1 and channel <= 12
state memory of
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current : channel
zapList : seq of channel
zapIndex : [nat1]

init
s == s = mk_memory(1, [], nil)

end
operations

num : channel ==> channel
num(x) == (current := x; return current);
inc : () ==> channel
inc() == return num((current mod 12) + 1);
dec : () ==> channel
dec() == return num(((current - 2) mod 12) + 1);
get : () ==> channel
get() == return current;
setZapIndex : int ==> channel
setZapIndex(x) ==

(if 0 < x and x <= len zapList
then (zapIndex := x; num(zapList(x)))
else zapIndex := nil;
return current);

startZap : () ==> channel
startZap() == return setZapIndex(1);
nextZap : () ==> channel
nextZap() ==

return if zapIndex <> nil
then setZapIndex(zapIndex+1)
else current;

prevZap : () ==> channel
prevZap() ==

return if zapIndex <> nil
then setZapIndex(zapIndex-1)
else current;

addZap : () ==> ()
addZap() ==

if current in set elems zapList
then skip
else zapList := zapList ˆ [current];

delZap : () ==> ()
delZap() ==

zapList :=
[zapList(index)
| index in set inds zapList
& zapList(index) <> current];

getZapList : () ==> seq of channel
getZapList() == return zapList;
� �
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4 Lively Walk-Through: Animation for UI Designers

Collaboration between formal engineers and UI designers is critical to develop a us-
able interactive system [10]. UI design artifacts are essential and critical components of
interactive systems. Some design decisions may affect or be influenced by functional
models. A mismatch between user’s cognition and the system’s functionality results in
a failure of performing the user’s task at hand. The output of UI design is not merely
a collection of graphical sketches, but also includes design decisions made by draw-
ing those sketches. Implementation details such as icon pixels are to be sent to other
professions including graphic designers, and design decisions such as geometric con-
straints among GUI elements are externalised as design artefacts. UI designers take
domain knowledge, functional models and sometimes ethnographic research to model
interactions between the system and users into account.

It is sometimes difficult to share a common understanding of the system between
formal engineers and UI designers because they have different expertise. VDM anima-
tion combined with a GUI prototyping tool is a powerful vehicle for both the formal
engineers and the UI designers to understand the intended functionality of a software
system.

UI prototyping using an executable formal specification benefits formal engineers
because it involves validation of functional models in terms of user interactions, and
also UI designers because animation of formal specification gives intuitive and reason-
able understanding on the intended functionality of the system. A benefit of the formal
specification for UI designers is a medium to describe constraints to functional mod-
els by UI design. A rapid prototype in a programming language may also convey the
system’s functions, but often lacks language constructs to distinguish design decisions
from implementation details. Formal specification languages including the VDM fam-
ily have functionality to separate design decisions as assertions from implementation
details in animation mechanisms.

Lively Walk-Through is a medium for discussion between formal engineers and UI
designers. A UI prototype on Lively Walk-Through is built with (1) a VDM specifica-
tion, (2) a UI sketch, (3) UI widgets, (4) LiveTalk scripts and (5) binding between UI
events and LiveTalk scripts. Using the resulting UI prototype, formal specification en-
gineers and UI designers walk-through scenarios. Lively Walk-Through records all UI
events, operation calls and states into a history. The formal engineers and UI designers
discuss and make agreements based on the VDM specification, UI sketches and snip-
pets from the history. The objective of Lively Walk-Through is to create agreements
between formal engineers and UI designers. UI designers do not have to understand the
VDM model as such. The animation exhibits the behaviour of the specification by both
the formal language and the designers’ language, and the formal engineers and the UI
designers together critique it pointing at the same artefacts.

Figure 1 is a screenshot of a UI prototype on Lively Walk-Through. The UI proto-
type was constructed by the following steps:

– Wrote the VDM specification shown in Section 3.
– Drew a UI sketch on a paper, took a photo of it, and placed the image on Lively

Walk-Through.
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Fig. 1. UI prototyping for a TV remote controller with zapping support

NEXTZAP
nextZap() -> [DISPLAY]

Fig. 2. A LiveTalk Script for the “next zap” button
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Fig. 3. Discussion between UI designer and VDM engineer

– Placed sensor rectangles (the red boxes in Figure 1) on the buttons drawn.
– Wrote actions for buttons in LiveTalk scripts (see Figure 2).
– Associated click event of each button to an action.

LiveTalk is a Domain Specific Language (DSL) that bridges VDM animation and
UI widgets. Figure 2 shows the definition of the action of the “next zap” button. The first
line is the name of the script. The second line states that the return value of the operation
call “nextZap()” is passed to the DISPLAYwidget. The DISPLAYwidget will show
the resulting channel. Other buttons have their actions defined in LiveTalk.

Actions defined in LiveTalk are associated with GUI’s events. When a button is
clicked, the button triggers a clicked event. The system then executes actions associ-
ated with the event. Events can be concurrently triggered, but the execution of VDM-SL
operations are mutualy excluded and thus serialized by a semaphore.

Figure 3 illustrates a discussion using Lively Walk-Through. After a series of walk-
through’s, the UI designer points out that the zap mode is exposed to the user which
leads to a confusing interaction. The UI designer also claims that the user does not need
the prevZap() operation, but the startZap() and nextZap() should be unified
into one operation for simplicity. The VDM engineer agrees and put it into the TODO
field.
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Fig. 4. Diagram with Animation on Cloudly Walk-Through shared on the web

5 Cloudly Walk-Through: Animation for Non-Engineering
Stakeholders

Cloudly Walk-Through is a general diagrams editor with VDM-SL animation capabil-
ities. The basic idea behind Cloudly Walk-Through is to explain formal specifications
by supplementing them with two kinds of visual notations; diagrams and visual repre-
sentation of VDM-SL values.

Some stakeholders without software engineering backgrounds, such as user repre-
sentatives and marketing representatives, often have domain knowledge crucial to pro-
duce software systems that fit the application domain. Diagrams and natural language
texts are often used to explain architectural designs and important design decisions to
such non-engineering stakeholders. Those informal notations have advantages of less
technical demands at the cost of semantic ambiguity and uncertain implications. The
goal of Cloudly Walk-Through is to take advantages of both the easy-to-understand
diagrams and the rigorous formal specification.

Figure 4 is a screenshot of Cloudly Walk-Through animating the remote controller
with the zapping support introduced in Section 3. Gray rounded rectangles represent
physical components (buttons and a controller module) of a conventional remote con-
troller. Blue dotted rectangles are extension components (zap buttons and zap con-
troller) for the zapping support. Small assemblies in rectangles are mini-evaluators.
A VDM engineer enters a VDM expression and Cloudly Walk-Through evaluates it
when the button below is pressed. The result value is rendered above in a visual repre-
sentation with a larger font. The visual representation lowers the technical barrier for
non-engineering stakeholders to comprehend VDM-SL’s expressions.

24

VDM Animation for a Wider Range of Stakeholders



Fig. 5. VDM-SL IDE of the Cloudly Walk-Through

The animation is shared on the web. Cloudly Walk-Through manages registered
users’ permissions to watch or manage each animation instance. Any registered user
who as the permission to watch the animation can see the on-going animation by open-
ing the URL of the animation instance.

Figure 5 shows the VDM-SL IDE on Cloudly Walk-Through for formal specifica-
tion enginneers. Formal engineering users can manage the source tree of the VDM-SL
specification on the left side of the IDE. The right-top area displays the state of the on-
going animation. Diagram representation of VDMPad [15] is used to render the value
of each state variable. Values are grouped by dashed rectangles using modules. The
top right area is a text editor called a Workspace, where the user can write and evalu-
ate VDM expressions. Those components are similar to their counterparts in VDMPad.
The difference is that the specification is stored in a source file tree on the server, and
the animation state is shared by all users. In addition, Cloudly Walk-Through has a git
interface to manage the source tree by git to push, pull, commit, revert and view log and
status. Formal engineers can synchronize source trees with git repository to use Cloudly
Walk-Through in conjunction with other formal methods tools such as the Overture tool
and VDMTools. Users can also download a zip archive of the source tree by pressing a
“Download ZIP” button.

6 Webly Walk-Through: Animation for Client Programs

Webly Walk-Through is a prototype Web API server where client programs can be used
as an alternative until the implementation of Web API server will be completed.
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Rapid development is often critical to web application services. A web API is the
interface that separates the server side from the client side. The server and the client
are sometimes developed by different teams in parallel. The specification of a web API
is the key to successful development of web applications. Rigorous specifications can
help the development of the client side as well as the server side. In conventional devel-
opment, the client team typically implements stubs to test their program code and the
user interface design. Webly Walk-Through serves as a Web API server by animating
a VDM-SL specification of the web API. Webly Walk-Through uses JSON to transfer
data between the web API server and its clients. JSON is a widely used open standard
format and encoders and decoders are available in many programming languages.

Fig. 6. VDM IDE on Webly Walk-Through

Webly Walk-Through provides three kinds of web services: (1) Web IDE for VDM-
SL and web contents, (2) Web API, and (3) files with static contents. Figure 6 is a
screenshot of the Web IDE. The Web IDE has three tabs; VDM, HTML and History.
In the VDM tab, formal engineers can write a VDM-SL specification of the Web API.
The state of the on-going animation is shown in the right-top area. The right-middle is
a Workspace that can be used to evaluate arbitrary VDM expressions. Translation rules
between VDM values and the corresponding JSON data are defined in the right-bottom
area. In this particular example, channel numbers are the only data transfered between
the server and clients, and no translation rule is needed.

Webly Walk-Through also provides support for files with static contents. The HTML
tab provides a web-based static content editor to manage and modify the files. Figure 7
is a screenshot of the static content editor.
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Fig. 7. File Editor on Webly Walk-Through

Fig. 8. The num operation automatically published as a Web API at http://localhost:8087/num
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The Web API service is driven by VDM-SL animation. A Webly Walk-Through
server publishes operations and functions at URLs
http://<hostname>:<port>/<module name>/<operation/function
name> for a modularized specification, or
http://<hostname>:<port>/<operation/function name> for a flat spec-
ification. The API call may be requested as a Get method with a query part or post
method with the form-data format. When the server receives an API call with param-
eters, each parameter in a JSON format is translated into a VDM value according to
user-defined translation patterns. The server then evaluates the operation or function
call with the translated arguments. The resulting value is translated into a JSON format
and sent to the client program. Figure 8 is a screenshot of a web browser dispatching
an API. The argument to the num operation is 5, which is identical both in JSON and
VDM-SL. The operation num(5) is then evaluated and the return value 5 is sent back
to the web browser in JSON format, which is again identical to its VDM-SL counter-
part.

Fig. 9. The client UI that uses the Web API animated by Webly Walk-Through

The Webly Walk-Through server provides web pages with static contents such as
html, css and javascript files. Figure 9 shows a screenshot of the UI page for the remote
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controller. The page has a JavaScript code that invokes Web API’s in the specification,
such as num, startZap, nextZap and so on.

The API calls received by the server are recorded along with translated arguments
and return values into the history page shown in Figure 10. VDM expressions evaluated
in the IDE page are also recorded.

Fig. 10. Webly Walk-Through IDE shows the access log on the server with states and expressions
of the VDM spec

7 Related Work

VDMPad [14, 15] is a simple Web IDE for VDM-SL. VDMPad was designed to be
lightweight authoring environment for VDM-SL engineers at the earlier stages of the
specification phase. The user writes, tests and debugs a specification by animating the
specification. Lively Walk-Through, Cloudly Walk-Through and Webly Walk-Through
are implemented based on VDMPad. Although the three Walk-Through systems pro-
vide specification editors, the systems put more values on the animation part.

PVSio-web [16] is a UI prototyping tool to animate executable formal specification
generated from a graphical diagram notation called Emucharts. A VDM-SL generator
from Emucharts was recently developed [9]. PVSio-web aims at development of safety-
critical systems, such as medical devices, with precise UI design. Lively Walk-Through
assumes more sketchy UI prototypes at the earlier stages of the development. PVSio-
web, Lively Walk-Through and Cloudly Walk-Through share a common objective, that
is, to engage stakeholders other than formal engineers with lightweight formal methods.

BMotion Studio [6] is a graphical animation builder aiming at communications be-
tween developers and domain experts. It enables to build a graphical representation
using labels, images and buttons that drives an Event-B specification.
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The Remote Control Interface of VDMJ enables Java program to control models in
VDM [12]. The resulting GUI can be used by non-engineering stakeholders. The Java
code needs to be written by engineers who understand both VDM and Java. Overture
VDMPP GUI automatically generates a simple UI to display state variables and push
buttons that invoke operations and functions without any GUI programming effort.

The Crescendo tool [3] is a co-simulation environment that bridges between phys-
ical model simulations and executable formal specifications written in VDM-RT. The
Crescendo tool has 3D animator of Continuous-Time simulation model. The users of the
Crescendo tool can be considered multidisciplinary in the sense that Continuous-Time
models are based on physical systems including differential equations while Discrete-
Event models are typically of computer domain expressed in VDM.

DisCo [13] is a simulator that combines a logical event level in formal specification
and graphical animation for agile development of games.

8 Discussion

Formal specifications serve as reliable references in the lightweight use of formal meth-
ods. Formal specifications can be a strong tool to organise domain knowledge from do-
main experts. Animation has a potential to enable collaboration for a diversity of stake-
holders who participate in development and use of formal specification when combined
with visualisations and programming languages. Figure 11 illustrates the relations be-
tween the different kinds of animation systems and expertise in software development.

VDMJ Smalltalk

SOMETHINGit
customers
and users

VDM animation

UI/UX design

UI designers

domain analysis

specification
VDM Engineers

Exploratory Spec
on

VDMPad

client
programs

UI sketch
on

Lively WT

Web API
on

Webly WT

web application

Diagrams
with animations
on Cloudly WT

Fig. 11. Animation systems and expertise in software development
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Animation with a graphical presentation is the key to having non-engineering stake-
holders participating in the development and use of formal specification. Lively Walk-
Through combines executable specifications with UI designs. UI designers may not
have formal engineering skills, but can interact with executable formal specifications
through animated UI prototypes. Cloudly Walk-Through visualises execution of spec-
ifications to have domain experts review formal specifications. Domain experts in this
context typically do not have formal engineering skills. Graphical presentations used
in the animation systems include casual diagrams, domain-specific diagrams, sketchy
UI designs and precise UI prototypes. One possible direction for future work is a col-
laboration with massive data visualisation/analysis techniques such as plots, graphs,
geometries and volume data.

An interface with programming languages is the key to expanding use of specifi-
cation animation to wider scenes of systems development. Webly Walk-Through com-
bines formal specifications with implementation code in order to build rapid prototypes.
SOMETHINGit, a foundation library of Lively Walk-Through, provides ability to eval-
uate VDM expression as a part of Smalltalk programs. These systems assume that users
have engineering skills and their tasks are thus more useful for software engineers. One
possible future work direction is to embed a formal specification and its interpreter into
runtime code so that the system can be debugged referring to the specification with
regard to the suspicious execution context at hand.

9 Concluding Remarks

In this paper, three animation systems, Lively Walk-Through, Cloudly Walk-Through
and Webly Walk-Through have been introduced as tools to extend the reach of formal
specification towards stakeholders other than formal engineers. They are all derived
from the sources of VDMPad but have different objectives and target users. As systems
development requires cross-disciplinary collaborations, a media for communication be-
tween formal engineers and other stakeholders is needed. The three systems are our
attempt to design such communication media using animation mechanism of VDM-
SL.

The three systems have not yet been used in practical developments. However, we
hope to have opportunities to apply them in industrial projects in the future. We also plan
to elaborate further on usage of animation in additional phases of software development.
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Abstract. Tools are needed that overcome the barriers preventing development
teams using formal verification technologies. We present our work integrating
PVSio-web with the Overture development and analysis environment for VDM.
PVSio-web is a graphical environment for modelling and prototyping interactive
systems. Prototypes developed within PVSio-web can closely resemble the vi-
sual appearance and behaviour of a real system. The behaviour of the prototypes
is entirely driven by executable formal models. These formal models can be gen-
erated automatically from Emucharts, graphical diagrams based on the Statechart
notation. Emucharts conveniently hides aspects of the formal syntax that create
barriers for developers and domain experts who are new to formal methods. Here,
we present the implementation of a VDM-SL model generator for Emucharts.
An example is presented based on a medical device. It demonstrates the bene-
fits of using Emucharts to develop a formal model, how PVSio-web can be used
to perform lightweight formal analysis, and how the developed VDM-SL model
generator can be used to produce a model that can be further analysed within
Overture.

Keywords: Prototyping, VDM-SL, PVSio-web.

1 Introduction

Formal verification technologies can help developers to discover design problems early
in the development process of safety critical systems. These technologies, however,
usually require significant mathematical sophistication, and many developers perceive
this as a barrier that overweighs the advantages of using such tools.

PVSio-web [1,2] is a new research tool developed to ease the use of formal methods
technologies when developing safety-critical interactive systems, i.e., ones that involve
interaction between devices and human users. It provides a graphical environment that
allows developers to rapidly generate interactive prototypes resembling the visual ap-
pearance and behaviour of the real system (see Figure 1). Underneath the interface, the
? Corresponding author.
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Fig. 1: Screenshot of the PVSio-web graphical environment while creating an interac-
tive prototype based on a formal model.

tool uses advanced formal methods technologies for modelling and analysis. PVSio-
web has been successfully used to demonstrate previously undetected design flaws in
medical devices [3], and to clarify the causal relationships between user interface issues
and software defects [4].

In its current implementation, PVSio-web builds on the PVS [5] theorem proving
system for modelling and analysis. However, the architecture of PVSio-web is general,
and allows one to link the environment with other formal methods tools.

We report on our work on integrating PVSio-web [1] with the Overture [6] devel-
opment and analysis environment for VDM. This benefits both PVSio-web and Over-
ture users. PVSio-web users gain direct access to an extensive set of tool features and
case studies developed by the VDM community. Overture users gain the modelling and
prototyping functionalities offered by PVSio-web, which enable: validation of formal
models with domain specialists before starting a verification process; demonstration
of formal analysis results to domain specialists in a way that is easy to comprehend;
lightweight formal analysis of user interfaces based on user-centered design methods.
Here, we focus on the integration of a core PVSio-web tool, the Emucharts editor,
with Overture. Using the Emucharts editor, developers can specify the behaviour of a
PVSio-web prototype using graphical diagrams, and automatically generate executable
PVS models from these diagrams. We have successfully extended the Emuchars editor
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to enable generation of VDM models. This basic integration already opens several ex-
citing options, including automatic translation of VDM models from/to PVS, as well
as means to explore the behaviour of VDM models using PVSio-web prototypes. The
contributions are:

– A new PVSio-web extension for generating executable VDM specification lan-
guage (VDM-SL) models.

– An example application based on a medical device. A formal model of the device
is specified using a graphical Emucharts diagram that hides aspects of the formal
syntax; then, a device prototype based on the Emucharts is generated that enables
lightweight formal analysis; finally, a VDM-SL model is generated from the same
Emucharts, enabling full formal analysis in Overture.

Related Work. VDMPad [7, 8] is a web-based integrated development environment
for developing VDM-SL models. The tool provides: a textual model editor for view-
ing and editing models; a model animator for model debugging and testing. The tool
supports the exploratory development of formal models, allowing lightweight formal
analysis and permissive checking. In contrast to VDMPad, PVSio-web is specifically
designed for modelling and analysis of interactive (human-computer) systems. Our tool
thus offers functionalities for generating realistic interactive prototypes that can closely
resemble the visual aspect and behaviour of a real system. The behaviour of these proto-
types is based on formal models executed within the PVSio [9] animation environment
of PVS. SCR [10] and B-Motion Studio [11] are also related work in that both tools
provide a way to obtain graphical prototypes from formal models. Using SCR, one can
formally specify the behaviour of a system, use visual front-ends for demonstrating
the system behaviour based on the specifications, and use a group of formal methods
tools for the analysis of system properties. With B-Motion Studio, one can create sim-
ple graphical visualisations based on Event-B models. SCR and B-Motion Studio are,
however, not integrated with Overture. In addition, these tools lack specialised func-
tionalities needed for the analysis of user interfaces (e.g., deployment of prototypes on
mobile devices, and logging of user interactions).
Organisation. The remainder of the paper is organised as follows. We first overview
the PVSio-web Emucharts Editor in Section 2. The core of the paper, illustrating a
VDM-SL model generator for Emucharts, is presented in Section 3. We then give,
in Section 4, a small example with a medical device. The example illustrates how
Emucharts can be conveniently used to develop a formal model of the data entry system
of the device (in subsection 4.2), how PVSio-web supports lightweight formal analysis
(in subsection 4.3), and how the developed VDM-SL model generator can be used to
produce an executable VDM-SL model that can be further analysed within Overture
(in subsection 4.5). Finally, Section 5 provides a number of concluding remarks and
indicates the future plans with this work.

2 Emucharts Editor

The PVSio-web Emucharts Editor is a tool for developing models of interactive sys-
tems. Models are specified using graphical diagrams called Emucharts, based on Stat-
echarts [12]. Figure 1 shows a snapshot of the Emucharts Editor in use developing a
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diagram specifying the behaviour of a medical device. Using the Emucharts Editor,
developers can:

– Draw labelled boxes representing states of the system. State labels are strings rep-
resenting the names of the different modes of the modelled system.

– Draw labelled arrows representing transitions between states. Transition labels are
in the form t [ cond ] { actions }. The transition name (t) is a sym-
bolic constant identifying the name of the modelled event. The transition condition
(cond) is a Boolean expression defining the circumstances under which the tran-
sition is taken. The transition actions (actions) are expressions defining how the
system state changes when the transition is taken.

– Define variables representing the structure of the system state. State variables are
tuples: (name, type, value, v0). Variable names are unique. Variable types can be
basic types (e.g., bool, int, real), or user-defined types (e.g., records, lists).
As in modern programming languages, a variable’s value can be retrieved by ref-
erencing the variable name, and can be updated using assignment expressions (the
assignment operator is :=). Each variable has an initial value, v0, given as the last
element of the tuple.

In the Emucharts Editor, a virtual palette provides the essential elements for draw-
ing the diagram (i.e., boxes and arrows), as well as tools for editing labels of diagram
elements, and erasing elements from the diagram. Variables, constants, and functions
are declared in a table called context, separately from the graphical diagram.

The Emucharts Editor was developed using the Model-View-Controller [13] design
pattern, which creates a clear separation between the graphical front-end of the tool, and
the logic for generating formal models. The editor, in fact, has two main components.
The first is a Visual Editor, which handles both interactions with the user when drawing
a diagram, and the look-and-feel of the graphical elements of the diagram. The second
element is a Model Generator, which allows developers to translate visual diagrams into
formal models.

In this work, we extend the Model Generator, and introduce a new module for pro-
ducing executable VDM-SL models that can be imported and analysed within Overture.

3 The VDM-SL Model Generator

Our VDM-SL model generator is for Emucharts diagrams representing deterministic
event-driven state machines. That is, the state machine has: a finite number of states,
each representing a mode of the modelled system; a finite set of transitions, each mod-
elling events that change the system state; and a single initial state, modelling the start-
ing state of the state machine. The state machine can be in only one state at a time, and
perform only one transition in each state for each possible input.

The rules for generating VDM-SL models from Emucharts diagrams are as follows,
and illustrated in an example in the next section:

– A VDM-SL module is generated for each Emucharts diagram. The name of the
module is the name of the Emucharts diagram.
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– A VDM-SL state block EmuchartState is generated for specifying the state
of the VDM-SL model. The record includes a field for each variable declared in
the Emucharts diagram. The name and type of each field is the name and type of
the variable from which the field has been generated. Two additional record fields,
current state and previous state, are also automatically generated: the
former represents the current machine state; the latter represents the previous ma-
chine state.

– A VDM-SL mk EmuchartState record constructor is available to initialise the
state of the VDM-SL model with the initial values of the variables declared in the
Emucharts diagram.

– A VDM-SL enumerated type MachineState is generated for each Emucharts
state. The enumerated type constants are the Emucharts state labels.

– A VDM-SL transition function of type EmuchartState → EmuchartState
is generated for each unique transition name in the Emucharts diagram. The func-
tion argument models the current state of the VDM-SL model. The function return
models the next state of the VDM-SL model after the execution of the transition
function.

– The body of each VDM-SL transition function is a sequence of conditional if-then-
else blocks. The Boolean expression used in each conditional block is the con-
junction of two elements: the transition condition specified in the transition label;
and a Boolean expression based on the current Emucharts state. The body of each
conditional block is a series of modifier expressions (mu(...)) that update the
current model state according to the transition actions specified in the diagram. The
modifier expressions are chained to each other using the let-in construct.

– A VDM-SL permission function of type EmuchartState → bool is gener-
ated for each function of the VDM-SL model. The body of the permission func-
tion is the disjunction of the Boolean expressions used in the top-level if-then-else
blocks that make up the body of the transition function.

– A VDM-SL operation is generated for each transition function.

4 Example

In this section we use PVSio-web to develop a device prototype that can be formally
analysed. The aim is to demonstrate that:

– Emucharts diagrams conveniently hide the technical details of formal languages,
and thus make formal verification technologies more accessible to non-experts of
formal methods.

– PVSio-web enables rapid generation of a realistic prototype that allows develop-
ers to perform an early evaluation of the device, when a physical prototype of the
device is not readily available.

– The VDM-SL model generator enables automatic generation of VDM-SL exe-
cutable models that can be formally analysed within Overture.

37

Integrating the PVSio-web modelling and prototyping environment with Overture



Fig. 2: Blueprint of an insulin pump with UP and DOWN buttons.

4.1 Description of the system

The considered system is an insulin pump used to treat type 1 diabetes. The device al-
lows its user to specify therapy parameters such as the amount of insulin to be injected to
keep the blood glucose level under control (bolus dose). The pump is battery-powered,
and is turned on by inserting a battery in to the device.

Its data entry system consists of two buttons (UP and DOWN) and a display — a
blueprint of the device is in Figure 2. Here, we focus on the behaviour of the device
only for data entry of bolus doses. When entering a bolus dose, a click on the UP button
increments the display value by 0•1. Similarly, a click on the DOWN button decrements
the display value by 0•1. The maximum bolus dose is 10 units.

In the following sub-sections, we develop an Emucharts diagram that models the
behaviour of this data entry system. The Emucharts diagram is used within PVSio-web
to drive the behaviour of an interactive prototype based on a PVS model (further details
about how these prototypes are generated can be found in [1, 2]). The same Emucharts
is then used to generate an executable VDM-SL model that can then be further analysed
within Overture.

4.2 Emucharts Diagram

An Emucharts diagram modelling the described behaviour of the device is shown in
Figure 3. The diagram includes two states, on and off, modelling whether the device is
powered on or off. The off state is the initial state. In the diagram, this is represented
using a default initial transition that enters the off state.

A transition turn on changes the device state from off to on. This models the action
of inserting a battery into the device. Similarly, a transition turn off changes the device
state from on to off. This models the action of removing the battery from the device, or
a depleted battery.

Two state transitions click UP model the behaviour of UP button clicks. One transi-
tion models button clicks when the display value is less than 10. In this case, the display
value is incremented by 0•1. The transition condition is therefore display < 10, and the
transition action specifies the new value of the display using the assignment expression
display := display + 1. The other transition is for handling the boundary case at 10. In
this case, a click on the UP button resets the display value to 0.

Two other transitions click DOWN model the behaviour of the DOWN button. One
transition is for values above 0, and decrements the current display value by 0•1. The
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Fig. 3: Snapshot of the Emucharts Editor while drawing a diagram modelling the be-
haviour of the data entry system described in sub-section 4.1.

other transition is for the boundary case at 0. In this case, a click on the DOWN button
changes the display value to 10 (this makes the behaviour of the DOWN button symmet-
ric with respect to the UP button).

Finally, a variable display is declared in the Emucharts context for modelling the
display value. The type of the variable is real, and the initial value is 0.

4.3 Generating and Analysing an Interactive Prototype

The behaviour modelled with the Emucharts diagram is now used as a basis to generate
a realistic prototype that resembles the look and feel of the final product. This prototype
enables lightweight formal analysis for early evaluation of the device behaviour.

The prototype is generated within PVSio-web using the Prototype Builder front-
end. This is done by loading a realistic picture of the device in the tool, and creating in-
teractive areas over the picture (see Figure 1). Three interactive areas are created in this
case. The first is for the display, and is associated to the Emucharts variable display.
Two more capture the user pressing the buttons in the picture of the device. These inter-
active areas translate the button presses into commands for animating the formal model
associated with the Emucharts diagram. This formal model is automatically generated
from the diagram, and executed within PVS [5] using its the native PVSio [9] animation
environment.

Once the prototype is generated, one can explore the formal model by clicking but-
tons of the device, seeing the results of the interactions on the device display (see Fig-
ure 4). Using the prototype, a lightweight formal analysis can be performed before start-
ing the full formal analysis. For example, one can perform an expert walkthrough [14]
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Fig. 4: The insulin pump prototype executed within PVSio-web.

of the device. It is a usability inspection method performed by human-computer inter-
action specialists for identifying issues with the user interface of a system. By exploring
the behaviour of the prototype, for example, the following conceptual issue can be eas-
ily identified with few exploratory input key sequences: when the display is 0 and the
down button is pressed, the display value rolls over to 10. This behaviour is unsafe, as a
single accidental button press while programming the bolus dose could lead to acciden-
tal overdoses [4, 15]. As a matter of fact, a real medical device on the market has been
recalled because of this design issue [16, 17].

It is worth noting that the prototype has been generated without a full model of
the system. Therefore, these prototypes can be generated at the early stages of device
development, allowing developers to identify conceptual design issues in advance, and
fix them before committing to potentially expensive design decisions.

4.4 Generating a VDM-SL Model

The newly developed VDM-SL model generator is now used to generate a VDM-SL
model from the same Emucharts diagram used for the interactive prototype. The gener-
ated model can be imported within Overture for further formal analysis (type checking,
analysis of proof obligations, generation of test cases, etc.). The steps illustrated in Sec-
tion 3 are now illustrated for the diagram. The full VDM-SL model generated from the
diagram is given in the Appendix.

The VDM-SL model generator creates the type definitions first. An enumerated type
MachineState is generated that includes two enumerated constants, one for each state
represented in the Emucharts diagram.�
MachineState = <off> | <on>;
� �

Listing 1.1: MachineState type
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A state block EmuchartState is then generated that includes: a field display of
type real, which models the variable defined in the Emucharts context; two fields cur-
rent state and previous state of type MachineState, which store information about the
current and previous active state of the state machine.�
state EmuchartState of

current_state: MachineState
previous_state: MachineState
display: real
� �

Listing 1.2: VDM-SL model state

A function init is then generated that defines the initial model state. The initial value
of the display is 0, the initial value of the current state is <off >, as specified in the
Emucharts context.�
init s == s = mk_EmuchartState(<off>, undefined, 0)
� �

Listing 1.3: VDM-SL initial state

Functions representing transitions of the state machine are then generated. Transi-
tion functions with the same name are automatically merged into the body of a single
VDM-SL function. For example, a single function click UP is generated that models
the two click UP transitions specified in the Emucharts diagram.

The body of the generated VDM-SL function is, at the top level, a series of if-
then-else statements. Each conditional statement is generated from a transition function
included in the diagram. The Boolean expressions used in the conditional statement
are based on both the transition conditions specified in the transition labels, and on the
structure of the diagram (in particular, information about which state the transition is
leaving from). For example, a Boolean expression generated for the click UP function
is s.current state = <on> and s.display < 10, as the arrow representing the transition
leaves the on state, and the label of the transition includes a condition display < 10.�
click_UP: EmuchartState -> EmuchartState
click_UP(s) ==
if (s.current_state = <on>) and (s.display < 10) then ...
elseif (s.current_state = <on>) and (s.display = 10) then ...
else undefined
� �

Listing 1.4: VDM-SL transition function (overall structure)

The body of each conditional block is then generated. Each block always starts with
function leave state. This is an auxiliary function that updates field previous state
of the VDM-SL model state with the label of the state that the transition leaves. Each
block ends with another auxiliary function, enter into, that updates current state
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with the label of the state that the transition enters. The actions specified in the Emucharts
diagram are state updates, therefore they are translated using the VDM-SL mu opera-
tor. Consider transition click UP relative to the case when the display is less than 10.
The transition leaves and enters the same state (<on>), and the action specifies that the
display value is incremented by 0.1 when the transition is executed.�
... let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> s.display + 0.1 )
in enter_into(<on>, new_s) ...
� �

Listing 1.5: VDM-SL transition function (example state update)

Finally, permission functions are automatically generated by the VDM-SL model
generator to restrict the domain of the VDM-SL transition function, and thus enable ver-
ification of pre- and post-conditions. For example, the permission function for click UP
returns the disjunction of all conditions used in the body of the click UP function. This
makes the domain of function click UP explicit, and is used by the VDM interpreter to
perform essential sanity checks related to how the function is used in the model.�
per_click_UP: EmuchartState -> bool
per_click_UP(s) ==

((s.current_state = <on>) and (s.display < 10)) or
((s.current_state = <on>) and (s.display = 10));
� �

Listing 1.6: VDM-SL permission function

4.5 Analysis in Overture

We now carry out an analysis of the generated VDM-SL model using two features of
Overture: Proof Obligation Generation and Combinatorial Testing [18].

Overture generates Proof Obligations for a VDM model to ensure the internal con-
sistency of the model. Example checks involve assessing the legal use of types and
functions in the model. Besides validating core aspects of the semantics of the VDM-SL
model, in our case the analysis is also useful for validating the correct implementation
of the VDM-SL model generator. Applying the Proof Obligation Generator to the gen-
erated model yields four proof obligations, all of them ensuring legal application of the
various state transition functions. For example, for the VDM-SL operation representing
transition turn on, a proof obligation is generated (see Listing 1.7) to ensure that func-
tion turn on is correctly used according to its permission. This proof obligation, as
well as the others generated for this example, are trivially true, thus confirming that the
generated model is well-formed.�
pre_turn_on(EmuchartState) => pre_turn_on(EmuchartState)
� �

Listing 1.7: Sample proof obligation to ensure correct use of functions.
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Fig. 5: The Overture Combinatorial Testing feature.

The Overture Combinatorial Testing tool generates test cases for the formal model
from traces, allowing one to quickly specify and execute multiple usage scenarios. This
can be extremely useful for validating the behaviour of the model against device pro-
totypes or the final product. In Overture, test cases are specified using a trace notation
that is akin to regular expressions. In Listing 1.8 we show an example trace for the
model developed in the previous sections. It specifies that test cases are generated to
explore the following use case: the device is turned on; then, the up and down buttons
are randomly pressed 10 times; and then, the device is turned off. This trace expands to
1024 test cases that ensure all combinations of up and down are explored. The results
for execution of this combinatorial test trace (and others) are shown in Figure 5. Most
tests pass except for 13 which are inconclusive due to violated pre-conditions on the
outside test calls such as attempting to turn off a device that is already off (note also
that 4 tests are skipped because they share a sequence of calls with an inconclusive test
and thus are pointless to execute).�
traces

UpDown10:
transition_turn_on();
(transition_click_UP() | transition_click_DOWN()) { 10 };
transition_turn_off();
� �

Listing 1.8: Sample regular expression.
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5 Concluding Remarks

We have illustrated the results achieved to date on integrating PVSio-web with the Over-
ture platform. The integration allows developers to automatically generate VDM-SL
models from a state machine description created using the PVSio-web Emucharts Edi-
tor. Formal models are thus created without the developer having a deep understanding
of the VDM syntax. Also, because the Emucharts Editor incorporates model genera-
tors for other formal languages (PVS [5], MAL [19], PIM [20]), the developed tool
can be conveniently used to translate VDM-SL state machine models from/to these
other formal languages. Future work will extend this initial integration to give Overture
and PVSio-web users even more benefits. For example, we plan to further extend the
semantics supported by the model generator, e.g., to support diagrams specifying non-
deterministic choices, and hierarchical state machines. Another extension relates to the
ability of importing VDM models that are manually crafted by developers. This will
ease reuse of models and examples already developed by the VDM community. Besides
the Emucharts Editor, we plan to integrate two other components of PVSio-web with
Overture. One component is the PVSio-web Prototype Builder, which handles the exe-
cution of prototypes developed within PVSio-web. The current implementation of this
component uses PVSio as execution environment. We will link the Prototype Builder
to the Overture interpreter. This will allow Overture users to send commands to the
Overture interpreter by interacting with realistic prototypes resembling the real system
being modelled, rather than by typing commands in the Overture interpreter console.
The other component is the PVSio-web Co-Simulator, which enables integrated sim-
ulation of models developed using different modelling and analysis tools. We aim to
explore how this component can be integrated with the VDM tool Crescendo [21] for
collaborative modelling and simulation. Further work is also needed to determine how
best to incorporate PVSio-web within future releases of Overture.
Acknowledgments. This work is part of CHI+MED (EPSRC grant EP/G059063/1).
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Appendix: Full VDM-SL Model�
module emucharts_MedtronicMinimed530G_VDM
exports all
definitions

types
-- machine states
MachineState = <off> | <on>;
-- emuchart state
state EmuchartState of

current_state: MachineState
previous_state: MachineState
display: real

-- initial state
init s == s = mk_EmuchartState(<off>, undefined, 0) end

functions
-- utility functions
enter_into: MachineState * EmuchartState -> EmuchartState
enter_into(ms, s) == mu(s, current_state |-> ms );
leave_state: MachineState * EmuchartState -> EmuchartState
leave_state(ms, s) == mu(s, previous_state |-> ms );

-- transition functions
per_turn_on: EmuchartState -> bool
per_turn_on(s) == ((s.current_state = <off>));
turn_on: EmuchartState -> EmuchartState
turn_on(s) ==

if (s.current_state = <off>)
then let new_s = leave_state(<off>, s)

in enter_into(<on>, new_s)
else undefined

pre per_turn_on(s);

per_turn_off: EmuchartState -> bool
per_turn_off(s) == ((s.current_state = <on>));
turn_off: EmuchartState -> EmuchartState
turn_off(s) ==

if (s.current_state = <on>)
then let new_s = leave_state(<on>, s)

in enter_into(<off>, new_s)
else undefined

pre per_turn_off(s);

per_click_DOWN: EmuchartState -> bool
per_click_DOWN(s) == ((s.current_state = <on>) and (s.

display > 0)) or ((s.current_state = <on>) and (s.
display = 0));

click_DOWN: EmuchartState -> EmuchartState
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click_DOWN(s) ==
if (s.current_state = <on>) and (s.display > 0)
then let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> s.display - 0.1 )
in enter_into(<on>, new_s)

elseif (s.current_state = <on>) and (s.display = 0)
then let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> 10 )
in enter_into(<on>, new_s)

else undefined
pre per_click_DOWN(s);

per_click_UP: EmuchartState -> bool
per_click_UP(s) == ((s.current_state = <on>) and (s.display

< 10)) or ((s.current_state = <on>) and (s.display=10));
click_UP: EmuchartState -> EmuchartState
click_UP(s) ==

if (s.current_state = <on>) and (s.display < 10)
then let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> s.display + 0.1 )
in enter_into(<on>, new_s)

elseif (s.current_state = <on>) and (s.display = 10)
then let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> 0 )
in enter_into(<on>, new_s)

else undefined
pre per_click_UP(s);

operations
transition_turn_on: () ==> ()
transition_turn_on() == EmuchartState := turn_on(

EmuchartState)
pre pre_turn_on(EmuchartState);

transition_turn_off: () ==> ()
transition_turn_off() == EmuchartState := turn_off(

EmuchartState)
pre pre_turn_off(EmuchartState);

transition_click_DOWN: () ==> ()
transition_click_DOWN() == EmuchartState := click_DOWN(

EmuchartState)
pre pre_click_DOWN(EmuchartState);

transition_click_UP: () ==> ()
transition_click_UP() == EmuchartState := click_UP(

EmuchartState)
pre pre_click_UP(EmuchartState);

end emucharts_MedtronicMinimed530G_VDM
� �
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Extending the Overture code generator towards Isabelle
syntax

Luı́s Diogo Couto and Peter W. V. Tran-Jørgensen

Department of Engineering, Aarhus University, Denmark
{ldc,pvj}@eng.au.dk

Abstract. Overture has a Code Generation Platform (CGP), designed with ex-
tensibility in mind but this extensibility has never been thoroughly tested before.
In this paper, we explore the extensibility of the Overture CGP by developing
code generation support targeting an Isabelle embedding of VDM. We compare
our solution to an existing hand-coded VDM to Isabelle translation based on di-
rect traversals of the VDM AST and show that using the CGP led to a decrease
in code volume of 86%. We also report various extensibility improvements that
have been incorporated into the CGP as part of our work.

Keywords: VDM, code generation, Isabelle, extensibility

1 Introduction

The Overture tool1 for VDM [6] has a Code Generation Platform (CGP) that was origi-
nally developed targeting the Java language but was designed with extensibility in mind.
The intent of the CGP is to make it easy to contribute new Code Generation (CG) sup-
port for new languages to Overture [12]. Currently, the CGP supports the original Java
code generation as well as an experimental generation of C++. The extensibility fea-
tures of the CGP have never been thoroughly tested since C++ generation is similar to
Java generation.

In this paper, we further explore the extensibility of the CGP by developing exper-
imental support for generation of Isabelle syntax, which differs from Java more signif-
icantly than C++ does. The reason for this is that Java and C++ are both imperative
OO languages and Isabelle is not. The process for developing this translation is also
generalised into a standard methodology for developing CGP extensions.

There are two reasons for choosing Isabelle: there is already a usable existing em-
bedding of VDM in Isabelle that we can reuse and a corresponding translation that runs
on Overture models [3]. This translation was handwritten and as such will provide a
good basis of comparison to see if it is really worthwhile to use the CGP. The compar-
ison shows that using the CGP leads to a code volume reduction of 86%.

The remainder of this paper is structured as follows: the code generation platform as
well as the existing Isabelle embedding and translation are described in section 2. The
steps taken by the developer to construct the new CG extension are described in sec-
tion 3. Relevant details of the Isabelle translation are discussed in section 4. The results

1 http://overturetool.org
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of the work in terms of the new Isabelle translation and extensibility improvements to
the CGP are reported in section 5 and evaluated in section 6. Finally, we discuss future
work in section 7 and conclude in section 8.

2 Background

2.1 Isabelle Embedding
This subsection presents the target language of the translation: an Isabelle embedding of
VDM. Isabelle [13] is a framework for implementing logical formalisms and the VDM
embedding being targeted is one such formalism. It was originally developed for the
COMPASS Modelling Language (CML) [15] in the COMPASS project [7] and is built
on an Isabelle mechanisation [8] of the UTP semantics used for CML [10].

CML is a combination of VDM and CSP [9]. In particular, the types, values, ex-
pressions and functions of CML are lifted from VDM. State is similar although it is
handled somewhat differently – state in CML is composed of multiple independent
variables much like VDM++ rather than a single record structure. Additionally, CML
does not support the let be st construct due to its non-deterministic nature. The
remaining differences between CML and VDM are related to the reactive and Object
Oriented (OO) features of the language. Neither are relevant for this translation.

The Isabelle embedding of CML/VDM is a deep embedding, which means that it
gives an explicit semantics to each construct of CML/VDM in Isabelle. In other words,
rather than translating from VDM to another formalism, each construct in VDM is
defined in the embedding and then given a semantics using formalisms available in
Isabelle – specifically, higher-order logic.

Furthermore, the parsing capabilities of Isabelle give significant flexibility when
defining the syntax of the VDM constructs in the embedding. The end result is that the
embedding has its own syntax which is quite similar to that of the VDM language itself.
The primary differences lie in separator characters such as " to distinguish between
Isabelle and VDM syntax, ˆ to identify VDM variables and @ to identify VDM types.

In addition to the syntactical similarities there is also a near one-to-one correspon-
dence between constructs in the source and target languages which facilitates the trans-
lation process. However, while CML has OO features the embedding does not support
OO so it is suitable for representing VDM-SL models only.

Finally, we briefly describe the manually written existing translation, based on the
visitor framework of the Abstract Syntax Tree (AST). The translation visitors traverse
the AST and produce an intermediate data structure used to store relevant translation
information for each node including its syntax and dependencies. Afterwards, the data
structure is used to generate the Isabelle syntax, either with direct conversion to strings
or with auxiliary methods and classes for the processing of more complex nodes. Fur-
ther details about the existing Isabelle translation as well as the embedding are available
in [7].

2.2 Code Generation Platform
The reason for using the CGP, and what makes it a viable solution for developing code
generators, is found in the way the CGP represents and works with the generated code.
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From the VDM AST the CGP constructs an Intermediate Representation (IR) of the
generated code, which forms a tree structure that is independent of any particular target
language.

Initially, each node in the IR has a one-to-one correspondence to a node in the
VDM AST. Subsequently, the IR is subjected to a series of transformations in order to
change the tree structure into a new form that is easier for a particular code generator to
produce code from. More specifically, each transformation represents a rewriting of the
IR with the purpose of changing the IR into a form where each node in the resulting tree
structure maps easily into the target language. One advantage of this approach is that
transformations operate directly on the IR, and therefore they can be shared among code
generators. As an example, the Java and C++ code generators use many of the same
transformations to eliminate functional-styled constructs in the IR such as quantified
expressions and collection comprehensions.

The IR is generated from an AST specification file using the AstCreator tool [1].
In addition to the IR nodes, the AstCreator also generates mechanisms to walk the
tree using visitors [5] as well as functionality to change the tree structure by allowing
parts of it to be replaced. Transformations are themselves implemented as extensions to
the visitors generated by the AstCreator. What characterises a transformation is that in
addition to traversing the tree structure, it also manipulates it.

After the IR has been fully transformed, it is handed over to a language-specific
backend generator in order to finalise the code generation process. The CGP provides
a framework for syntax generation that serves to facilitate production of code in the
target language. This framework is based on the Apache Velocity template engine and
used for mapping each node in the IR into concrete syntax [14]. This is handled by
the template manager, which associates each type of IR node to a template file, that
describes the code to be produced.

Code generators extending the CGP may need extra nodes in addition to those al-
ready defined by the platform. Therefore, the CGP allows new nodes to be added via
the AstCreator extension mechanism [4]. This mechanism allows the AstCreator to
produce nodes and visitors that allow construction and traversal of hybrid trees, .i.e.
tree structures composed of both IR nodes defined within the CGP and new nodes con-
tributed via an AST specification extension file. In addition to adding new nodes, the
CGP also allows existing IR nodes to be extended to include new fields. Finally, the
template manager can be redefined to support syntax generation of new nodes added by
the user.

3 Methodology

Based on the description of the CGP in subsection 2.2 we now outline the steps used to
develop the Isabelle syntax generator. These steps constitute a general methodology for
development of code generation support in Overture using the CGP. Others who want
to use the CGP to develop code generation support for another target language may
benefit from following these steps.

We start out by listing the steps to be carried out by the developer and afterwards
we elaborate on each of them.
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1. Set up the CGP extension
2. Add new nodes
3. Transform the IR
4. Generate syntax
5. Validate the translation

The first step in the process is only necessary once. The remaining steps are done
in an iterative manner. The approach is to start with a very small VDM example and go
through the steps until the example is completely translated. Afterwards, the example
should be expanded as little as possible and the steps repeated. This is done iteratively
until the new CGP extension is complete.

Step 1 - Set up the CGP extension: Broadly speaking, the setting up of the CGP
extension consists of subclassing the base code generator class – CodeGenBase –
that is the common extension point of the CGP. The base code generator is responsible
for driving the code generation and providing access to the IR and various settings. It
is also responsible for storing data used and generated throughout the code generation
process.

Next, it is necessary to construct a new template manager for the extension. This
can be done by subclassing the base template manager. This will provide access to the
basic CGP template structure which manages an initial collection of template locations.
If additional template locations are necessary, the template manager can be used to
configure them.

Finally, it is worth setting up a basic test infrastructure to drive the development
process. This test infrastructure is responsible for processing a VDM source, passing
the respective AST to the code generator and validating the translation outcome.

Step 2 - Add new nodes: If the target language construct being translated is sufficiently
different from those of the base IR, then it is likely that a code generator needs extra
nodes. If necessary, these can be provided by extending the IR as described in subsec-
tion 2.2. Once the extension is defined, the AstCreator tool must be invoked in order to
generate the extension nodes.

Step 3 - Transform the IR: Constructs that are not supported by the code generator need
to be transformed away, using either base IR nodes or extended nodes generated in the
previous step. This is done by implementing one or more necessary transformations. It
is recommended that transformations be as small as possible so that each transforma-
tion only changes the IR in terms of one concept such as removing comprehensions or
reordering definitions.

Step 4 - Generate syntax: Once the IR is in a form suitable for code generation, syntax
can be generated using the syntax generation framework of the CGP. This is done by
creating the Apache Velocity template files for each of the nodes that is to be translated
and updating the template manager accordingly.
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Step 5 - Validate the translation: Validation of the translation should be done by
means of the test infrastructure by comparing the translation output to a reference. Al-
ternatively, executable translated code may also be compiled and executed to ensure
it produces the right result. This test should then be stored to use as regression in the
continued development of the CGP extension.

4 Translations and Transformations

The Isabelle embedding we are targeting is very similar to VDM in the sense that most
constructs in VDM are present in the embedding. As such, the initial version of the
IR is already close to what is needed for generation – most nodes in the IR already
map directly to a construct in the target language. Therefore, there is a relatively small
number of operations that need to be performed over the tree.

The first set of operations is also the simplest and most common: direct syntax trans-
lations. These translations can be applied directly to the initial IR nodes that already
map directly to a construct in the embedding. A few of them are shown in Table 1.
These translations take advantage of the fact that the Isabelle embedding of VDM de-
fines its own syntax which is quite close to that of VDM. In general, the syntax is the
same as that of source VDM, except for the following:

– all constructs are delimited by " to identify them as user-defined syntax in Isabelle
– variables names are delimited by ˆ to mark them as model variables
– types are prefixed by @ to mark them as model types
– string literals are delimited by ’’

VDM Isabelle embedding
x "ˆxˆ"
int "@int"
f(1) "f(1)"
"foo" "’’foo’’"
if b then s1 else s2 "if ˆbˆ then ˆs1ˆ else ˆs2ˆ"

Table 1: VDM constructs and their Isabelle embedding counterparts.

To achieve these translations, all that is necessary is to specify the target syntax
in the Velocity templates and the CGP handles everything else. Most templates are
simple since most translations only need to add minor pieces of Isabelle syntax. A
few translations require some extra logic – for example, sequences of type char are
handled differently from all other sequences – and this is achieved through a handful of
auxiliary static methods callable from within the template engine.

The second set of operations consists of tree transformations, of which the first is
reordering of definitions. Isabelle does not allow forward referencing in its definitions
so any dependency of a definition must be processed before the definition itself. When
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generating syntax, the CGP processes definitions in the IR in the order in which they
appear so it is necessary to reorder the IR nodes according to their dependency relation.
For example, consider the VDM functions shown in Listing 1.1. The initial IR generated
for this example would have to be re-ordered as shown in Figure 1.

�
1 f : int -> int
2 f (x) == if x = 0 then 0 else g(x);
3
4 g : int -> int
5 g (x) == x/x;
� �

Listing 1.1: A simple forward dependency example.

Root

f g

Transformation

Root

g f

Fig. 1: Dependency sorting transformation.

Dependency sorting is implemented as a CGP transformation that takes an IR mod-
ule node (the top level element of the IR), constructs a dependency graph of its defini-
tions and then applies a topological sort algorithm [2].

The final operation over the IR is also related to dependency handling, specifically
the dependencies between mutually recursive functions. Isabelle can cope with mu-
tually recursive functions but these must be identified as such and grouped together
for processing.2 In order to provide grouping of mutually recursive functions, we con-
struct another transformation that constructs a dependency graph for the function defi-
nitions and afterwards applies an algorithm for computing strongly connected compo-
nents [11]. Thus, the VDM functions in Listing 1.2 would be transformed as shown in
Figure 2.

2 Although Isabelle supports them, the VDM embedding cannot currently cope with mutually
recursive functions. However, we have implemented the transformation nonetheless as it was
a good way to test the extensibility of the CGP.
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�
1 odd: nat -> bool
2 odd (x) == if x = 0
3 then false
4 else even(x-1);
5
6 even : nat -> bool
7 even (x) == if x = 0
8 then true
9 else odd(x-1);
� �

Listing 1.2: A simple example of mutual recursion.

Root

f g

Transformation

Root

MutRecGroup

f g

Fig. 2: Mutual recursion grouping transformation.

It is worth noting that the base IR module node does not support mutual recursion
groups. As such, we extended the IR to add a new field for it. The mutual recursion
transformation takes a base module node as its input and produces an extended module
node.

5 Results

5.1 New Isabelle Generation

This section presents the translation from VDM to Isabelle. The translation is demon-
strated by means of a complete example, shown in Listing 1.3. Much of the translation
is straightforward syntax conversion, however, the example demonstrates the two main
issues discussed in section 4: reordering definitions due to dependencies and grouping
mutually recursive functions.
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Functions g() and f() shown in lines 3-7 of the VDM model are translated to
functions f() and g() in the Isabelle embedding shown in lines 5-13. Note that the
two functions have changed to that f() comes before g() in the Isabelle source. This
is because f() is a dependency of g() and so must be processed first.

Functions odd() and even() shown in lines 9-17 of the VDM model are also
translated to functions in the Isabelle embedding, shown in lines 15-31. However, the
functions in the embedding are delimited by the begin mutrec and end mutrec
keywords which identify them as a block of mutually recursive functions. In Isabelle,
such functions must be delimited as they are processed together.

5.2 Code Generation Extensibility Improvements

In addition to constructing the new extension, a series of improvements to the extensi-
bility of the CGP were also carried out. The first set of extensibility improvements had
minor impact on the CGP and was related to changing the visibility of various classes
and class members. Prior to this work, we were uncertain of which parts of the CGP
needed to be exposed to extensions. While it would have been possible to simply expose
everything, that would make the CGP too complex to use. By carrying out this work we
were able to discover which features to expose and were able to safely keep the rest
encapsulated inside the CGP.

As an example of the above, the template manager has a field that defines the folder
structure used so store template files. This field was not visible to extensions and that
forced an extension to follow the same structure as the base CG with no ability to rede-
fine it. By making the field visible to subclasses, it became possible for each extension
to define its own template folder structure.

The second change to increase extensibility had greater impact on the design of
the CGP and was related to transformation application. Originally, the CGP was only
capable of transforming the internal part of a node. In other words, the root node of
the tree could not be changed. This was insufficient for our extension because it was
necessary to have a different class at the root of the tree. To address this, the CGP was
modified to support transformations that convert between different node types at the
root of the tree and thus it became possible to perform transformations between any
two arbitrary trees. This new kind of transformation was named total transformation
and the existing ones were preserved as partial transformations. One advantage of the
partial transformation is that it can rely on the root node of the tree to remain the
same and know what kind of node it is. This reduces the amount of conversions that
are required to perform the transformation. The total transformation is more powerful
but will always take as input and produce as output a generic tree node. The CGP was
enriched with functionality to help cope with this by converting between generic and
specific root nodes via the adapter pattern [5].

6 Evaluation

To assess the effectiveness of using the CGP for Isabelle translation, a simple compar-
ison of volume – measured in Lines of Code (LoC) – was performed between the two
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�
1 functions
2
3 g : nat -> nat
4 g (x) == f(x);
5
6 f : nat -> nat
7 f (x) == x;
8
9 odd: nat -> bool

10 odd (x) == if x = 0
11 then false
12 else even(x-1);
13
14 even : nat -> bool
15 even (x) == if x = 0
16 then true
17 else odd(x-1);
� �

(a) VDM model.

�
1 theory A
2 imports utp_cml
3 begin
4
5 cmlefun f
6 inp x :: "@nat"
7 out "@nat"
8 is "ˆxˆ"
9

10 cmlefun g
11 inp x :: "@nat"
12 out "@nat"
13 is "f(ˆxˆ)"
14
15 begin_mutrec
16
17 cmlefun odd
18 inp x :: "@nat"
19 out "@bool"
20 is "if (ˆxˆ = 0)
21 then false
22 else even((ˆxˆ - 1))"
23
24 cmlefun even
25 inp x :: "@nat"
26 out "@bool"
27 is "if (ˆxˆ = 0)
28 then true
29 else odd((ˆxˆ - 1))"
30
31 end_mutrec
32
33 end
� �

(b) Isabelle translation.

Listing 1.3: VDM model and respective Isabelle translation.

versions. LoC is an imperfect measure of volume and does not particularly capture ef-
fort or productivity. However, it can be effectively and accurately measured and does
provide a reasonable measure of the size of an implementation, which is sufficient for
our comparison.

Table 2 presents a summary of results. In this table, Manual refers to the origi-
nal visitor-based translation and CGP refers to the translation we have implemented.
The comparison does not consider components from the original translation that are re-
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sponsible for processing CML-exclusive elements that have no counterpart in VDM. To
facilitate comparison, we have broadly grouped the sources of both versions into three
groupings:

data Refers to classes implementing the intermediary data representation between source
and target syntax

process Refers to classes that are used to help process or analyse the intermediary
representation

syntax Refers to classes that provide or define the target syntax for final translation
printing

Manual CGP ∆LoCabs ∆LoCrel

data 981 27 954 97.25%
process 2427 538 1889 77.83%
syntax 1395 86 1309 93.84%

Total 4803 651 4152 86.45%

Table 2: Volume comparison between translation implementations measured in LoC.

Looking at the data in Table 2, it is clear that utilising the CGP allows for an imple-
mentation with much less volume – a reduction of 86%. There are gains in every group-
ing but the largest ones are in the internal representation – 97%. This is because the
Manual version utilises a handwritten data structure, whereas the CGP version reuses
the IR and the only code necessary is that for defining the necessary data extensions.
Likewise, most of the machinery for processing both the source language and the IR is
reused from the CGP. Particularly, the construction of the IR from the source AST is
handled entirely by the CGP. The syntax grouping is also much smaller in the CGP ver-
sion – a reduction of 93% –since it uses the template engine in the CGP which allows
for significantly more concise expression of syntax.

7 Future Work

In the future, there are two main avenues for improving this work: the translation itself
and the extensibility of the CGP. Beginning with the translation, the most immediate
improvement is to expand the coverage of VDM constructs. This is to some extent tied
to the support of the embedding but there is a significant number of supported con-
structs that are not translated. For most of these it is only a matter of adding the relevant
templates, although there is also the matter of making the dependency calculator more
generic, which should not present a problem.

On the topic of the embedding, it would be worthwhile to switch to a pure VDM
embedding. While the similarities between CML and VDM make the current embed-
ding suitable for an initial translation, it would be beneficial to migrate to a dedicated
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embedding for VDM that could be maintained and evolved separately as necessary.
Furthermore, the current embedding contains multiple definitions supporting the reac-
tive aspects of CML that are unnecessary from a VDM perspective. Finally, a dedicated
VDM embedding would allow for syntax that is even closer to that of VDM. Work is
already underway on adapting the CML embedding into a pure VDM one.

Returning to the translation, there is a potentially problematic issue in that it is only
possible to generate syntax for all definitions of the same kind together in one pass. This
is a problem when needing to print definitions of various kinds according to the order of
dependencies. The issue is related to the IR being structured as lists of definitions of the
same kind. It would need to be altered to support generic definition lists – for example,
type and function definitions would be stored in the same list.

In terms of translation, it would also be worthwhile to translate proof obligations
along with the model thus allowing them to be discharged in Isabelle. The proof obli-
gations are encoded as ASTs using only the expression subset of VDM. Therefore it
should be possible to translate them with the existing machinery and require only some
additional syntax to turn them into proof goals for Isabelle.

With regards to the CGP itself, the work presented in this paper has suggested two
improvements to be carried out. The first is an architectural refactoring of the CGP. At
the moment the CGP is directly tied to the Java code generator and that component must
be reused as part of reusing the CGP. While this does not limit the ability to construct
new extensions, it does expose a significant amount of Java-related functionality that
is not necessary. Therefore, it would be beneficial to refactor the code generator into
a core component that provides the CGP and a javacg component that provides code
generation to Java.

Another improvement is related to transformations of the IR. Currently, a new ex-
tension must provide all of its transformations and develop them from scratch. It stands
to reason that some translations are required for multiple extensions – for example, de-
pendency sorting may be needed in other target languages – so it would be beneficial to
reuse existing transformation. However, most transformations make assumptions about
the target language and the order in which transformations are applied. This makes it
quite challenging to reuse them since none of these assumptions hold in all situations.

8 Conclusion

This paper has presented a VDM to Isabelle translation using the code generation plat-
form of Overture. The initial results show that the translation can be written with a sig-
nificantly smaller amount of code (86%). Additionally, the use of the platform confers
various benefits such as improved maintainability of the intermediary data structure and
more easily adjustable syntax (via templates instead of Java strings). Also, any general
improvements made to the CGP will be propagated to the translation as well.

The successful development of the Isabelle translation stands as proof of the ex-
tensibility of the CGP. Some issues were identified and addressed in order to increase
extensibility. Specifically, a more generic transformation mechanism was implemented
with support for changing the root node of the tree.
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Our initial results show that it is quite worthwhile and beneficial to use the CGP for
syntactical translations. The work presented here not only validates the extensibility of
the CGP but it also provides a good basis for developing a complete VDM to Isabelle
translation.
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Abstract. Code generation from VDM++ to Java has not previously been sup-
ported for the concurrency constructs in Overture. The primary challenge here is
that the synchronisation primitives in VDM++ and Java are significantly differ-
ent. In order to bridge this gap it makes sense to create a run-time environment
coping with access to invocation of operations that are controlled by synchro-
nisation constraints. This paper explains how the existing VDM++ to Java code
generator has been extended to support the concurrency constructs of VDM++
and how such a runtime environment is incorporated. This new feature is also
demostrated using a model of a POP3 based email system.

1 Introduction

When one has invested time in producing a formal model of a system it is natural to be
interested in whether it is possible to automate any steps towards the final realisation.
In this connection one natural candidate to consider is whether it is possible from the
formal model to automatically generate the code for the final system. The feasibility
of such a fully automatic translation depends on a number of issues and among those
are the level of abstraction chosen for the model [1]. It is also necessary to enable a
coupling between such generated code with parts that has not been modelled such as
user interface aspects as well as existing legacy code. In any case, it is essential that
there is a proper balance between the effort invested, the insight gained and the value
produced [2]. For a language such as VDM++ there is typically quite a lot of design
detail included in the model so it may actually be worthwhile to code generate such
models to production code.

In the Overture tool [3,4,5] a code generator from a subset of VDM++ to Java al-
ready exists [6]. However, the original version of this framework did not support the
concurrency parts of VDM++. The concurrency constructs of VDM++ are based on
the notion of threads, but the synchronization constraints are based on logic using con-
structs called permission predicates. The synchronization principles in VDM++ are dif-
ferent from those available in Java. Thus, there are a number of challenges to overcome
to enable automatic code generation of these constructs and ensure the semantics to be
preserved [7]. In this paper we present how the existing Overture code generation plat-
form can be extended with support for the concurrency constructs in VDM++ including
the synchronization primitives. This is based on the Master thesis work developed by
the first author of this paper [8].
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After this introduction Section 2 provides the reader with the necessary background
to understand the ways in which threads can be synchronized in VDM++ and Java,
respectively. Then Section 3 provides a brief overview of the existing code generation
platform in Overture. Afterwards Section 4 presents the core of this paper by explaining
how the existing code generation platform has been extended to support the concurrency
constructs in VDM++. Then Section 5 presents a case study for the concurrency exten-
sions of the code generator. Finally Section 6 presents a few concluding remarks and
future directions for this work.

2 Background

2.1 Synchronization in VDM++

The VDM++ dialect was developed to enable modeling of object oriented systems. In
addition, concurrency was introduced based on threads in the models. The language
provides two main synchronization constructs for coordinating threads. The permission
predicates [9] are boolean expressions that are defined for an operation to control when
it is allowed to proceed to its execution. A permission predicate thus acts as a guard that
controls the execution of an operation by suspending it when it is false and allows it
to proceed when it is true. Permission predicates may use instance variables and his-
tory counters to define their boolean value. History counters are self-contained counters
that count the number of invocations, executions and terminations of an operation. Fur-
thermore, the language provides mutex(op1,..,opN) [9] definitions which allow the
mutual exclusion between operations.

2.2 Synchronization in Java

Java supports concurrency since version 1.2. However, Java is using different primitives
to synchronize threads. It provides the monitor construct [10] which treats a method or
a block of code as critical section that only one thread can access at any point in time.
If the monitor is used by a thread, all other threads have to wait until the monitor is
released by the thread using it. There is no condition to control the next thread which
will access the monitor but it is arbitrarily chosen by the Java Virtual Machine (JVM).
Another more versatile primitive that Java provides is the lock construct [10] which is
used on blocks of code to provide mutual exclusion. Locks, also, allow control over the
priority of the execution of threads. Furthermore, the lock construct allow a thread to
withdraw its request for a lock if it is already acquired by another thread.

2.3 Inheritance differences between Java and VDM++

Another important area where the two languages bear significant differences is for class
inheritance. In VDM++, it is possible to have a class that inherits from multiple super
classes. However, this is not possible in Java where a class can only extend one super
class but can implement multiple interfaces. The common ground between the two lan-
guages with respect to inheritance is that both support multi-level hierarchies. The mul-
tiple inheritance of VDM++ will affect the active user classes of Java generated code
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which they will have to extend the Java Thread runtime class to obtain Java thread
functionality. In the proposed approach, the runtime class is extended on the top most
super class of the active user class. If it inherits from multiple classes, it would not be
possible to extend all most top super classes with the Java Thread class. Furthermore,
multiple inheritance is not supported by the sequential code generation platform.

3 The Code Generation Platform

The VDM++ concurrency code generator developed as part of this work is an extension
to the sequential VDM++ to Java code generator available in the Overture tool. Further-
more, the sequential VDM++ to Java code generator is built on top of the Overture code
generation platform and therefore the extension for the code generator for the VDM++
concurrency constructs is also based on this platform.

3.1 The code generation platform

Figure 1 shows the overall architecture of the Overture code generation platform, where
a code generator targeting a particular language such as Java or C++, is developed
as a backend extension to the platform. The goal of using a platform is to promote
reuse and reduce the effort needed for developing VDM code generation support for
multiple target languages. This is achieved by using a generic representation of the code
generated model referred to as the Intermediate Representation (IR) – a tree structure
that is independent of any target language.

Source code

VDM
AST

IR’

Runtime

IR nodes IR Visitors

Code Generation Platform

Transformations

Backend

IR

IR
Constructor

Fig. 1. An overview of the architecture of the code generation platform

The code generation platform subjects the IR to a series of semantically preserving
transformations that change the tree structure of the IR into a form that is easier for a
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target language specific backend to code generate. Transforming the IR includes rewrit-
ing constructs that are non-trivial to code generate by replacing them with constructs
that are easier for a backend to express in terms of the target language.

Since the difficulty of code generating a particular VDM construct depends on the
target language, the code generation platform allows a backend to configure and develop
its own transformations. As an example, Java does not have a single construct that
can be used to code generate a VDM set comprehension. Instead the Java backend
transforms each set comprehension out of the IR by rewriting this construct into an
imperatively styled form.

Although transforming the IR potentially results in a larger tree structure the goal
is to achieve a final version of the IR where every nodes can be trivially code generated
by the backend. In order to bridge the gap between VDM++ and Java concurrency,
the work presented in this paper partly involves the development of transformations to
rewrite the synchronization constructs of VDM++ into a form that is easier for the Java
backend to code generate directly (see subsection 4.4).

3.2 Developing a backend

When the transformation process is completed the IR is handed over to the backend
(see Figure 1), which is responsible for finalizing the code generation process. As a last
thing, each node must now be mapped into the target language.

The Java code generator uses the Apache Velocity template based technology to
map the IR nodes into Java source code 1. In particular, the Java backend specifies a
template for each type of node in the IR that it provides support for. In addition to the
concrete Java syntax, the template file uses template code to access information about
the state and context of the node in order translate it into Java code.

As shown in Figure 1 a backend may use a code generation runtime library to sup-
port the generated code. As an example, the Java code generator uses a runtime library
that provides Java implementations for some of the VDM types and operators that are
not directly supported in the Java standard library. To mention a few examples, the Java
runtime library includes implementations of tuples and tokens as well as the sequence
modification operator. As described in section 4 part of code generating VDM++ con-
currency involves developing an extension to the Java code generator runtime library in
order to provide threads that conform to the VDM semantics as well as auxiliary data
structures to maintain history counters.

4 Extending The Code Generation Platform

Permission predicates are described in section 2, a permission predicate has a boolean
value when an operation is invoked, the invoked operation is able to proceed to its
execution only if the permission predicate is valid. Thus, the operation has to check the
value of the permission predicate before it continue to its execution. However, in the
sequential code generator when a generated method is called, it is immediately allowed

1 The Apache Velocity Website: http://velocity.apache.org
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to proceed to its execution because their is no way to block it without the support for
permission predicates. Even if a permission predicate is defined for its corresponding
operation in the VDM++ model. E.g. a generated method needs to wait until all previous
activations of the same method are finished. In the VDM++ model, the permission
predicate that it is defined is per op1 = #act(op1) - #fin(op1) = 0 but it is not present at
the generated code.The reason is that the sequential code generator does not support the
permission predicate construct. In addition, the history counters used in the permission
predicate is not natively supported in Java. Thus, the generated methods does not have
this information available when they are invoked.

The information that is stored by history counters must also be recorded in the
generated code. Therefore, the runtime environment delegated this responsibility to an
external class as a central point of control for these counters. This class acts as a bridge
for the generated concurrency constructs of the VDM++ language and the Java language
available constructs.

4.1 Bridging the gap between VDM++ and Java

The external Sentinel class, as part of the runtime environment, can be linked to
the generated classes either as an interface or as a super class. The latter was chosen
because the history counters need to be modified according to the state of a method.
This functionality was also included in the external class in the form of methods to
manage the history counters.

Fig. 2. The Sentinel class is extended by user defined classes.
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In the Sentinel class, each type of history counter is maintained in an array.
The array is used to hold history information for the multiple methods that can exist
in the user defined classes, each possition of the array can store the information for
one method. The history counter arrays are managed by the methods also defined in
the Sentinel class. This class is extended by all user defined classes that are code
generated in order to provide them with access to the history counters. Figure 2 shows
the inheritance between the user defined class and the external Sentinel class. In
addition, the figure presents some of the arrays for the history counters defined in the
Sentinel class as well as the methods maintaining them.

4.2 Methods in the Sentinel class

Managing the history counters is done in methods in the Sentinel class. The first
method is entering() which is used by the methods to initiate the history events.
This method invokes the three private methods requesting(), activating()
and waiting() for updating the appropriate history counter. Their purposes are to
apply synchronization between the threads that invoke a thread-safe method and to
apply the update of the history counters. These methods change the values of all history
counters apart from #fin which is maintained by the leaving() method to change.

Leaving() is called in the body of the thread-safe method within a try -
finally statement. The finally statement guarantees that the leaving()method
will be invoked at the end of the execution of the class method and therefore the counter
will be updated even in case an exception is raised.

4.3 Evaluating Permission predicates

The use of the Sentinel class does not have the ability to evaluate permission pred-
icates. The problem can be solved by creating a second external class in the runtime
environment that implements a mechanism to evaluate the permission predicates. Un-
fortunately, the use of a second super class is not possible in Java. Therefore, an inter-
face is developed that provides the functionality for the user to define classes that can
evaluate their permission predicates. The interface is named EvaluatePP

The EvaluatePP interface contains only one abstract boolean method, evalu-
atePP(), that every user defined class must implement. This method implements a
mechanism to evaluate the permission predicates for a given method. The implementa-
tion of this method is generated in the user defined classes automatically by the code
generator through an IR transformation.

The implementation of the evaluatePP() method contains multiple if-else
statements that select the called method and return the boolean value of its predicate.
For operations that do not have permission predicates defined the default value true is
returned as specified in the VDM++ language manual to indicate that the invocation can
proceed. Listing 1.1 provides an example of an implemented evaluatePP() method
with a defined permission predicate generated with in the if-else statement.
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1 public Boolean evaluatePP(final Number fnr) {
2 if (Utils.equals(fnr, 0L)) {
3 return sentinel.fin[((A_sentinel) sentinel).opA]>=0L;
4 }
5 ...
6 else
7 {
8 return true;
9 }

10 }

Listing 1.1. The evaluatePP() method as it is generated by the code generator

The permission predicates need to be reevaluated constantly when a history counter
or an instance variable is updated. Thus, an additional method is defined in the Sentinel
class to act as a way to enable reevaluation of the permission predicates. The state-
Changed() method notifies all threads that a value in a history counter has been
updated. Thus, every method that updates a history counter have to invoke the state-
Changed() method after the update has been made. This method is used to enable
the reevaluation of the permission predicates when an instance variable is updated. The
semantics in the VDM++ language are not defined for the initiation of the reevaluation
of permission predicates after an instance variable update, however into the generated
code the reevaluation of predicates is enabled immediately after an instance variable
has been updated.

Need for an inner class The Sentinel class acts as a super class of the user defined
classes, this creates a inheritance problem when a user define class is also an active
class. For active classes in Java to spawn threads, they need to extend the Java Thread
class. In addition, it is not possible to implement the Sentinel class as an inter-
face because the functionality to manage the history counters is needed. However, the
solution was found in the use of an inner class within the user defined classes. This ap-
proach actually sustained the functionality needed for the history counters and allowed
the active classes to extend the Thread class for spawning threads. Figure 3 shows
the final inheritance scheme that the user defined class will follow when the concur-
rency constructs of VDM++ are code generated. The main user class is extending the
Java Thread class and implements the EvaluatePP interface while the inner class
extends the Sentinel class to maintain maintenance of the history counters.

4.4 IR Concurrency Transformations

The concurrency extension for the code generator uses four transformations. The fol-
lowing description briefly explains the purpose of the four transformations and how
they enable the concurrency constructs of the VDM++ language to be supported.
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Fig. 3. The user defined class inheritance hierarchy with the inner class for the VDM++ concur-
rency constructs

– Main Class Transformation: Adds the implementation of the evaluatePP()
method, adds code within class methods to enable history information to be stored
and adds a field to the user define class that enables the link with the Sentinel
class.

– Inner Class Addition: Adds the inner class that extends the Sentinel class to
the user defined classes.

– Mutex Transformation: Changes the mutex definition into permission predicates
form.

– Instance Variable Predicate reevaluation : Triggers re-evaluation of the permis-
sion predicates for the instance variable updates.

Main Class Concurrency Transformation This transformation is applied on the user
define classes adding nodes to the IR for concurrency constructs. In particular,it adds
a reference to an instance of the Sentinel class to hold the history counters for the
methods in the class and adds the implementation of the evaluatePP() method for
the evaluation of the permission predicates. In addition, another major IR rewrite per-
formed by the main class transformation is adding code within the body of the methods
of the user defined class to allow the history counters to be stored in the Sentinel
class for each method. As seen in listing 1.1, the evaluatePP() method is being
implemented with a permission predicate that is present for one method in the user
generated class.

In listing 1.2, the entering() and leaving() method invocations that are
added in the body of the user defined method is shown, lines 2 and 6 respectively. The
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invocations of the methods in the Sentinel class is done with a numeric parameter
which represents the index of the method in the arrays that holds the history counters.
In addition, it can be observed in line 5 that the leaving() method is enclosed in a
finally statement as described in subsection 4.2.

1 private void opA() {
2 sentinel.entering(((ExampleClass_sentinel) sentinel).opA);
3 try {
4 //initial body of the method
5 } finally {
6 sentinel.leaving(((ExampleClass_sentinel) sentinel).opA);
7 }
8 }

Listing 1.2. method invocation enabling the history counter maintenance

Inner Class Transformation This tranformation adds an inner class that is subclass of
the Sentinel class to the user defined classes. The inner class and the instance of
type Sentinel that the main class transformation creates in the user defined class
provide access to the arrays and methods in the Sentinel class. Furthermore, the
inner class transformation creates integer constants in the inner class that they represent
the methods in the user defined class, these constants are used as parameters to the
entering() and leaving() methods presented in Listing 1.2.

Mutex transformation Internally, the VDM++ language treats mutexes as permission
predicates and conjunct them with existing permission predicates for a user defined
method. This is handled by the replacing of each mutex definition with the equivalent
permission predicate. This transformation is performed by the MutexDeclTransforma-
tion [8]. In case an operation already has a permission predicate the transformation from
mutex is combined with the existing constraints in a conjunction.

Instance Variable Predicate reevaluation The VDM language manual [9] does not
explicitly describe the way the initialization of the reevaluation will happen after the
instance variable update. Thus, this transformation add the invocation to the state-
Changed() method after any update to instance variables. The call to the state-
Changed() method in the Sentinel class will enable the reevaluation of permis-
sion predicates the same way the reevaluation of the permission predicates occurs for
the update of the history counters by notifying blocked threads to reevaluate their per-
mission predicates.

5 Case Study - POP3

A model of a POP3 email system (model originally used in [11]) is used as for case
study as it contains multiple active classes and multiple synchronization constraints that
must be code generated by the concurrency code generation platform. Figure 4 presents
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the sequence of actions that the POP3 client and server perform. In addition, it is shown
by the sequence that the initiator is the client which send a message to the server as
well as it is the terminator of a sequence of actions when it receives the response of the
server.

Fig. 4. Sequence of activations between the Client and the POP3 mail Server

Defined synchronization in VDM++ POP3 Model. The POP3 model defined permis-
sion predicates for the four actions that the client and the server performs in order the
message exchange shown in figure 4. The actions that are synchronized are the client
send, client listen, server send and server listen. As an example,
listing 1.3 presents the permission predicate defined for the operation that controls the
action client send. In this listing, it is seen that the action should wait until all the
other operations that control the other actions have completed.�

1 per ClientSend => #fin(ServerSend) = #fin(ClientListen)
2 and #fin(ClientSend) = #fin(ServerListen)
3 and #fin(ServerSend) = #fin(ClientSend) ;
� �

Listing 1.3. The permission predicate for the ClientSend() operation

Similar permission predicates are defined in the model of the other three operations
performed in the sequence of actions.

Generated Synchronization in Java. The sequence of actions between the client and
server should be preserved in the generated code. The appropriate code generation of
the permission predicate defined in the model is evidence that the sequence of actions
will be preserved. Listing 1.4 presents the code generated for the permission predicate
presented in listing 1.3. It is seen that the generated permission predicate follows the
same pattern as the VDM++ permission predicate using the #fin history counter and
the same equality among the methods that need to be synchronized.
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1 (sentinel.fin[((MessageChannel_sentinel) sentinel).ServerSend]
2 == sentinel.fin[((MessageChannel_sentinel) sentinel).

ClientListen])
3 &&
4 (sentinel.fin[((MessageChannel_sentinel) sentinel).ClientSend]
5 == sentinel.fin[((MessageChannel_sentinel) sentinel).

ServerListen])
6 &&
7 (sentinel.fin[((MessageChannel_sentinel) sentinel).ServerSend]
8 == sentinel.fin[((MessageChannel_sentinel) sentinel).ClientSend

]);

Listing 1.4. The generated permission predicate corresponding to the one presented in listing 1.3

Similar code is generated for the rest of the VDM++ permission predicates. The
generated code is similar with the one presented in Listing 1.4. However, the important
aspect of it is to perform the same functionality and produce the same sequence of
action as the VDM++ model produce. This leads to the execution of the model and the
generated code in order to observe the output results.

Changes to the generated classes. The permission predicates are not the only changes
that they are needed for obtaining the VDM++ synchronization to the generated code. In
addition to the generated permission predicates, the generated methods need to include
the calls to the Sentinel class enabling the maintenance of the history counters.
In Listing 1.5 the generated method for the client send action is presented, it is
observed in lines 2 and 14 the calls to the Sentinel entering() and leaving()
methods respectively.

1 public void ClientSend(final Object p) {
2 sentinel.entering(((MessageChannel_sentinel) sentinel).

ClientSend);
3 try {
4 if (debug) {
5 Boolean ignorePattern_5 = io.echo("***> ClientSend");
6 }
7 Send(((Object) p));
8 if (debug) {
9 Boolean ignorePattern_6 = io.echo("***> fin ClientSend");

10 }
11 } finally {
12 sentinel.leaving(((MessageChannel_sentinel) sentinel).

ClientSend);
13 }
14 }

Listing 1.5. Generated cliend send method with concurrency features
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Similar code is generated for all the operations in the POP3 model to maintain the
history counters of every method. Furthermore, every class in the model has an inner
class that extends the Sentinel class to provide access to the arrays and the meth-
ods maintaining the history counters. In Listing 1.6, an example of a generated inner
class for the MessageChannel class is presented with the constants created for the
methods in the enclosing class. In case of overloaded methods, only one constant is gen-
erated for the same method name to preserve the way history counters and permission
predicates treat overloaded operations in the VDM++ language.

1 public static class MessageChannel_sentinel extends Sentinel {
2 public static final int Send = 0;
3 public static final int Listen = 1;
4 public static final int ServerSend = 2;
5 public static final int ClientListen = 3;
6 public static final int ClientSend = 4;
7 public static final int ServerListen = 5;
8 ...
9 public MessageChannel_sentinel(final EvaluatePP instance) {

10 init(instance, function_sum);
11 }
12 }

Listing 1.6. The generated inner class of the MessageChannel class

The constants are used as parameters to the entering() and leaving() meth-
ods representing the indexes of the arrays in the Sentinel class.

Observing the results The model outputs the sequence in which the client and the
server exchange messages, their sequence is following the diagram presented in Fig-
ure 4. The output is printed to the console view of the Overture tool. The initial version
of the model printed different type of messages not only these for the sequence of the ac-
tivations described figure 4. These messages included the type of commands the cliend
send, the responses from the server and the termination of the communication between
them. The model is slightly modified to print only the messages referring to the actions
of the sequence it performs to the console. The rest types of the messages are logged
into a file.

The modification is performed to the model to simplify the process of comparing its
results with these from the generated code because the rest of the messages are without
synchronization but are only affected by the choices the deterministic interpreter [12] of
the tool makes. The Overture interpreter is designed deterministic in order to allow error
to be easily reproduce for a specific input. On the other hand, this cannot be achieved in
general in the generated code because a concurrent program can produce every possible
execution path due to the underline system architecture and the non-determinism of the
JVM [13].

Listing 1.7 shows the output in the console of Overture tool that is produced by
the POP3 model for the sequence of actions. It is seen that it follows the sequence in
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Figure 4. This output is going to be compared with the one that the generated code is
producing.�

1 Creating POP3ClientHandler
2 ***> ClientSend
3 ***> fin ClientSend
4 ***> ServerListen
5 ***> fin ServerListen
6 ***> ServerSend
7 ***> fin ServerSend
8 ***> ClientListen
9 ***> fin ClientListen
� �

Listing 1.7. The results for the sequence of actions produced by the model

After the results are obtained from the POP3 model, the model is code generated into
Java with its concurrency features. The generated Java code is executed and the results
are printed to the console. Listing 1.8 presents the output with the sequence of the
actions the generated Java code has produced.

1 Creating POP3ClientHandler
2 ***> ClientSend
3 ***> fin ClientSend
4 ***> ServerListen
5 ***> fin ServerListen
6 ***> ServerSend
7 ***> fin ServerSend
8 ***> ClientListen
9 ***> fin ClientListen

Listing 1.8. The results produced by the Java generated code of the POP3 server

The similar functioning of the synchronization mechanisms in the VDM++ model
and the generated code causes the output in listings 1.7 and 1.8 to be identical. The
results of the concurrency extension of the code generation platform can be further
proven by changing the Overture interpreter to output all the possible execution paths
with their results. If the result of the generated code belongs in the set of the results of
the interpreter then the implementation produces accurate results [14].

6 Concluding Remarks and Further Work

This paper has presented an extension of the sequential Java code generator of the Over-
ture tool enabling the automatic generation of the concurrency aspects of a VDM++
model. However, the results of the generated code may be slightly different than the
one chosen in the Overture interpreter. The point is that in general a VDM++ model
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including concurrency may yield non-deterministic results whereas the interpreter on
purpose has been designed to deterministically select one possible model [12]. In fact
the original version of the POP3 example contained parts that are not tightly synchro-
nized, so initially it was thought that the behavior of the generated code was not correct.
Thus, the generated code behaves semantically similar to the model if tight synchroniza-
tion is applied to the model, whereas in case of looser synchronized models the results
may vary due to the determinism of the Overture interpreter. Despite the extension of
the code generation platform for the concurrency features of VDM++, there is ongoing
work with the VDM-RT notation. In theory it would be possible to let the interpreter ex-
plore what the result would be in all possible (including non-deterministic) models but
this would have severe consequences for the performance of the execution speed [14].

In the VDM-RT notation additional concurrency constructs are included. Initial in-
tegration with code generation of the distribution aspects of VDM-RT [15] has been
made already. The concurrency constructs VDM-RT inherits from the VDM++ are sup-
ported in the VDM-RT code generation as a result of the work presented in the thesis [8]
of the first author of this paper. Additionally, asynchronous operations that VDM-RT
provides are also supported and they are code generated as methods which are spawned
as a new thread when invoked. However, there is more work to carry out. The VDM-RT
includes the notion of time and two additional types of threads, the periodic and the
sporadic threads. These features of the VDM-RT language are not yet supported by the
code generation platform. In addition to VDM-RT concurrency code generation, other
areas can be investigated in the future.

Future Work

The future plan for this work is to improve the existing extension for the concurrency
features of VDM++ with a feature that is recently introduced into the language: The
manual termination of a thread using the thread stop(). Java used to have a stop()
method to manually terminating a thread but it was deprecated because it was inher-
ently thread unsafe. Since the deprecation of the stop() method, Java has no way
to manually terminate a thread directly. The manual termination of a thread is handled
indirectly by interrupting it and catching the generated exception.Thus, an indirect way
should be implemented in the code generator in order to be able to support the manual
termination of threads as it is specified in VDM++.

In addition, further integration with the code generator for VDM-RT is necessary in
order to support the features of VDM-RT that are currently unsupported. Also, the no-
tion of time have to be considered in the code generator for VDM-RT and its semantics
to be preserved in the generated code.

The IR of the code generation platform is independent from any target language.
This means that the back-end can generate code into different target language provided
the necessary language templates. The reuse of the existing IR transformations for other
target languages can be examined. The code generation of concurrency in the C++
language can be the next step for this work.

Another area which can be considered for further future work is the possibility to
hide the concurrency feature of Java entirely in the runtime environment. This approach
will not modify the user defined class in contrast to this approach which adds a lot of
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functionality in the user defined classes. Also, it will be an opportunity to compare the
two different approaches in respect to some properties like code readability, execution
time, etc.
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Generating Java RMI code for the distributed aspects of
VDM-RT models
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Abstract. Generating code for the distributed aspects of VDM-RT, that enables
modelling of distributed objects, has not been addressed before. The main chal-
lenge is to ensure that distributed objects can communicate. In order to support
such communication the distributed technology Java RMI is used as part of gener-
ating the Java code. This paper presents the prime challenges and their solutions
in order to generate Java code for a distributed system modelled in VDM-RT.
Additionally, an example is presented in order to show how different aspects of a
VDM-RT model are code generated.

Keywords: VDM-RT, Distributed System, Java RMI, Code Generation

1 Introduction

In the development of distributed systems the use of VDM Real-Time (VDM-RT) can
be advantageous [16, 15]. In VDM-RT information about the distribution of functional-
ity is only present inside the system class. Thus, the actual functionality described in
the “real” classes does not need to consider where the operations to be invoked is placed
in a distributed setting. It would be valuable to be able to automate the production of
code from such a distributed VDM-RT model. However, this has never been enabled
before but in this paper we show how this is now possible on the Overture platform [8].

In the process recommended for developing distributed embedded systems using
VDM the final realisation has so far been made using manual coding [9]. Even with
a manual step at the end of the development this approach may be worthwhile. How-
ever, it would naturally be advantageous if it would be possible to automate that last
step. The work presented here is extending the existing code generation platform for
Overture [5] with a capability for generating distributed systems [4]. This is done using
Java Remote Method Invocation (RMI) to manage the distribution of functionality to
different computing nodes.

After this introduction Section 2 provides the necessary background to understand
how distributed systems can be represented in VDM-RT while Section 3 presents the
formal semantics of the distributes aspects of VDM-RT. Aftewards, Section 4 shows
how RMI can be used with Java for a distributed system, while Section 5 introduces the
Overture code generation platform that is extended in the work presented here. Then
the actual extension enabling the automatic generation of the distribution aspects to the
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code generator is presented in Section 6. This is followed with Section 7 discussing
the code generation of VDM-RT. Finally, Section 8 delivers concluding remarks and
provide pointers to potential future work.

2 Distributed aspects of VDM-RT models

VDM-RT models system architecture in a special system class using language con-
structs for CPUs and buses. CPUs are characterized by speed and scheduling policy and
allocated by objects of active classes. Execution of a VDM-RT model is initiated from a
special virtual CPU, which is connected to every other CPU in the system class. The
virtual CPU is normally used for deployment of environment processes and different
from other CPUs in the sense that it executes and communicates infinitely fast.

An object is deployed on a CPU by passing it to the deploy operation of the CPU
instance. Buses connect CPUs and enable communication at user-specified bandwidths
using predefined communication protocols. Objects can invoke operations of other ob-
jects deployed on different CPUs, which causes data to be transmitted on the connecting
bus. Operations are synchronous by default but can be made asynchronous.

The VDM-RT interpreter maintains a global notion of time, which is referred to us-
ing the time keyword. Simulation time progresses by a default number of nanoseconds
as functions and operations are invoked. The default increase in time can, however, be
overruled using the cycles and duration statements, which enable specification of
execution delays relative to processor speed or as absolute time measures, respectively.

3 Formal Semantics in VDM-RT

This section briefly introduces some of the distributed aspects of VDM-RT semantics
[10]. The top level structure is shown below. A VDM-RT model consists of the afore-
mentioned CPUs and BUSses, and additionally the current time which the model has
reached and classes created in the model.

VDMRT :: cpus : CPUs = Idc
m−→ CPU

busses : Busses = Idb
m−→ Bus

time : Time

classes : Classes = Idcl
m−→ Class

Each CPU has three fields: the deployed instances, all threads and the execution
speed. Every BUS also has three fields: the CPUs it connects, the communication speed
and a queue of call and return messages, tagged with the target CPU.

CPU :: objects : Ido
m−→ Object

threads : Idt
m−→ Thread

speed : N1

Bus :: cpus : Idc-set
speed : N1

queue : (Idc × (CMessage | RMessage))∗
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The actual semantics is provided in a Structural Operational Semantics (SOS). The
big step rule for the evaluation of a VDM-RT model is shown in figure 11. Line two in
figure 1 shows that messages are delivered on the busses to their target CPU, when two
CPUs communicate.

Big Step

vdmrt1 = commitPendingValuesAndUpdateTime(vdmrt , τ) (1)

vdmrt1
busses−→ vdmrt2 (2)

vdmrt3 = createPeriodicThreads(vdmrt2) (3)
vdmrt4 = doContextSwitches(vdmrt3) (4)

vdmrt4
exec−→ (vdmrt5, τb) (5)

τ ′b = min(τb ,minPendingCommitTime(vdmrt5)) (6)

(vdmrt , τ)
vdmrt−→ (vdmrt5, τ

′
b)

Fig. 1. Definition of the Big Step rule.

In [10] both a local and a remote call are described using SOS. However, in this sec-
tion the focus is purely on the remote calls, which generates network traffic, because the
focus is on the distribution aspect. The information is queued on the bus as messages.

Call messages are CMessage constructs, while return messages are RMessage con-
structs. The constructs for CMessage and RMessage are shown below, respectively.
The CMessage contains information about the target object, target operation in that
object, operation arguments, identifier of the CPU and thread of the caller and when
the message is send. The RMessage contains the value returned by the operation, the
identifier of the CPU and thread of the caller and the send time.

CMessage :: obj : Ido
op : Idop

args : VDMValue∗

replyto :
[
Idc × Idt

]
sendTime : Time

RMessage :: value : VDMValue∗

replyto : Idc × Idt
sendTime : Time

Figure 22 illustrates abstractly how a remote synchronous call is performed. This
figures shows that a remote call is handled in the same way as a local call, which is
described subsequently. For the remote synchronous call the most important SOS is
shown in figure 33. The lines 7-10 in figure 3 describe that a created CMessage is
added to the bus, and the status of the calling CPUs thread is changed to WAITING, in
order to wait for the return of the remote operation call. For an asynchronous remote
call the calling CPU does not wait for the remote call to complete.

1 This figure is borrowed from [10]
2 This figure is borrowed from [10]
3 This figure is borrowed from [10]
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CMessage ... ... ... RMessage
Process head of bus
message queue

Bus message queue

Create thread

1: Process head

SyncCall

Thread body

Create RMessage2: eval

3: Insert at tail

Fig. 2. Illustration of the semantic evaluation of a CMessage from the bus queue.

Stmt Call Op Remote Sync

opTarget = (ccpu, oid , op) (1)
argsTimed = [(value, δe) | arg ∈ args ∧ (classes, cpus, pending , o ` [[e]] = (value, δe))] (2)
args = [value | (value, -) ∈ argsTimed ] (3)
mk -Op(-, params, ret , body , pre, post) = classes(cpu.objects(oid).class).ops(op) (4)
rest ′ = [mk -Wait(target)]y rest (5)
busses(bus) = mk -Bus({ccpu, c} ∪ connected , speed , queue) (6)
cmsg = mk -CMessage(oid , op, args, (c, t), τ) (7)
busses ′ = busses † {bus → mk -Bus({ccpu, c} ∪ connected , speed , queue y [(ccpu, cmsg)])} (8)
cpu ′ = changeThreadStatus(cpu, t ,WAITING) (9)
δ′ = sum([δe | (-, δe) ∈ argsTimed ]) + RemoteSyncCallTime (10)

τ, classes, cpus, c, t , o `
([mk -SyncCall(target , opTarget , args)]y rest , pending , cpu, busses)

stmt−→
(rest ′, pending , cpu ′, busses ′, δ′)

Fig. 3. Definition of the Stmt Call Op Remote Sync rule.
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4 Network communication using Java RMI

Java RMI [13] enables two objects located on different Java Virtual Machines (JVMs)
to communicate transparently, e.g. as if they are located on the same JVM. This tech-
nology enables both to send primitive types, objects by value and objects by reference.
In order for an object to be sent by reference it has to be a UnicastRemoteObject,
and has to be instantiated from a class that implements a corresponding interface which
extends some Java RMI properties. The methods defined inside this interface are acces-
sible remotely.

A JVM has to obtain a reference to a remote object in order to invoke its methods
defined by the interface. This can be achieved by using a registration service in which
objects can be register by a unique identification (ID). Such a service is provided by the
RMI registry [2], which will be used as the registration service.

The roles of two objects communicating using Java RMI are a client-server rela-
tionship. The invoking object is acting as a client, while the invoked object is acting as
a server. The invoked object delivers a service in the form of a method that possibly
returns a value to the client object.

An important part in order to establish a network connection using Java RMI is
a registration service, which will be referred to as a RMI registry, in which remote
objects are registered with an ID. Then every object which must be invoked outside its
own address space has to be registered in the RMI registry. When a client object needs
to invoke a method of a remote object, it first looks up the remote object in the RMI
registry using its unique ID of the remote object. The RMI registry then returns a proxy
to the remote object, and afterward the client object can use to this proxy to invoke
methods of the remote object as if it is a local object.

The overall process of establishing communication between a client object and a
server object is illustrated in figure 4. This figure illustrates that all network communi-
cation between the entities is handled by Java RMI, and the following steps described
are from this figure. In step 1 the Server connects to the RMI registry using Java RMI,
and registers an object in the RMI registry. In this step the server has the role of a client
and the RMI registry has to role of a server. Afterwards, in step 2 the Client connects
to the RMI registry, and looks the objects it wants a remote reference to up. In this step
the Client has the role of a client and the RMI registry has the role of a Server with
respect to the client-server model. Finally, in step 3 the Client can invoke a method on
the remote object as if the remote object is in its local address space.

In order to establish a Java RMI connection between a client object and server ob-
ject, the following has to be created: An communication contract between the objects
and the implementation of the server object and the client object. The details of each
step is presented below.

Define a remote contract: When two objects have to communicate, they need to agree
on which “services”, e.g. method name(s) and possible parameter(s) as well as a
possible return value for the method(s), that the server object provides to the client
object. This contract is implemented as an interface in Java, and both the server
and client need to have access to this it.
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Fig. 4. Example showing how communication between a client and a server is established using
Java RMI.

Server object: The methods defined in the contract need to be implemented in a class.
Then an objects is instantiated from this class. Furthermore, the object has to be
registered in a RMI registry with a unique ID.

Client object: The client needs to know the correct ID of the server object in the RMI
registry to create a stub of the remote object. After the client has obtained a stub, it
can invoke the methods of the remote object, which are defined in the “contract”.
The contract is used to create a stub on the client side, when communicating with
the RMI registry.

The above indicates that an object instantiated on a JVM is a Java class type, while
a remote object located on another JVM is represented by a Java interface type.

5 Extending the Overture Code Generation Platform

The VDM-RT code generator extends the existing VDM++ code generator with support
for code generation of deployment and remote invocation of functions and operations.
Since the VDM++ code generator is developed as a backend extension to the Over-
ture code generation platform, developing code generation support for VDM-RT has
involved working with this platform.

5.1 The code generation platform

Overture uses a code generation platform to make it easier to contribute code generation
support for new target languages. To do this, the code generation platform constructs an
Intermediate Representation (IR) of the generated code from the VDM Abstract Syntax
Tree (AST). The IR is independent of any particular target language and therefore func-
tionality for interacting with the IR can in principle be shared among code generators,
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or backends, of different target languages. The workflow of extending the code genera-
tion platform follows a step-wise process where the IR is gradually transformed into a
structure, which is easy for a backend to generate code from. This is done by applying
a series of transformations to the IR each of which are implemented by subclassing the
base class visitors [3] provided by the code generation platform.

When the IR has reached a form suitable for code generation, mapping each of the
IR nodes into code in the target language should ideally be a trivial task. To facilitate
the process of producing code in the target language the code generation platform pro-
vides a small syntax generation framework. This framework provides functionality for
mapping each IR node supported by the backend into syntax in the target language.

5.2 Extending the Intermediate Representation

The IR defines an AST that can be extended with support for additional IR nodes. The
code generation platform also enables the IR to be transformed using a visitor based
approach, which is convenient as it allows the backend to rewrite the IR into a form that
is easier for a backend to code generate.

In this work we take advantage of the possibility to extend the IR with new nodes:
Constructs such as the remote registry service and the remote interface describe generic
concepts that exist in some form or another in RMI based middleware technologies
such as Java RMI, CORBA or ICE [12, 17]. In order to allow the RMI paradigm to
be represented at the IR level, new nodes have been added to represent some of the
important concepts from the RMI paradigm.

RMI based technologies also distinguishes between types used to represent objects
that are accessed locally and remotely. Since VDM-RT does not distinguish between
types of remote and local objects we use a transformation to substitute local class types
with the equivalent remote interface in order to guarantee that remote objects can be
passed as arguments in the generated Java code.

5.3 Extending the Java backend

Based on the existing IR we instantiate an extended IR that holds statically derived
information about the system architecture and object deployment. Subsequently the ex-
tended IR is handed over to the Java backend, which uses the syntax generation frame-
work of the code generation platform to finalise the code generation process by mapping
each of the IR nodes into Java source code. The syntax generation framework is based
on Apache Velocity template based technology [14]. This framework stores the syntax
for each of the supported IR nodes in template files and enables access to information
about an IR node and its context using the Velocity Template Language.

Finally, to also provide code generation support for the IR nodes introduced as part
of this work, additional templates have been added to the Java backend. These templates
represent node construct such as the remote interface and make use of Java RMI to map
each of the nodes into Java code.

81

Generating Java RMI code for the distributed aspects of VDM-RT models



6 Generating Code for VDM-RT models

The Code Generator (CG) presented in this paper extends the existing VDM++-to-Java
CG that is part of the Overture platform [6, 5]. This VDM++-to-Java CG is used in order
to generate Java code for the functionality of a single CPU, while the CG presented in
this paper enables network communication between objects. This is possible since the
collection of objects deployed to a CPU can be viewed as a single VDM++ model,
which possibly depends on objects located on another CPU. In addition, since both
Java RMI and VDM-RT are based on the RMI communication paradigm, Java RMI is
a good first choice for a distribution technology. Subsequently the term VDM method
refers to both VDM functions and operations, because Java only has methods.

The code generation process of a VDM-RT model can be divided into two main
parts:

1. Generating the static VDM-RT model and preserving its semantics, when using
Java RMI for supporting network communication.

2. Ensuring that the generated Java code can start execution similar to the VDM-RT
interpreter.

The following two subsections discuss and present how these two main parts of the
code generation process can be solved, respectively.

6.1 Static VDM-RT model

Extracting distribution information from a VDM-RT model
As described in section 2, the distributed aspects of VDM-RT are modelled inside the
system definition. For this CG the information necessary from the system defini-
tion is which instantiated objects are deployed to which CPU and how the CPUs are
connected. This information will be referred to as a Deployment Map (DM) and a Con-
nection Map (CM), respectively.

The DM can be extracted by analysing the deployment of objects inside the con-
structor of the system definition, as shown in the example in listing 1.1. In addition,
the CM can be extracted by analysing the bus structure, as shown in listing 1.2. Hence
the DM and CM for this example are:

CPU name DM CM
cpu1 {a1, a2} {cpu2, cpu3, cpu4}
cpu2 {b1} {cpu1}
cpu3 {a3} {cpu1, cpu4}
cpu4 {b2} {cpu1, cpu3}

Table 1. Example of a DM and CM for the VDM-RT listings 1.1 and 1.2.

The DM and CM provide the CG with enough information in order to generate Java
RMI code for the distributed aspects of a VDM-RT model. However, it shall be noted
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that realising the real bus structure of a VDM-RT model is not possible when Java
RMI is used for the communication, because all generated JVMs are connected by a
single ethernet connection. So it is enough to know that two CPUs are connected when
extracting the CM, because a multi bus architecture cannot be supported by this CG.�

1 ...
2 public C: () ==> C
3 C() ==
4 (
5 cpu1.deploy(a1);
6 cpu1.deploy(a2);
7 cpu2.deploy(b1);
8 cpu3.deploy(a3);
9 cpu4.deploy(b2);

10 );
11 ...
� �

Listing 1.1. Example of the constructor for a system definition in VDM-RT called C.

�
1 ...
2 -- CPUs are connected
3 bus1 : BUS := new BUS(<FCFS>, 1E3, {cpu1, cpu2});
4 bus2 : BUS := new BUS(<FCFS>, 1E3, {cpu1, cpu3, cpu4});
5 ...
� �

Listing 1.2. Example of a BUS structure inside a system class in VDM-RT.

Code Generating VDM-RT classes
When code generating a VDM-RT class, it has to be ensured that an object of it is
accessible both locally and remotely with respect to a CPU. Hence in order to discuss
the difference between a model and generated code, the notions of local and remote
objects with respect to a CPU in a VDM-RT model are defined. A local object of a
CPU is an object deployed to it. A remote object of a CPU is an object deployed to
a connected CPU. Local and remote objects can be identified by the CG by using the
information provided by the DM and CM.

In VDM-RT both local and remote objects are instances of the same class. How-
ever, in Java RMI a local object has a class type, while a remote object is defined as
a Java interface (remote contract) type as described in section 4. As a consequence all
VDM-RT classes are required to be generated to both a Java class and a correspond-
ing remote contract. The Java class has to contain all the functionality of the VDM-RT
class, while the remote contract is required to contain the public method signatures,
because only these can be invoked outside the object. Each Java class then implements
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its corresponding remote contract. The CG generates the remote contract for a VDM-
RT class according to the convention using a fixed postfix: VDM class name i. For
example the VDM-RT class A will be generated to both a Java class called A and an
interface called A i. The CG ensures that the class A implements the interface A i.

The CG can not know which VDM-RT methods will be invoked without interpret-
ing the model, so it has to make all the public VDM-RT methods accessible for each
VDM-RT class by adding them to the corresponding remote contract. Additionally, this
approach allows the designer to use these methods afterwards in the generated Java
code for an object, even though they were not used as part of the interpretation of the
VDM-RT model.

Transformation of method parameters and return values
A challenge for the CG, as a consequence of Java RMI having different representation
of local and remote objects, is when using an object as a return value or a parameter
value of a method. The CG is required to cope with this challenge in order to support
both the use of remote and local objects as parameters of a method.

The CG could support this by using method overloading when a method takes ob-
jects as parameters or a return value. However, this approach can generate many over-
loaded methods from one VDM method, if it contains many parameters of a class type.

Another approach could be to exploit the possibility in Java, that if a parameter of a
method is an interface type, it is allowed to pass a class that implements that interface
also. Since the CG ensures that every class has a corresponding interface, it is sufficient
for a Java method to take the interface instead of the Java class. For example if the
parameter of a method is a class type A in a VDM-RT model, then it is transformed to
A i in the generated code. However, it will not be possible to access the public variables
of an object directly due to the limitation of using Java RMI, which is, however, possible
in a VDM-RT model. In the generated Java code all objects from a VDM-RT model
are required to be UnicastRemoteObjects. This ensures that all objects are send
by their reference between JVMs when using Java RMI, which is also the case in a
VDM-RT model between CPUs. The construction of the send parameters in Java RMI
corresponds to the construction of the CMessage construct described in section 3.

Generating functionality of a single CPU
Each CPU in a VDM-RT model is generated as an individual JVM, which subsequently
will be referred to as a realised CPU. This raises a challenge for the CG, because the
system definition is globally visible for all CPUs in a VDM-RT model. A possible
solution is to generate a Java class in order to represent the system defintion for each
realised CPU, which makes the local and remote objects globally accessible for a re-
alised CPU according to the VDM-RT model. As an example for the realisation of
cpu2 shown in table 1, the generate Java class representation of the system defintion
is shown in listing 1.3. In this listing the object called b1, is a class type A since it is a
local object for cpu2. Since cpu2 is connected to cpu1, it has access to the objects
a1 and a2, which are an interface type A i because they are remote with respect to
cpu2. This approach ensures that the distributed objects inside the system definition
are globally accessible with respect to a realised CPU, just as in a VDM-RT model.
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Local objects have not been instantiated and references to remote objects have not
been obtained yet. The following subsection addresses this problem, and additionally
proposes a solution to it. However, until now the preservation of the VDM-RT seman-
tics has been addressed, without setting the references of local and remote object up,
because they are a concrete design decision made by the CG.

1 ...
2 public class C {
3 public static A_i a1 = null;
4 public static A_i a2 = null;
5 public static A b1 = null;
6 }
7 ...

Listing 1.3. Local Java class in order to represent the system definition for cpu2 as shown in
table 1.

6.2 Generating code for the interpreting of a VDM-RT model

A CPU is initialised when it has instantiated all its local objects, and obtained a refer-
ence to its remote objects. The VDM-RT interpreter initialises all CPUs before the entry
method of the VDM-RT model is interpreted. This is required as a consequence of the
ability to use the distributed objects at any place and time during model interpretation.
Figure 5 illustrates a potential error sequence during model interpretation, if all CPUs
have not been initialised. For this reason, the CG has to provide a similar initialisation
mechanism.

Fig. 5. Global dependencies error
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This CG generates a simple initialisation mechanism when generating code for the
whole distributed system, which is shown in figure 6. The main assumption for this
algorithm is that all realised CPUs are connected to and store their local objects in
the same registration service during the initialisation. Additionally, a realised CPU can
receive the total number of registered objects in the registration service in order to sup-
port the two decisions shown in figure 6. Then the steps in this initialisation algorithm,
shown in figure 6, can be described as:

1. Each CPU registers its own local objects, and waits until all distributed objects from
the system definition have been registered in the registration service. For this part
the CG exploits the fact that it knows the total number of distributed objects inside
the system definition, when generating the code for each CPU.

2. Each CPU obtains references to remote objects with respect to the VDM-RT model.
Afterwards it registers an additional object, called a SyncToken, in the registra-
tion service in order to indicate that it has obtained all required references. Finally,
every CPU waits until all CPUs have obtained their remote references by waiting
until the total number of objects in the registration service is equal to the total num-
ber of distributed objects plus the number of CPUs.

3. Each CPU can start its individual main execution.

The third step indicates that each realised CPU has it own main execution, while on
the other hand a VDM-RT model has a single entry point as described in section 2. This
is addressed in the following subsection.

Fig. 6. Initialisation algorithm for each realised CPU

Entry Method of a VDM-RT model
In VDM-RT a global entry method from a class has to be set in order to interpret the
model. Afterwards, the interpreter creates an instance of this object on the virtual CPU
and starts this method. This raises a challenge for the CG, since the virtual CPU on pur-
pose is not generated to code, because it usually is used in order to model the expected
environment and store test results. In order to cope with this challenge a natural limita-
tion, in order to generate all Java code for the functionality of a distributed system, to
the modeller is put: The functionality of the modelled distributed system is not allowed
to depend on objects deployed to the virtual CPU.
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If the designer only uses objects deployed to real CPUs inside the entry method of
a VDM-RT model, these objects can be moved to the main execution of the realised
CPU they are deployed to. As an example if the entry method for a VDM-RT model is
as shown in listing 1.4, and the object called b1 is deployed according to listing 1.1,
then the code generated method b1.HelloWorld() is moved to the main method
execution of the realised cpu2. Currently this has to be carried out manually after the
code generation, but could easily be supported by the CG automatically by using the
DM.�

1 ...
2 public startDS: () ==> ()
3 startDS() ==
4 (
5 b1.HelloWorld();
6 );
7 ...
� �

Listing 1.4. Example of an entry method for a VDM-RT model

7 Discussion

7.1 VDM-RT Semantics for Distribution and Java RMI implementation

Both the VDM-RT model and the generated code that uses Java RMI have some com-
monalities and differences, that are important to address in order to understand the
challenges when realising the distribution aspects. Both af them support access to re-
mote objects transparently. Before the main execution starts, both are required to have
some kind of initialisation mechanism. Both send instantiated objects by their reference.
However, the direct access to public variables of a class and the multiple bus structure
cannot be supported in the generated code.

In order to preserve the semantics of the distributed aspects of VDM-RT as de-
scribed in section 3, the chosen Java RMI technology has to follow the same formal
semantics. An important difference is that Java RMI only uses a single BUS in order to
connect all the JVMs, while a VDM-RT model may consist of more busses. However,
the implementation of the system definition ensures that each CPU, a JVM, only has
access to the same objects as in the VDM-RT model. Additionally, a remote call forces
the calling thread on a CPU to wait for the remote object to execute its method on the
remote JVM. Hence from this point of view both the VDM-RT model and Java RMI
implementation behave in the same way.

As a consequence of the lossness in a VDM-RT model, multiple valid interpreta-
tions of the model may exists. However, the interpretation of a VDM-RT model is on
purpose deterministic even when modelling concurrency aspects [11]. Due to the loss-
ness in a VDM-RT and that the execution of Java code is non-deterministic, a CG may
generate Java code which may not follow the same execution path for each simulation
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of the same test case. However, each execution of the generated Java code shall be one
of the possible interpretations of a VDM-RT model. Thus it is acceptable that there will
be differences between the interpreter and the generated code for the distributed system.

7.2 VDM-RT Code Generator challenges

During the work with generating code for a VDM-RT model, a limitation of the VDM-
RT notion has been identified, which is related to modelling a distributed system in
which two CPUs are connected by multiple BUSses. In such a case VDM-RT does not
define which BUS a CPU has to use for communication, but picks an arbitrary BUS
deterministically. Then VDM-RT may provide a wrong feedback about the real time
aspects to the designer, if the BUSses have different communication speeds. Hence this
issue in VDM-RT also is relevant for a code generator. This is something where the
VDM-RT notion needs improvement. Additionally, global access to variables should
only be for the distributed objects declared inside the system definition. This is some-
thing that maybe should be changed in the VDM-RT language, in order to only make
distributed objects inside the system definition globally accessible.

The work described in this paper focuses on code generation of the deployment
aspects of VDM-RT and remote communication between objects deployed on different
CPUs. We do not, in the current version of the VDM-RT code generator, take timing
aspects into accounts. From this it follows that the code generator also does not support
periodic threads, which rely on timings information. The code generator does, however,
provide code generation support for all the concurrency mechanisms present in VDM++
as enabled by the work in [7]. Finally, the code generator does not support remote
access to instance variables or values, which can easily be circumvented using accessor
operations.

8 Concluding Remarks and Further Work

The work presented in this paper addressed the challenges how to generate code for
the distributed aspects of a VDM-RT model, which is a novel area of research. This
paper presented challenges and their solutions when using Java RMI in order to support
the network communication in a code generated distributed system. Additionally, some
limitations to both the code generator and the VDM-RT notion have been addressed and
discussed.

Further work may include to generalise the solutions presented in this paper, in
order to use another technology which is based on RMI, such as CORBA. In addition,
supporting the time aspects of both a CPU and a BUS in a VDM-RT model, during
code generation can be addressed. This may include to generate code towards concrete
CPUs. Then the code generator can generate code with time aspects, if it knows which
CPU it generates code for.

In [1] different parts of Java RMI are formalised using operational semantics. Hence
future work may include to compare and proof in which cases the semantics of distri-
bution are the same for both VDM-RT and Java RMI.
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The focus of this paper was to code generate a static distributed system, where new
connections and entities can not be introduced during run-time, modelled in VDM-RT.
However, future work can include research for code generating dynamic distributed
systems, where new connections and entities can be introduced during run-time.

Acknowledgments. The work presented here is partially supported by the INTO-CPS
project funded by the European Commission’s Horizon 2020 programme under grant
agreement number 664047.

References

1. Ahern, A., Yoshida, N.: Formalising java rmi with explicit code mobility. OOPSLA (October
2005)

2. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Concept and De-
sign. Addison-Wesley (May 2007)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, R.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series, Addison-
Wesley Publishing Company (1995)
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Abstract. Choosing the best hardware platform for an embedded system can be
difficult – especially when the success of the system relies on timing require-
ments. To address this, timing analysis is often used to determine how well a
system performs on given hardware platforms. In VDM-RT models it is possible
to specify the time it takes for a functional description to execute on a CPU that
runs at a user-defined speed. This timing information is particular important when
it is used in a Crescendo setting where the progress of time has significant im-
pact on the interaction with the physical environment. This paper illustrates how
performance estimations can be improved using timing information obtained by
executing code generated from a VDM-RT model. We measure the time it takes
to execute code generated functional descriptions on a specific hardware platform
and incorporate this timing information back into the model. This increases the fi-
delity of the model simulation since the timing information is based on executing
a real software implementation. We believe that for computation-extensive algo-
rithms, this approach can be a valuable way to determine the best use of different
hardware platforms.

Keywords: VDM, code generation, Timing analysis, C++

1 Introduction

Time often plays an important role in embedded system development and therefore
embedded system models often incorporate timing information to reason about system
performance. To estimate the execution time of algorithmic constructs, the VDM-RT
interpreter enables timing information to be inserted into the model [7]. Subsequently,
the model can be simulated to produce a log file containing all the time-stamped execu-
tion events such as operation invocations, swapping of threads etc. The log file can then
be analysed visually using the RT Log Viewer and timing requirements can be validated
against the log file [9].

VDM++ [4] extends the ISO standardised VDM-SL [3] with object-orientation and
mechanisms for modelling concurrency. VDM Real Time (VDM-RT) further extends
VDM++ with support for modelling of distributed embedded systems and introduces
a global notion of time. The system architecture in VDM-RT model is modelled using
special classes for CPUs and busses. CPUs are characterised by speed and scheduling
policy and allocate objects of active classes. Busses connect CPUs and enable commu-
nications at user specified speed and protocols.
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In VDM-RT execution of an algorithmic construct progresses time by a default
number of nanoseconds. The default time delays can, however, be overruled using the
cycles and duration statements, which enable specification of execution delays relative
to the processor speed or as an absolute time measure, respectively.

If the system must adhere to strict timing requirements the model can be annotated
with detailed timing information and simulated to check if it is able to meet the tim-
ing requirements. For large models, however, manual insertion of timing information
into the model is a tedious task. To address this, we propose a technology for automat-
ically annotating models with timing information based on measurements obtained by
executing a code generated version of the model. More specifically, we measure the
average time it takes for the code generated functions and operations to execute, and
we use this information to time annotate the corresponding functions and operations in
the model. This approach enables us to use a more time accurate version of the model
to make predictions about the time behaviour of the final version of the system. Fur-
thermore, the timing measurements obtained by executing the code generation version
of the model reflect the performance of the underlying hardware platform. Therefore,
we can use the outcome of simulating the time annotated model to compare different
hardware platforms against each other.

A similar approach is taken in [1], where an UML state chart model is translated
into a model suitable for timing analysis, enabling design time exploration of the tim-
ing performance of the model. We believe that our approach is more general due to
the expressiveness of the VDM-RT modelling language. Furthermore the support for
both simulation based and measurement based timing analysis in an automated setting
enables more detailed analyses to be carried out. Lastly we note that the ability to anal-
yse a model annotated with both measured, simulated and best guesses offers flexibility
during the design phase where many parts of the system is unspecified.

Structure of the paper Section 2 provides a brief introduction to the Overture plat-
form. Section 3 describes how the Overture platform has been extended to support au-
tomated time annotation of VDM-RT models. Section 4 presents the case study, used
for evaluating the extension to the overture platform. Section 5 provides an overview
of how timing estimates has been extracted for two different hardware platforms. Sec-
tion 6 summarises the case study timing results and experiments. Section 7 continues
with a discussion about the applicability of this approach in a Cyber-Physical Systems
(CPSs) setting. Finally, we present ideas for future work and conclude in Section 8.

2 The Overture platform

Overture works like most other modelling tools. First, the parser constructs an internal
representation of the model as an Abstract Syntax Tree (AST), and subsequently ev-
ery component interacts with the AST in some fashion: The type checker analyses the
model and reports errors to the user, the interpreter evaluates it and so on.

The Overture AST is generated using the ASTCreator tool. In addition to the nodes,
ASTCreator also provides mechanisms to walk the tree using the visitor pattern [5]. The
generated nodes also have functionality for manipulating the tree structure. This allows
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parts of the tree to be replaced or new nodes can be inserted into the tree structure. In
our work, we implement visitors to traverse the VDM AST and annotate the model with
timing related information. The details of how we do this are provided in subsection 3.3.

Below we describe how we have extended Overture with support evaluating the
performance of a VDM-RT model based on timing information derived from a code
generated version of the model. First, we outline the overall structure of the approach,
then we describe how we obtain the timing information, and finally we explain how we
use visitors to annotate the model with this timing information.

3 Extending the Overture Platform

The overall approach showing the two proposed prototype extensions and the relation
to the Overture tool is shown in figure 1.
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C++ Code 
with timing 

measurement

Timing report 
rt501

Robotech 501

Robotech 101

Timing report 
rt101

Timing
Backporting

Plugin

Overture Platform

VDM Interpreter
Modified AST
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Fig. 1. An overview of the process for annotating a VDM-RT model with timing information
based on measurements obtained from executing a code generated version of the model.

We have extended the prototype C++ code generator [6] with support to optionally
insert code that measures the time it takes to execute user-selected functions and oper-
ations in the generated code. The timing results produced by executing the generated
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code instrumented with timing measurements is then inserted into the VDM-RT AST
by injecting it using duration statements. This is done for all the operations and
functions selected by the user.

The process of inserting the duration statements is transparent to the user. These
modifications are applied internally to the VDM-RT AST just before it is executed by
the VDM-RT interpreter. The execution of the VDM-RT model produces a trace file
with all the time-stamped execution events, which can be further examined using the
VDM-RT Real Time Log Viewer [9].

3.1 Obtaining estimates of timing

Measuring the timing of a program running on a general purpose computer can be com-
plicated due to both hardware optimisations such as caching, branch speculation, and
the presence of an operating system preempting tasks, handling system interrupts, etc.
Several methods exists for obtaining the execution time of a program. These methods
can be divided into two categories: the measurement based and the analysis based [12]
methods.

Measurement based methods typically instrument the source code or the program
binaries with functionality to do the timing measurements. When the program is ex-
ecuted the entry and exit time of each function call is recorded using low overhead
logging. Afterwards a trace is produced which can then be inspected either graphically
or manually. The program is executed on real hardware or using a simulator, depend-
ing on the specific method being used. The advantage of using a measurement based
method is that it can easily be utilised on many kinds of hardware platforms. To this end
we note that running the VDM-RT interpreter and generating a VDM-RT trace file is
also a measurement based method, where the hardware is represented using VDM-RT
CPU and BUS classes.

The static analysis based methods, analyses the provided source code in order to
obtain upper bounds on the execution time of a function or program. Typically the static
analysis tools are employed in the context of embedded systems requiring hard real time
guarantees. However some of the platforms targeted by the Overture tool are general
purpose computers with a general purpose operating system, where no guarantee on
real time performance is given.

Each of the methods has their own advantages and disadvantages, the main focus
of our work is to obtain timing estimates on various hardware platforms. We select the
timing based method, since it can be used for all the platforms the code generator can
target.

Although commercial tools for measuring the execution time of a program such as
rapiTime [8] exist, we have chosen to implement our own small C++ library to support
time measurement of operations and functions. This library defines the TimedScope
C++ class, which can be instantiated in the beginning of a method generated from a
function or operation. Instantiating the TimedScope class, causes the class construc-
tor to be invoked, which records the current time in a buffer along with a method ID.
When the method returns the TimedScope object goes out of scope. This causes the
class destructor to be invoked, which again records the current time into the buffer.
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In order to calculate the execution times for each method invocation the time-stamps
recorded upon entering and leaving a method are subtracted. Currently the library does
not record which object the method is invoked for. This may, however, be an useful
extension that will make the log file produced by the generated C++ code be more
similar to the trace file generated by the VDM-RT interpreter.

3.2 Extending the Overture C++ code generator

We have extended the C++ code generator with a visitor responsible for inserting in-
vocations to the timing library described above into the generated code. For each user-
chosen function and operation a statement is inserted at the beginning of the corre-
sponding method, which instantiates the TimedScope class with an ID. When the
visitor is done inserting the time measurement statements a mapping of names to IDs is
generated. This allows names and IDs to be associated when back porting the timing in-
formation into the model. The ID is derived from the method and the name of the class
enclosing the method. The name generator also takes the argument types and the return
type of the method into account to guard against overloaded functions and operations
in the VDM-RT model.

3.3 Injecting duration statements

In order to obtain the timing information and inserting it into the VDM-RT AST an ID is
constructed for each function and operation in the VDM-RT model. The construction of
the ID follows the same approach as described in subsection 3.2. If the ID appears in the
log file generated by the timing instrumented C++ program, the mean value is loaded
and a duration statement is created and inserted into the corresponding function or
operation in the VDM-RT AST.

4 Case study

In order to demonstrate our work we apply it to an algorithm for detecting rows of mink
cages in a farm environment. The design questions investigated is to determine 1) how
the row detection algorithm performs with respect to timing on two different hardware
platforms and 2) the resulting timing related trade-offs when selecting the parameters
of the row detection algorithm. Even though the main objective of the algorithm is to
detect the rows of mink cages, a second, yet equally important objective, is to do the
row detection within the shortest time possible.

In this case study, the rows detected by the algorithm is used for navigating the
rows autonomously, which requires the information be updated regularly in order for
the robot to steer the vehicle accurately down the rows. Obtaining the timing informa-
tion for the individual operation calls in the row detection algorithm allows a trade-off
between row detection accuracy and execution time (hardware platforms) to be investi-
gated. Since the timing information is back ported into the model, exploring the design
space can solely be done in a modelling environment.
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The procedure taken for the development of this algorithm is to first collect the
sensor data from the farm environment, then perform an initial tuning of the proposed
algorithm such that the desired rows are detected, then determine the execution time of
the tuned algorithm on different hardware platforms, using the two extensions for the
Overture tool described in this paper.

4.1 Environment

The data for the algorithm has been collected from a mink farm environment, see figure
3. An example of the data collected from the LiDAR (Light Detection And Ranging)
can be seen in figure 2. The LiDAR uses a rotating laser beam to measure the time
of flight to reflecting targets and outputs a list of angles and an associated distance
measured.

Fig. 2. LiDAR data plotted as X,Y points.
The LiDAR is placed at an 45 degree angle
relative to the row

Fig. 3. Image of the farm environment, the
LiDAR is placed on the robot such that the
vertical wooden boards are scanned.

The dataset used for our experiment consists of 137 scans which have been sampled
from the farm environment. These scans contain both samples from the rows themselves
but also from the area outside of the rows.

4.2 Proposed algorithm for row detection

The algorithm used in this case study is based on RANSAC [2] for finding the best
matching fit to a model from a noisy data set. In our case the model is that of a line
represented by a point on the line and a direction. The RANSAC algorithm for line
detection selects a line based on two randomly sampled points from the set of points in
the scan and counts the number of points within a certain distance to the selected line.
This process is repeated for a selected number of iterations. The VDM-RT model of the
RANSAC algorithm is shown in in Listing 1.
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1 public extractLines : seq of Point‘PointM ==> seq of fit
2 extractLines(points) == (
3 reset();
4 while cur_iter < max_iter do (
5 let cur_l = getRandomLine(points),
6 inliers = getInliers(points, cur_l)
7 in
8 if(len inliers > cur_n_inliers) then
9 addNewBestFit(cur_l, inliers);

10 cur_iter:= cur_iter + 1; );
11 return fits;);

Listing 1. The main operation of the modified RANSAC algorithm

The RANSAC algorithm shown in Listing 1 is extended with an outer loop which
repeats the algorithm and removes the inliers from the set of points until it either con-
tains less than 5 points or 5 lines have been found. The VDM-RT model of the row
detection algorithm is shown in Listing 2.

1 public getRows: seq of Point‘PointM * nat1 ==>
2 seq of (Line‘LineM * nat1)
3 getRows(points,n_lines) == (
4 dcl p : seq of Point‘PointM := points;
5 dcl lines: seq of (Line‘LineM * nat1) := [];
6 for i = 1 to n_lines do (
7 if len p > 5 then
8 let mk_(line,inliers) = hd algo.extractLines(p) ,
9 outliers = inds p \ elems inliers in (

10 p := [p(out_idx) | out_idx in set outliers ];
11 lines := lines ˆ [mk_(line,len inliers)]; );
12 );
13 return lines; );

Listing 2. The main operation of the row detection algorithm

An example of the output of the row detection algorithm after being tuned for the
specific case can be seen in figure 4.

4.3 Experiment setup

The experiments performed aims to demonstrate the use of timing measurement for
obtaining estimates of the row detection algorithm timing. To this end we execute a test
consisting of running the row detection algorithm on the 137 LiDAR scans sampled
from the farm environment with the tuned parameters, which will allow us to explore
the timing performance on two different hardware platforms. The parameters for the
row detection algorithm are shown in table 1 and have been selected based on an initial
tuning of the parameters for the data set used.

The target hardware platforms are two rugged computers designed for agricultural
robotics use. The Robotech 501 (RT501) [11] and the Robotech 101 [10] (RT101). The
RT501 is equipped with a 2.8GHz Intel i5-3360M CPU and has 4GB of memory. The
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Fig. 4. Plot of the result of running the detect rows algorithm on a scan, where the two plotted
lines represent the detected lines which had the most inliers.

Name Value Description
n lines 4 The number of rows to find
tolerance 0.01m The maximum distance from an inlier point to the line
max iter 100 The maximum number of RANSAC iterations

Table 1. Parameters used for the experiments

RT101 is equipped with a 1GHz Freescale I.MX6 quad ARM CPU and has 1 GB of
memory. Both computers are running Ubuntu 12.04 operating system.

5 Timing measurements

In this section we first obtain the default execution time prediction from the VDM-RT
interpreter using the default timing information. Then we execute the code generated
model instrumented with timing information gathering on the two hardware platforms,
in order to measure the actual execution time of the code generated model. These mea-
surements are then backported into the VDM-RT model using the VDM-RT interpreter
extension described in this paper, in order to obtain a new prediction from the VDM-
RT interpreter using the hardware measured timings as input. Finally we change the
maximum number of iterations the row detection algorithm makes, and compare the
prediction of the execution time from the VDM-RT interpreter using the measured tim-
ing information, with a measurement of the actual execution time.

5.1 Executing the model using default times

As a first indication of the timing performance of the row detection algorithm, this algo-
rithm is executed on the test data using default time values, with the clock frequency set
to 2.8GHz and 1.0GHz to simulate the Robotech 501 and the Robotech 101 platforms,
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respectively. The results obtained from these two simulations can be seen in table 2 and
table 3.

Operation Mean Median Min Max stddev
getRows 3.6ms 3.1ms 2.6ms 5.6ms 866.4µs
extractLines 892.6µs 784.3µs 95.0µs 1.7ms 540.1µs
getInliers 8.8µs 7.8µs 866.2ns 16.8µs 5.4µs
getRandomLine 70.2ns 69.0ns 69.0ns 267.0ns 6.8ns
addNewBestFit 11.3ns 11.2ns 11.2ns 11.2ns 0

Table 2. Default timing obtained from the VDM-RT interpreter running the test with clock
frequency of 2.8GHz.

Operation Mean Median Min Max stddev
getRows 8.3ms 7.3ms 6.1ms 13.1ms 2.0ms
extractLines 2.1ms 1.8ms 236.4µs 3.9ms 1.3ms
getInliers 20.6µs 18.1µs 2.2µs 39.2µs 12.6µs
getRandomLine 163.7ns 161.0ns 161.0ns 623.0ns 15.8ns
addNewBestFit 26.2ns 26.2ns 26.2ns 26.2ns 0

Table 3. Default timing obtained from the VDM-RT interpreter running the test with clock
frequency of 1.0GHz.

The results obtained by executing the VDM-RT model show that the algorithm runs
2.8 times faster on a CPU with 2.8GHz clock compared to a CPU with 1.0GHz clock,
which is expected. Furthermore the results indicate that the execution time of the algo-
rithm varies based on the input. The histograms in figure 5 show the timing measure-
ments for each of the operations. In particular, it can be seen that the variation in ex-
ecution time comes from the getInliers operation, which varies between 866.2ns
and 16.8µs in execution time. The variation in execution time is important since the
approach in this paper only includes the mean execution time, a large variation tells us
that this operation may not be accurately modelled using a mean value.

5.2 Measuring time on the target hardware

The execution time of the different operations constituting the row detection algorithm
can be seen in table 4 and table 5 for the RT501 and RT101 platform.

When comparing the measured execution times on the hardware platforms with
those from the VDM-RT model execution a large difference is observed. For example
the mean execution time of the getRows operation is 45.9ms on the RT501 but the
prediction by the VDM-RT interpreter is 3.6ms which is more than a factor 10 off.
Furthermore the measured execution times show that the difference for the getRows
between the RT501 and RT101 is also approximately a factor of 10, where the predicted
difference was 2.8.
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Fig. 5. Histogram of the main operations of the row detection algorithm, obtained from the
2.8GHz CPU default timing.

Operation Mean Median Min Max stddev
getRows 45.9ms 45.8ms 37.4ms 58.8ms 3.9ms
extractLines 10.9ms 6.8ms 950.8µs 40.7ms 10.3ms
getInliers 103.2µs 56.9µs 7.2µs 2.3ms 147.0µs
getRandomLine 286.1ns 272.0ns 229.0ns 31.0µs 177.3ns
addNewBestFit 3.2µs 3.2µs 2.5µs 12.4µs 542.6ns

Table 4. Timing results for RT501 hardware platform executing the C++ generated model

Operation Mean Median Min Max stddev
getRows 422.2ms 423.4ms 348.3ms 535.6ms 34.2ms
extractLines 100.5ms 64.6ms 9.5ms 360.7ms 91.5ms
getInliers 935.9µs 532.3µs 71.0µs 7.2ms 1.3ms
getRandomLine 3.7µs 3.7µs 3.0µs 82.0µs 692.7ns
addNewBestFit 28.6µs 28.0µs 20.7µs 47.3µs 3.1µs

Table 5. Timing results for RT101 hardware platform executing the C++ generated model

5.3 Timing from VDM-RT interpreter using target measurements

The result of backporting the mean values of the operations (getRandomLine, getInliers
and addNewBestFit) to the VDM-RT model and executing the model using the
VDM-RT interpreter is shown in table 6 and table 7 for the RT501 and RT101 respec-
tively.
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Operation Mean Median Min Max stddev
getRows 41.4ms 41.4ms 41.3ms 41.5ms 59.1µs
extractLines 10.4ms 10.4ms 10.3ms 10.4ms 15.5µs
getInliers 103.2µs 103.2µs 103.2µs 103.2µs na
getRandomLine 143.0ns 143.0ns na 286.0ns 143.0ns
addNewBestFit 3.2µs 3.2µs 3.2µs 3.2µs na

Table 6. VDM-RT interpreter timing results using the RT501 timing backported to the model

Operation Mean Median Min Max stddev
getRows 376.3ms 376.3ms 376.1ms 376.5ms 88.1µs
extractLines 94.1ms 94.1ms 94.0ms 94.2ms 46.0µs
getInliers 935.9µs 935.9µs 935.9µs 935.9µs na
getRandomLine 3.7µs 3.7µs 3.7µs 3.7µs na
addNewBestFit 28.6µs 28.6µs 28.6µs 28.6µs na

Table 7. VDM-RT interpreter timing results using the RT101 timing backported to the model

We have chosen to only use the measured mean values for the operations which
are called by the extractLines operation. This allows us to explore how close the
VDM-RT interpreter prediction is to the actual mean execution time of the algorithm,
and will furthermore allow us to simulate with different algorithm parameters, such
as number of iterations, without having to re-measure the execution time on the real
platforms. Table 8 shows the execution time if we execute the algorithm with max iter,
from table 1, set to 50 instead of 100 for the RT501 experiments.

Operation Mean Median Min Max stddev
getRows 20.8ms 20.8ms 20.7ms 20.8ms 8.5µs
extractLines 5.2ms 5.2ms 5.2ms 5.2ms 4.8µs
getInliers 103.2µs 103.2µs 103.2µs 103.2µs na
getRandomLine 286.0ns 286.0ns 286.0ns 286.0ns na
addNewBestFit 3.2µs 3.2µs 3.2µs 3.2µs na

Table 8. VDM-RT interpreter timing results using the RT501 timing and max iter set to 50

Operation Mean Median Min Max stddev
getRows 24.2ms 24.4ms 18.7ms 31.3ms 2.5ms
extractLines 5.5ms 3.4ms 444.8µs 22.1ms 5.3ms
getInliers 104.0µs 56.8µs 7.0µs 2.1ms 148.4µs
getRandomLine 278.2ns 263.0ns 221.0ns 12.0µs 146.8ns
addNewBestFit 3.1µs 3.1µs 2.4µs 12.1µs 455.9ns

Table 9. Timing results for RT501 hardware platform executing the C++ generated model with
max iter set to 50
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A comparison of the times for the getRows operation in table 8 and table 9 shows
that the prediction made using the VDM-RT interpreter and the timing information in
table 4 with max iter set to 100, differs only by 16.5%. This implies that we in our case
can use the obtained timing information to determine time related impact of changing
some of the row detection parameters.

6 Summary of the case study

The timing information obtained in section 5 shows that the default prediction, using
2 cycles per instruction as timing input, is far from the measured results. One reason
for this is the performance of the C++ code generator, which does not output optimised
code. A second reason is that the default duration used for each statement by the VDM-
RT interpreter does not reflect the actual cost, because the interpreter instructions are
not a direct replicate of primitive CPU instructions. However the results obtained by au-
tomatically backporting the measured mean execution time, could be used to predict the
execution time of the algorithm running with a different set of parameters. This predic-
tion came close (within 16.5%) to the measured execution time. However the parameter
changed was directly related to the number of times the measured operation was called.
If we had changed a parameter which directly influenced the runtime of the algorithm,
e.g the tolerance in table 1 we would not see any difference in the predicted execution
time. However we believe that the automated approach makes it easy to make new tests
which can provide a better set of execution times for various parameter configurations.

Even though the predicted execution time (based on time measurements) is not ac-
curate in all cases, the difference between two platforms could still be predicted with
16.5% difference between the prediction and measurement. The prediction from the
VDM-RT interpreter using the default timing, showed that the difference in runtime
should be 2.8 but the measured execution times showed that there was a difference of
approximately 10 between the RT501 and RT101 platforms.

The results obtained from executing the VDM-RT interpreter using timing infor-
mation from the real platform allows us make more precise predictions on the required
performance of the selected hardware platform, while allowing us to explore the con-
sequence of changing the parameters of the algorithm and see both the effect on the
performance, e.g does it find the rows, and the effect on the required execution time.

7 Discussion

We now discuss the two extensions developed for the Overture tool. The extension for
the C++ generator, instrumenting the generated code with timing information measure-
ment calls, automates the process of measuring the execution time of operations and
functions. However care still has to be taken when defining the model to be executed,
for example, the methods measured must be called a number of times such that a proper
mean value can be calculated.

The extension made to the VDM-RT interpreter, where the timing measurements
are injected into the AST before execution, automates the process of annotating a
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model with execution time information. Operations or functions which varies in exe-
cution time, due to e.g for-loops are difficult to back port to the VDM-RT model. The
backported timing of a operation is a single mean value of all the measurements, and
therefore not useful for describing the execution time of an operation of function which
varies based on state or input. Here a solution could be to manually specify a duration
for the body of the for-loop.

We note that the two extensions are not coupled to each other, but instead solve
two different problems. The extension to the code generator makes it easy to generate
source code containing the timing measurement logic and the trace back to the model.
The VDM-RT interpreter extension provides the means to inject duration statements
into a given model, using a file containing the mappings of operations and functions
to the mean execution time. This means that any tool can provide the execution time
information, as long as the format is correct. This makes it possible to include models
which, for example, are generated to Java or manually translated into source code.

8 Concluding remarks

The two prototype extensions to the Overture tool presented in this paper, provide a
method for automatically obtaining timing estimates on real hardware platforms, and
automatically include the measured execution times back into the VDM-RT model. We
demonstrated the extensions on a row detection algorithm, where we obtained the mean
execution time of each operation and automatically backported the measured execu-
tion times into the VDM-RT model, and compared the measured execution time with
the VDM-RT interpreter prediction. The experiments conducted showed that we could
predict the execution time of the algorithm with a 16.5% percent accuracy using the
measured mean execution time.

The experiments performed are far from being conclusive and the extensions in their
current form have a limited use case, since they only provide operation/function level
inclusion of measured timing information. One improvement we want to investigate is
to create a platform execution time benchmark, which would measure the execution
time of each of the interpreter constructs such as statements and expressions on the
hardware platform using the Overture code generator. The measured time of each code
generated construct can then be used as the default value when executing a model with
the VDM-RT interpreter.

Another important aspect of the proposed extensions is how they are best used in the
design of Cyber-Physical Systems which typically include multiple hardware platforms.
Furthermore Cyber-Physical Systems include multiple controllers which have to meet
certain deadlines, here we believe that the proposed extensions can, together with the
Overture platform, provide a powerful basis for exploring design alternatives including
hardware platform selection.
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Abstract. Testing has been considered as the key approach to valida-
tion in VDM, as its languages include executable syntax. One of the
benefits of testing is that it allows engineers to obtain confidence by
examining concrete scenarios. Meanwhile, many practitioners are nowa-
days attracted by test-driven development (TDD) and its extensions for
constructing program code. These approaches also focus on testing, or
concrete scenarios. However, the difference is that test cases are also
considered as the key information that guides development (explained
as “Specification by Example”). In this paper, matching between VDM
and test-driven approaches is discussed through case studies with indus-
try engineers. Three topics are discussed: application of TDD to VDM,
model finding that supports TDD and VDM, and challenges for test-
based refinement in VDM.

1 Introduction

VDM has attracted a wide range of researchers and practitioners as a represen-
tative of formal specification methods. One of the key characteristics of VDM is
its executable syntax. It is supported well by tool functions, such as interpreters
and coverage measurement, in VDMTools [6] and Overture [5]. Thus testing is
the key approach for validation in VDM.

There are many advantages of testing as a means of validating formal spec-
ifications. For example, engineers can apply practices of testing that they are
familiar with in their activities for testing program code (while they are often
not so familiar with practices of theorem proving or model checking). Another
notable point is that testing allows for looking at concrete scenarios that give
much more confidence. In contrast, it is almost impossible to have real feeling
of confidence by only writing declarative predicates or by looking at “OK” mes-
sages from theorem provers and model checkers. This power of concrete examples
has been discussed in many different contexts, e.g., [16].

In communities for agile software development, practitioners have discussed
principles and methods for test-driven development (TDD) [8]. Here, test cases
(or examples) are considered as primary elements that guide the development
activities. They play similar roles to those of specifications and are not only
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for checking the constructed code. Recent extensions, such as behavior-driven
development (BDD), have honed this direction with principles such as “tests as
documents” and “specification by example” [3,7]. Test cases can give more con-
fidence and have less dependency on experience in programming or declarative
descriptions. Thus they can be widely used for discussions, e.g., with customers.

It could be interesting to focus on possible combinations of VDM and test-
driven approaches, both emerging from apparently different communities, since
the key factors of test cases or examples are in common. In this paper, this
matching is discussed through case studies with industry engineers, through the
author’s education and application experience with the industry e.g., in the Top
SE program [11, 12]. Three topics are discussed: application of TDD to VDM,
model finding that supports TDD and VDM, and ongoing challenges for test-
based refinement in VDM.

The remainder of this paper is organized as follows. The principles of TDD
and its extensions are introduced in Section 2. Then application of TDD to
VDM is discussed in Section 3. A trial is discussed about incorporation of a
model finder in the combination of TDD and VDM in Section 4. An ongoing
challenge is described with defining test-based refinement in VDM in Section 5.
Section 6 contains discussions and concluding remarks.

2 Test-driven Development and its Extensions

Assuming the readers of this paper are familiar with VDM and formal methods,
this section briefly introduces test-driven development (TDD) and its extensions.

We use a popular sample for test design, that is, a function that judges the
type of a triangle given three integer values for the lengths of the edges [14].
Below is the interface definition in the VDM language (VDM-SL or VDM++).
The result type is defined by an enum type for equilateral, isosceles, scalene, and
non-triangles.

In this section, the standard TDD for program code is introduced, however,
using the VDM syntax. The interface of the target function is defined as follows.

types

TType = <EQUI> | <ISO> | <SCA> | <NON>;

functions

judgeTriangle : int * int * int -> TType

judgeTriangle(a, b, c) == is not yet specified;

When an engineer uses test-driven development for this function, he/she will
start with a check list (TODOs) and test cases. The (initial) check list probably
includes items like “Can Judge Equilateral,” “Can Judge Scalene,” and so on.
Suppose the engineer thinks the equilateral item is the easiest. Then he/she
designs and writes a test case for it first, e.g., using VDMUnit:

TestEquilateral : () ==> ()
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TestEquilateral() ==

assertTrue( judgeTriangle(5,5,5) = <EQUI> );

The engineer sees that this test case fails, obviously as the executable part of
the function is not given. He/she then concentrates on writing code to pass it.
The code can even be fake, e.g., just write return <EQUI>, if he/she thinks the
problem is too difficult to write clean code that works (though this is not the
case in this simple problem for explanation).

After passing the first test case, the engineer chooses another item in the
check list and writes a test case, e.g., for a scalene triangle, which fails. The
executable part is then generalized a little more by this “triangulation.”

These small cycles are repeated until the people involved have confidence
about the realization of the function. Each cycle may include extraction of
functions or operations found necessary as well as refactoring. Thus, the design
evolves through the cycles rather than being fully predicted before coding.

The first point of this process is to have quick feedback with small cycles. In
other words, one should avoid writing long code without any checks, as it can
result in code that mysteriously works for some test cases, but not for others.
Such code entails a lot of effort to debug and rollback.

The second point is to use and discuss concrete test cases or examples. Cus-
tomers (non-programmers) can understand and discuss the examples with con-
fidence if they are about UI-level functions. On the other hand, even experts
may assign different meanings to general expressions or easily overlook deficien-
cies due to careless mistakes or the complexity of the problem. Human-readable
representation of test cases is sometimes used to realize principles called “Tests
as Documents” and “Specification by Example” in behavior-driven development
(BDD) or acceptance test-driven development (ATDD) [3,7].

This paper omits discussing the details of other essential aspects of TDD and
its extensions, such as focus on value with high priority, avoidance of unnecessary
generalization, as well as exploratory design through refactoring.

3 Application of TDD to VDM

There seem to be no reason that invalidates the rationales for TDD when they
are applied to VDM specification, not program code. The author had a case
study with an engineer who wanted to investigate this point. He originally had
a feeling that TDD can be a good way to learn VDM, which enables to start
with small steps while getting quick feedback through execution.

This paper does not give theoretical or empirical support for such a claim
about the effectiveness of TDD, as in studies such as [9]. Below, the differences
between program code and VDM specification are discussed.

3.1 TDD Process for VDM

TDD can be applied as it is for the executable part, i.e., the explicit descrip-
tion, in functions and operations in VDM. For the other part, i.e., the implicit
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description, it is also possible to use TDD by focusing on the functions that
represent pre- and post-conditions.

Below is an example of test cases for the post-condition function of the
judgeTriangle function defined in Section 2.

TestJudgeCorrectIsoscelesResult : () ==> ()

TestJudgeCorrectIsoscelesResult() ==

assertTrue( post_judgeTriangle(5,3,5,<ISO>) );

It is originally up to the modellers whether to write the explicit part first or
the implicit part first. One can gain more confidence by starting with the more
concrete explicit part. Or, one can start with writing what is required without
worrying about “how”. In any case, one can follow the TDD principles, clarifying
the next TODO, defining a test case for that, and write the corresponding part
of VDM.

3.2 Notes on Testing Conditions

Even though TDD can be applied in the same way, it can be more effective on
the declarative specification of constraints, i.e., pre- and post-conditions. It is
possible to keep the same discussion for invariants, though concrete examples
are omitted in this paper. Below, key points discussed in the case study are de-
scribed, which do not essentially depend on TDD or test-first but are significant
as principles for testing of conditions.

Value of Small Steps It is somewhat obvious that any part of description
should receive feedback as soon as possible before being extended into a larger
one. Below is an example of post-condition with a fault for the triangle sample.

post

a <> b and b <> c <=> \result = <SCA>

This condition lacks c <> a, e.g., accepts the result <SCA> for (a,b,c)=(5,3,5).
This can be detected by testing the post-condition function, if test cases such as
the following is used:

TestJudgeIncorrectScaleneResult : () ==> ()

TestJudgeIncorrectScaleneResult() ==

assertFalse( post_judgeTriangle(5,3,5,<SCA>) );

There is a higher possibility of finding the fault if engineers try to define test
cases for situations in which the post-condition denies wrong results.

When an error is detected and suggests something is wrong, debugging is
much easier in smaller steps, compared with the full specification constructed
without any validation, such as:
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post

a <> b and b <> c <=> \result = <SCA>

and

(a = b and b <> c) or (b = c and c <>)

or ... <=> \result = <ISO>

This post-condition becomes false in the case of c=a. For example, it even rejects
the correct result <ISO> for (a,b,c)=(5,3,5), which can be a kind of mystery
especially for those who are not so familiar with logics.

The principle of small steps, in other words, unit testing on each component
formula, can add more confidence and make the debugging easier.

Weak Post-conditions It is more likely to have weak post-conditions that
accept wrong results, for example:

post

\result = <SCA> => a <> b and b <> c

This condition does not reject, for example, the result <SCA> for (a,b,c)=(5,3,5).
If such a weak post-condition is used to check results from the explicit part,

it does not cause an error or help detect a fault. This occurs silently, and it is
likely no one would investigate the details of this “test pass.” Thus, testing the
pre- and post-conditions, not only testing the explicit part using the conditions,
is significant for reliability.

This silent false-negative pass of test occurs only with weak conditions. For
example, too strong conditions cause a false-positive test failure and are thus
investigated. As weak conditions mean less fault-finding capability [15], it is
worth recommending making test cases that check whether post-conditions can
reject wrong results expectedly.

4 Model Finding for VDM and TDD

4.1 Motivation and Approach

TDD completely relies on the design of test cases. Although a check list can start
with easy examples, it should eventually become complete enough for the people
involved to have confidence in achieving the expected value. The fundamen-
tal methods for testing are helpful, e.g., equivalence partitioning and boundary
analysis, but require context-specific applications and discussions, e.g., what are
the partitions in our case? Test cases such as (a,b,c)=(5,3,5) are actually
derived results. The test designs, or the intentions behind the cases, are a target
of discussion and validation, e.g., try at least one case of c = a && a <> b.

The “test design ” discussed above is a specification of the test suite, e.g.,
“include one test case for isosceles triangles with a = c.” The specification of
the function also matters as a test oracle that determines whether the expected
output values are correctly defined. Thus it is valuable to derive or assert test
cases with formal properties as needed.

Given the above motivation, the author created a prototype of the following.
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– A language that add test cases and test designs in addition to the specifi-
cation of functions and operations in VDM. The language design is inde-
pendent of the target specification or programming language, and currently
instantiated as extensions for VDM and Java.

– A tool based on the language that generates or validates test cases (exam-
ples). The current prototype was built quickly by using a model finder, or
a constraint solver, Alloy Analyzer [1], with simple mechanisms of symbolic
representation to mitigate the problem of state explosion.

4.2 Sample Scenario

Here, the language and tool are illustrated with the triangle sample. As the
first step, suppose that non-positive values for the input (a,b,c) are considered
invalid, rather than valid input that makes a non-triangle. In this case, the tool
generates test cases that include only positive values for the three arguments:

pre

a > 0 and b > 0 and c > 0

a b c

2 3 10
19 20 0 [LowerB]
· · · · · · · · ·

The choices of the values are arbitrary. In the second line, the value for c accom-
panies the tag “LowerB” (for lower boundary). In this simple case, the tool can
understand the constraints bound by constant values and can attach the tag.
The tool may generate the output value (TType) as well, but does not do so by
default as arbitrarily wrong output values are not so meaningful.

The tool also accepts a command to generate test cases with invalid input,
attaching tags for invalid values:

a b c

-2 [Under] 10 3
-1 [UnderB] 5 -8 [Under]
· · · · · · · · ·

Suppose we add part of the postcondition for equilateral triangles. The tool
then starts to include the result in the output (for the valid input):

post

a = b && b = c => \result = <EQUI>

a b c \result

3 3 3 <EQUI>

1 [LowerB] 3 5 <NON>

10 9 3 <EQUI>

· · · · · · · · · · · ·
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As expected, result values are arbitrary for all cases except for the first row that
matches the left side of the implication (a = b && b = c). The tool applies a
heuristic that automatically adds a test design that includes at least one case
that matches the left side of the top-level implication formula.

Suppose an engineer had a test case already defined and agreed to by people
involved, e.g., consumers of this function. He/she can add the test case with a
tag and the case is then always included in the result of the tool with the tag:

example \"ex-equi" a=5 && b=5 && c=5 && \result=<EQUI>

a b c \result PROP

5 5 5 <EQUI> [ex-equi]
3 3 3 <EQUI>

1 [LowerB] 3 5 <NON>

10 9 3 <EQUI>

· · · · · · · · · · · · · · ·

This is an extended syntax from the current one of VDM.
Confidence in the meaning of the postcondition can be increased by using

a command to show counterexamples that show wrong execution results from
valid input, i.e., cases that satisfy the pre-condition but not the post-condition:

a b c \result

3 3 3 <ISO>

5 5 5 <NON>

2 2 2 <SCA>

· · · · · · · · · · · ·

From a different aspect, the language allows test design descriptions to be
given, primarily in the form of partitions. The following is a sample of a test
design description, that is not only partial but also naive.

partition

\"p-equi" a = b && b = c, \"p-sca" a <> b && b <> c,

\"p-iso1" a = b && b <> c, \"p-iso2" b = c && c <> a,

\"p-iso3" c = a && a <> b

}

The scalene partition lacks c <> a and is thus not disjoint with the third isosceles
partition. The following is a possible result table.

a b c \result PROP

3 4 5 <EQUI> [p-sca]
5 5 4 <ISO> [p-iso1]
9 3 3 <NON> [p-iso2]
4 7 4 <NON> [p-sca,p-iso3]
5 5 5 <EQUI> [ex-equi,p-equi]
· · · · · · · · · · · · · · ·
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The tags help a lot to see which case is in which partition(s), and in this case
there are unexpected multiple partition tags in the fourth row. In fact, the above
partition also lacks the condition to compose a triangle, which may be found
similarly when the partition for non-triangle is added.

It is notable that this language and tool have a different, complementing
objective from the trace specification in VDM and its tool support. Rather than
generating numerous test cases exhaustively, the tool supports understanding
and human validation of the test design.

4.3 Current Status

The presented language and tool mix specification, test design, and test cases to-
gether with a model finder. This approach enables quick feedback in an iterative
process (called Spec-Test-Go-Round).

The prototype implementation was done for the Java version, and tested
with over 60 industry engineers in the form of a one-day seminar. The approach
received positive feedback in terms of the direction it provides as well as the
applicability for different tasks in TDD or formal specification. It is also no-
table that the seminar received very positive feedback as it mixed knowledge
and principles from apparently different communities. The most critical issue is
performance or scalability as the current implementation employs some simple
heuristics with an existing model finder. More detail of the prototype and the
seminar can be found in [10].

5 Test-based Refinement

In another case study with an engineer, a lightweight and practical way for re-
finement was discussed. As software development involves models of different
abstraction levels, it is essential to consider refinement in some form, i.e., con-
necting models of different levels in a systematic, verifiable way.

5.1 Motivation

B-Method [2] and Event-B [4] are good targets of discussions on refinement
with modelling paradigms similar to that of VDM. In these methods, a part
of invariants declares relationships between variables in the abstract model and
those in the refinement model (called “link invariants” or “gluing invariants”).
Thus, correspondence between states in the two models is clarified and verified to
be kept consistently through state changes. Correspondence between operations
or methods in the two models is also clarified, too, and validated with specific
constraints, e.g., guard conditions do not become weak in the refinement model
and thus break invariants proved in the abstract model.

Below, three issues are discussed that are related to this kind of formal re-
finement rules.
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First, it is difficult for beginners to plan or understand refinement steps that
are designed to align with this kind of rules. For example, refinement basically
eliminates possibilities of transitions, in other words, decreases non-deterministic
behaviors. Engineers may want to just start with an intuitively abstract model
that defines the system behavior only in the case of success, without talking
about anything related to failures. However, in Event-B for example, the first
model should declare whether the possible result is either a success or failure,
defining transitions that include those equivalent to or have more possibilities
than the actual transitions. Therefore easy explanations like “you can go from
abstract to concrete” do not hold.

The above discussion does not mean to go against the classical view on re-
finement, which has been proved very useful with a return on investment in
correctness by construction. Though, there is a gap from the current practices
in which UML models with multiple abstraction levels are constructed. Even if
the models follow some systematic rules, they may be different from the rules de-
fined in formal specification methods. Therefore, in this study, enabling flexible,
user-defined refinement rules is considered.

Second, the refinement rules sometimes define constraints over internal infor-
mation (data structure, events, etc.). Because such internal information is often
a “mock-up” in abstract models [13], investigation of constraints over internal
information seems not essential in terms of insights into and impacts on the
development process. Therefore, in this study, refinement that only define con-
straints over the observable part of the model is considered (how the disclosed
functions and operations behave in response to requests or events).

Finally, another essential point is that refinement shares the same issue dis-
cussed in this paper: obtaining confidence with declarative link invariants is very
difficult. Therefore, in this study, defining refinement constraints in terms of test
cases is considered.

5.2 Approach

A case study using VDM is conducted to try a refinement method that deals with
the three issues. The basic idea is to have explicit refinement constraints, which
connect two models, only in terms of test cases. Internal data structures and
behaviors are free from specific rules forced by a method and thus transformed
in various ways, as long as the observable part is refined adequately.

Starting Example As a very simple example, consider the following login
operation.

types

Authenticator = token;

operations

public login : token ==> ()

login(authenticator) == ...;
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Suppose this is the first model as the result of system analysis, in which opera-
tions provided by the system are first defined with conceptual vocabularies. In
this case, design of the authenticator is abstracted away and the token type is
used.

Some test cases contain a call of this disclosed operation.

operations

public test1A : ...

test1A() ==

( ...

login(mk_token("tom"));

... )

In the next step of early design, a decision is made to use a user name and
a password as the authenticator.

types

Authenticator ::

username : seq of char

password : seq of char;

operations

public login : Authenticator ==> ()

login(authenticator) == ...;

Then, the corresponding test cases can be defined that call the refined form
of the operation.

operations

public test1A : ...

test1A() ==

( ...

login(mk_Authenticator("tom", "tompwd"));

... )

The observable operation is refined from a conceptual systematization level
to an early design level. The refinement method only requires defining a rigorous
mapping between the test cases. In the above example, the presented parts (the
lines calling login) of the two test cases are intuitively the same. Specifically,
the arguments of the calls are conceptually the same, referring to the same user
“tom,” though the refinement one has more detail (password) in a different type.
We can formalize this rule to define correspondence between the arguments to
the login operation in the two different models, as follows.

match : MODEL1‘Authenticator * MODEL2‘Authenticator -> bool

match(a1, a2) ==

exists pwd : seq of char &

a2 = MODEL2‘mk_Authentication(a1, pwd);
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If mappings for the omitted parts in the test cases are also defined, then there is
a rigorous mapping between the two test cases, in a user-defined way. Thus, test-
based refinement has the potential to allow for flexible refinement that requires
the minimum level of consistency between models with different abstraction
levels in a user-defined way.

Current Status We are still accumulating case studies that connect two models
with test cases as in the example. For instance, sometimes we want to connect a
precondition in a model and an input check behavior that throws exception in the
refinement. This approach requires clarification into a generic, repeatable method
and evaluation through experiments. We are now extracting rules, including the
following.

– Each model has a list of functions or operations disclosed to and accessible
from the outside.

– Each model has a list of test cases and they manipulate only the observable
functions and operations.

– Each refinement model defines links between observable functions and oper-
ations in the refinement and those in the abstract model.

– Each refinement model defines links between test cases in the refinement and
those in the abstract model.

6 Concluding Remarks

In this paper, further roles of test cases were discussed, not only verifying the
explicit part of VDM specification after its construction. The author believes
this direction will help with the use of VDM as well as with connecting with
practitioners because of the essential role of testing in VDM as well as increasing
interest in test-driven approaches by practitioners.
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Pacemaker Parameter Tuning using Crescendo
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Abstract. We apply collaborative model-based techniques to an aspect of the
design of an artificial cardiac pacemaker. Our co-model consists of a pacemaker
controller represented in the VDM-RT notation, linked with a model of the heart
electrical activity represented using signal models in the 20-sim tool. We ex-
tend and improve the architecture of a previous co-model to allow tuning of
design parameters for a noise detection function that controls a mode switch.
Our experience leads to recommendations for design space exploration support
in tool chains for cyber-physical systems, including enhanced post-processing
of co-simulation outcomes, and the ability to state and evaluate cross-simulation
predicates.

Keywords: pacemaker, co-modelling, co-simuation, design space exploration,
VDM, 20-sim, overture

1 Introduction

In order to gain confidence in the trustworthiness of Cyber-Physical Systems (CPSs),
it is necessary to combine heterogeneous models in a disciplined way. For example,
ICT and software engineers who naturally use rich discrete-event (DE) models must
collaborate with engineers who use continuous-time (CT) techniques suited to the de-
scription of the controlled plant and environment. A goal of the Cyber-Physical Lab at
Newcastle University3 is to facilitate collaborative modelling and simulation, in which
engineers to work in the most expressive notations for the cyber and physical elements
of the particular problem, and allowing trade-offs across the DE/CT divide.

The DESTECS project4 developed a framework for collaborative designs (called
co-models) composed of models of DE (typically loop and supervisory controller) and
CT (typically plant/environment) elements expressed in different formalisms. Recon-
ciled operational semantics for the two formalisms allows the constituent models to run
in their own simulators, while a co-simulation engine manages the synchronisation of
time and data between them under the control of an external script that can represent
environment or user choices. Co-models are created and simulated using the Crescendo
tool5. Methods have been developed for the construction of co-models [1], patterns
for fault tolerance co-modelling have been created [2], and there is support for Design
Space Exploration (DSE) by multiple co-simulation and ranking of co-models [3]. The

3 http://research.ncl.ac.uk/cplab/
4 http://www.destecs.org
5 http://crescendotool.org
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approach and tools are being validated in industry on applications including transporta-
tion, heavy machinery and high-speed paper processing [4].

Medical applications represent an important and challenging domain for CPS design
technology [5, 6]. In order to provide a common basis for evaluating emerging meth-
ods and tools, McMaster University and Boston Scientific released a natural language
specification for a previous generation artificial cardiac pacemaker [7], inspiring several
studies on the use of formal DE-only modelling [8–11]. However, it is appropriate to
consider co-modelling in this context, since confidence in such a medical CPS requires
models of diverse aspects such as software, electrophysiology and even fluid flow.

An artificial pacemaker is intended to replace or compensate for incorrect func-
tioning of the natural heart. Our concern is therefore to ensure that “faulty heart plus
pacemaker” approximates the behaviour of a “healthy” heart. The system of interest
is therefore not the pacemaker alone, but encompasses the pacemaker and the heart.
This combined system therefore has cyber and physical elements. The purpose of the
co-model presented here is to enable exploration of the effects of pacemaker designs
on the performance of this system of interest. The co-model therefore consists of a
VDM model of the pacemaker controller and a 20-sim model of heart electrophysiol-
ogy as this structure reflects the cyber and physical characters of these two elements.
The work presented here builds on a previous co-model [12] which served as a proof-
of-concept for linking an abstract CT model of heart electrophysiology in 20-sim with
a VDM model of a pacemaker controller. This model has been revised in order to ex-
ercise the application of modelling patterns developed in DESTECS [4], and to explore
the capabilities of the Crescendo tool for DSE across the DE/CT boundary.

Section 2 presents background in the pacemaker challenge problem and co-modelling.
Section 3 presents the co-model in terms of its constituents; the heart (Section 3.1), the
pacemaker (Section 3.2), and the co-model interface between them (Section 3.3). The
design space exploration and its results are described in Section 4. Finally, Section 5
describes the limitations and of the modelling performed and identify future research
directions.

2 Background

In this section we present a simplified view of heart functioning (Section 2.1), and
briefly recall the cardiac pacemaker challenge (Section 2.2). We then describe the solu-
tion technology that we explore in our work, specifically co-modelling and design space
exploration (Section 2.3).

2.1 The Heart

To pump blood around a body the heart must rhythmically contract and relax its upper
and lower chambers (atria and ventricles respectively). The atria contract first, pumping
blood into the ventricles which contract shortly afterwards, pumping blood around the
lungs and the rest of the body. The contraction timing is controlled by electro-chemical
nodes, the Sinoatrial Node (SA node) and the Atrioventricular Node (AV node). An
electrical discharge from the SA node causes a contraction of the atria and, after a short
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delay while traversing an internodal pathway, leads to a discharge of the AV which
causes contraction of the ventricles. When the system of natural regulation of heartbeat
is impaired, an artificial pacemaker may be used (we will use the term “pacemaker” to
refer to the artificial device unless stated otherwise).

2.2 Cardiac Pacemakers and the Pacemaker Challenge

An artificial cardiac pacemaker is an implantable medical device that can deliver elec-
trical impulses to a heart via electrodes, stimulating heart muscles in order to regulate
the rhythm with which the heart beats. A pacemaker comprises a pulse generator and
a number of electrodes; electrodes monitor intrinsic electromagnetic activity across the
heart, and based on some computation, deliver electrical impulses when necessary. A
pacemaker is prescribed to a patient to maintain a healthy heart rate when the natu-
ral rhythm of the heart is inadequate, which can be caused by a number of medical
conditions.

Modern pacemakers are highly programmable, and can be tuned by a cardiologist
to ensure the optimum parameters for a given patient. A pacemaker can operate ac-
cording to a number of pacing modes, and can switch between modes based on the
circumstances of the patient at any given time. Each mode can restrict which parts of
the heart are monitored for intrinsic activity, how the pacemaker should respond to in-
trinsic activity, and which parts of the heart can be artificially stimulated. Each mode
can be categorized according to its response to intrinsic activity: synchronous pacing
modes detect when the heart beats sufficiently without assistance and do not initiate
stimulation unless the heart fails to do so, whilst asynchronous pacing modes deliver
stimulation at a predetermined interval, regardless of any intrinsic activity. For example
the simulation output in Fig. 3 contains an over-pacing event witnessed by two close
pulses on the first and third traces after the pacemaker had been in an asynchronous
mode for a short period. Since synchronous pacing modes only stimulate when strictly
necessary, it is preferable to operate in this way whenever possible.

A natural language specification for a previous generation artificial cardiac pace-
maker has been made available from the Software Quality Research Lab at McMaster
University and Boston Scientific, in an effort to provide a common basis for evaluating
emerging methods and tools. The specification is released as part of The Pacemaker
Formal Methods Challenge, the first challenge issued by the North American Software
Certification Consortium. We use the specification throughout our work as a guide to
design decisions, and in particular we focus on the description given to how a pace-
maker should respond when the signals it monitors are subject to noise.

A co-model provides a highly detailed description of the CT environment with
which the pacemaker must interact. The fidelity of the CT model makes co-simulation
suitable for observing the behaviour of the pacemaker over short periods of time (the
order of tens of beats) in close detail, rather than for observing the long-term behaviour
of the device. For this reason, a co-modelling environment is well suited to demonstrat-
ing the reaction of a pacemaker through the onset of noise. In addition, noise detection
algorithms can be tuned for optimization, and exploration of parameter values requires
exercising the DSE capabilities within the Crescendo tool.
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2.3 Co-modelling and Design Space Exploration

A co-model consists of a DE model of a controller and a CT model of the plant, with
a contract describing controlled and monitored variables, named events (raised in the
CT model and handled by the DE model), and shared design parameters. During co-
simulation, user and environmental interactions are governed by a script. We use the
Vienna Development Method (VDM) formalism for DE-side, and bond graphs for CT-
side modelling. VDM is a a rich language with features for modelling object-orientation
and concurrency, and real-time distributed embedded systems [13]. VDM models define
state variables over abstract data types, and functionality via state-changing operations.
VDM simulation is supported by the Overture tool6. CT models are built, simulated
and visualised using the 20-sim7 tool [14]. It allows the dynamics of the plant to be
modelled in several ways, including signal type connections between equation blocks,
and the powerful domain-independent bond graph [15] notation.

Previous work in embedded systems design, such as BODERC [16] and Model-
ica [17] provides modelling environments and libraries for simulating physical and
computing components. Approaches to DE/CT co-simulation are defined by Nicolescu
et al. [18], and there are several co-simulation architectures including Cosimate8 and
HLA [19]. Ptolemy II [20] offers DE and CT simulation within a single tool, though
lacking the object-orientation offered by VDM and the component libraries offered by
20-sim. Work on time synchronisation between DE and CT models is described in hy-
brid systems literature, e.g. [21]. The DESTECS approach using the Crescendo tool is
distinctive in including a rich but abstract DE-side modelling language, and in manag-
ing co-simulation of heterogeneous models in their “native” tools. Simulation is a vital
tool in exploring design spaces and discovering key properties; there is also a signifi-
cant and growing body of work on hybrid systems verification using approaches such as
that of KeYmaera [22], which holds out the promise of symbolic verification of known
correctness properties (for example, related to safety).

A key feature of the Crescendo tool is its support for Design Space Exploration
(DSE) through its Automated Co-model Analysis (ACA) functionality [23]. When de-
veloping a model in Crescendo it is possible to define a set of shared design parameters
(SDPs), each SDP has its value defined in the simulation launch configuration and can
be used in both the DE and CT models. This makes it simple for the modeller to ex-
periment with different parameter values without having to edit the models themselves.
The ACA feature of the crescendo tool allows the modeller to define a range of values
for each SDP, the tool will then proceed to sweep over all combinations of parameters
performing a simulation for each. The details of each simulation including its launch
configuration and any results in the form of log files are saved in separate subdirectories
for later analysis.

6 http://www.overturetool.org
7 http://www.20sim.com
8 http://www.chiastek.com

119

Pacemaker Parameter Tuning using Crescendo



3 Co-model

As indicated in Section 1, the purpose of the co-model is to allow the exploration of
alternative pacemaker designs on the overall performance of a cyber-physical system of
interest composed of the heart and the pacemaker. Our co-model therefore has two main
constituents - a heart model and a pacemaker controller model – linked by an interface
contract. These elements are described below.

3.1 Heart

In our previous work we modelled the upper and lower chambers of the heart as if they
were a pair of charging and discharging capacitors [12]. The capacity of the capacitors
and charging rates effectively determined the rhythm of the chambers and the current
flowing in and out of each capacitor provided the signals for the ECG output. The result-
ing model was both complex, containing feedback signals from the lower to the upper
chamber that had no analogue in a real heart, and was also hard to tune, specifically
determining the correct pacing current and period to trigger the expected response in
the chamber.

This new model adopted a different approach, attempting to produce an ECG like
signal by mimicking more closely the cells (myocardia) and fibres of the heart muscles.
The model is predominantly composed of replicated simple models of myocardia. In
reality, the surface voltage of each myocardia derives from the relative concentrations
of a number of ions that flow into and out of the cell, controlled by gates. High fidelity
models of these ionic flows have been produced [24], but this level of detail and compu-
tational cost is not necessary for our purpose as the profile of the surface voltage (action
potential) of a myocardium over time and in response of external stimulation is well
known. Thus a myocardium may be modelled by replaying the voltage profile from a
lookup table or, in the case of this model, a simplified equation.

For this work the myocardia model consists of two submodels, an ‘actionPotential’
block and a trigger block, Figure 1. The purpose of a cell’s trigger block is to observe
the action potential of the myocardia immediately adjacent to it and to determine if two
conditions are true. The first condition is that this cell is out of its refractory period, this
being a time during which stimulation from the outside will not cause it to depolarise
which results in contraction and stimulation of the surrounding cells. If this is true then
the trigger considers the action potential of the surrounding cells, if this is above a set
value then the trigger sends signals to the action potential block that initiate it to sim-
ulate depolaristion. The action potential block produces a simplified action potential
profile during depolarisation that is based upon a sine wave, positive half only. There
are two refractory periods during the depolarisation of a cell, the Effective Refractory
Period (ERP), during which the cell can not be re-stimulated, and the Relative Refrac-
tory Period (RRP) which follows ERP and during which the cell may only depolarise
under certain conditions [25]. The action potential block uses the signals from the trig-
ger block to determine whether it is between ERP and RRP or if it has passed through
both of these periods, in the former case it simulates an action potential that is reduced
in both duration and amplitude, in the latter case the simulated action potential achieves
both its maximum amplitude and duration. Both the trigger and action potential blocks
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Fig. 1. Non-specialised myocardium model

Fig. 2. Overall CT model of the heart

are modelled using signal type communications as there is no energy flow between the
cells and so it is not necessary to use the bond graph capability of 20-sim.

The heart model consists of two strings of the myocardia models, five at the top of
the model representing the atria, which are connected to the start of seven sub-models
below representing the ventricles (Figure 2). At the start of each of these strings of mod-
els, there is a specialised myocardia model, labelled the sa node and the av node.
These are identical to the standard myocardia except that they have a modified trig-
ger model that contains a timer, which, in the absence of an external stimulation from
another cell, triggers the cell to depolarise at the intrinsic rhythm for that chamber of
the heart. During normal heart operation, the timer in the av node triggers that cell
to depolarise, this triggers each of the cells in the atria in turn to depolarise. cell1 4
depolarising is sensed by the trigger in the av node, which then itself depolarises after
the a period of time called the “AV delay”. The cells of the ventricle then depolarise in
turn, completing one cycle of the heart.

The heart CT model is able to simulate three types of faulty behaviour: two heart
arrhythmia, sinus bradycardia and heart block, and electrical noise injected onto the
pacemaker leads. Sinus bradycardia is implemented via a modified trigger sub-model
in the sa node so the node has a slower than normal intrinsic rhythm, heart block
is implemented via a modified trigger in the av node such that it ignores the action
potential from cell1 4 in the atria. The electrical noise, which may have multiple
sources such as the patient’s environment or their chest muscle activity[26], is injected
directly into the two pacemaker lead models, atrial lead and ventricle lead
in Figure 2. A noise profile may be selected in the debug config, this profile determines
when and how much noise is added to the signal detected by each of the pace maker
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Fig. 3. Heart model output with noise injected onto the atrial lead

leads. Figure 3 shows the output of the heart model, the second and third plots on the
graph show the signals returned to the pacemaker via the atrial and ventricle leads, a
strong noise signal, with amplitude greater than the signals from the heart, may be seen
on atrial lead between three and five seconds. These noise signals that will be used to
test the mode changing accuracy of the pacemaker model during the DSE experiment.

3.2 Pacemaker

Specification The pacemaker specification outlines various constraints on the behaviour
of an artificial cardiac pacemaker. Included in the specification is a description of how a
pacemaker should respond when the electromagnetic signals being monitored are sub-
jected to interference (noise). It is defined that:

“In the presence of continuous noise the device response shall be asynchronous
pacing” [7]

In order to model this behaviour, the modelled controller must be able to determine
when the signals it is monitoring are corrupted by electromagnetic interference, and be
able to acknowledge when this noise extends over some period of time. In the event that
a monitored signal is subjected to noise for an extended period, the pacemaker should
transition to an asynchronous pacing mode. To satisfy this, the modelled controller must
be able to transition safely between a prescribed synchronous mode and an appropriate
asynchronous alternative.

Model The DE model of the pacemaker controller has several layers, and the over-
all structure is illustrated using a class diagram in Figure 4. Whilst the class diagram
includes some examples of high level operations, it does not list the entire implementa-
tion.

122

Pacemaker Parameter Tuning using Crescendo



A low-level layer directly monitors and controls the CT environment, reporting any
sensed activity in the heart, and actuating the delivery of artificial paces. Labeled as
IOManager in Figure 4, this layer acts as an interface for the pacing algorithms to
access the pacing leads. An intermediate layer manages the computation of significant
events to be used by the pacing algorithms, identifying intrinsic activity from sensing
data, calculating when necessary intrinsic behaviour is absent, and distinguishing be-
tween noisy and reliable data. Shown in Figure 4 as ActivityTracker, this layer is
used to generate events necessary for the pacing algorithms from sensing data. A high-

Fig. 4. Pacemaker model class diagram

level layer computes the necessity for artificial pacing, based on the events observed
by the pacemaker. The controller can be instructed to operate according to any of the
available modes, and decisions for pacing are directed by the active mode of operation.
If a synchronous mode is selected and a continuously noisy signal is suspected, then
the controller calculates an appropriate asynchronous alternative and switches into it.
Figure 4 shows this layer labeled as Controller, and it maintains a suitable mode of
operation based on events observed from sensing. Listing 1.1 shows the steps taken by
the controller, including the sampling of sensing data, the calculation of an appropriate
mode, and the delegation of the pacing activity to the appropriate mode.

Each available mode is modelled according to an interface (IMode), and the con-
troller delegates mode-specific actions to the appropriate implementation. Listing 1.2
shows part of implementation of the ‘DDD’ mode.

An auxiliary class, labeled Settings in Figure 4, is used to store operational
parameters that would typically be selected by a cardiologist. These include a desired

123

Pacemaker Parameter Tuning using Crescendo



mode of operation, as well as timing constraints and tolerances. It also stores parameters
to specify sensitivity thresholds for noise detection.

�
public Mode = <AAI> | <AOO> | <DDD> | <DOO>;

instance variables
activity : ActivityTracker;
settings : Settings;
current_mode : Mode;

operations
Step : () ==> ()
Step() == (
-- update timers
activity.Step();

-- Calculate if mode change is required
Calculate_Mode_Change();

-- delegate control to current mode
modes(current_mode).Step();

);

thread periodic(1E6,0,0,0)(Step);
� �
Listing 1.1. Sample VDM-RT code with mode change

�
-- Atrial sensing
if activity.Last_A_Activity() > settings.ARP() and

activity.Last_V_Activity() > settings.PVARP()
then activity.Sense_A();

-- Atrial pacing
if activity.Last_A_Activity() >= settings.LRL()
then activity.Pace_A();

-- Ventricular sensing
if activity.Last_V_Activity() > settings.VRP()
then activity.Sense_V();

-- Ventricular pacing (P-wave tracking)
if activity.Last_V_Activity() > activity.Last_A_Activity() and

activity.Last_A_Activity() >= settings.AV_Delay()
then activity.Pace_V();
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Type Name Description
monitored atrial sensed atrial lead output

ventricular sensed ventricle lead output
controlled atrial pace pacing output to atrial lead

ventricular pace pacing output to ventricle lead
current mode pacing mode ID number for graphical output

shared noise window length length of noise window (ms)
noise roughness threshold numerical value indicating roughness (no units)
quiet period length length of time before we consider noise to have ended
noise profile number which noise profile to use in a simulation

Table 1. Parameters defined in the co-model contract.


� �
Listing 1.2. DDD mode calculating pacing activity

3.3 Contract

The contract for this model (Table 1) closely mimics the interface between the cyber and
physical elements in the real heart and pacemaker system. Specifically it represents the
connection between the pacing leads and the pacemaker itself. The pacing leads both
monitor and stimulate the heart through a single physical connection, the connections
described in the contract are uni-directional so it is not possible to model a single pacing
lead, but instead for each lead we must model the sensing action as a monitored variable
and the pacing action as a separate controlled variable. There are five other items defined
in the contract. The current mode controlled variable is used to export the pacemaker
operating mode, as a number, to the CT model such that it could be stored in the CT
model logs files during simulation. This is not required for the modelling of the heart or
the pacemaker but is instead to support the post simulation analysis of the pacemaker
mode changing behaviour, described further in Section 4. The final four SDPs in the
contract represent the parameters the model was developed to explore, with the effects
of noise window length and noise roughness threshold presented in this paper.

4 Design Space Exploration

To function correctly the pacemaker must have an accurate view of the recent activity
of the heart it is monitoring and there are a range of issues that may inhibit it having this
view. The view is derived directly from the signals it receives from its pacing lead(s),
these may break or become detached from the wall of the heart or experience electrical
noise due to either the wearer’s environment or their own body. The DSE experiment
considers the tuning of a hypothetical software method to detect lead noise and allow
the pacemaker to operate in the correct mode.

The noise detection and mode change algorithm has three main parameters that af-
fect its behaviour. The first is the noise roughness threshold which comes
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Parameter Values
noise roughness threshold 0.0005; 0.001; 0.002; 0.003; 0.004; 0.005
noise window length 5;10;20;30;40;50

Table 2. Parameter values uses in the DSE sweep

from the second derivative of the lead signal and assumes that the frequencies within
a noise signal are higher than those of the normal heart signals. The second param-
eter is the noise window length which defines the number of samples used to
determine if noise currently exists on a lead. Too low a value can make the noise detec-
tion over-sensitive, while too high a value could make the pacemaker unresponsive to
noise. The final parameter is the quiet period length, which defines how many
samples must pass with a noise value below the threshold before the pacemaker consid-
ers the noise to have passed. This is to reduce the sensitivity of the noise detection to
temporary drops in the measured noise value.

To shorten the length of simulations a set of predefined noise profiles was used to
determine when noise will be injected into the signal captured by each lead. The profile
is selected by setting the noise profile number. There were five profiles, which
variously exercise the leads, for example, profile 1 applies noise to both leads for 4s,
3s after the simulation starts, profile 2 applies 1s of noise into each lead individually
before applying two more noise periods into both at them at the same time. None of
the profiles ever reduce the noise to a non-existent level, there is always a small ripple
on both lead signals, so in a sense, the periods discussed previously could be termed
‘elevated noise’. Profile 5 does not include any elevated noise.

Table 2 shows the actual parameter values that were fed into the experiment. There
are six of each, making a total of 36 simulations, which in this case can be performed in
a little over an hour on a modest laptop computer. This design space is not of the order
that makes a complete exploration infeasible, but it does allow us to investigate the use
of Crescendo DSE in this domain.

While the graphical output from 20-sim (Figure 3) is useful for observing the be-
haviour of the modelled heart for a single simulation run, it does not lend itself to the
comparison of multiple simulations. To achieve our goal of comparing the effectiveness
of multiple sets of noise detection parameters we needed a numerical output that we
could post-process. Crescendo allows variables from both the CT and DE models to be
logged in CSV (comma separated value) files, and so this was used to keep a record
of, amongst other things, the noise magnitude and pacemaker operating mode for each
simulated time slice.

Crescendo records the CSV logs for each simulation in its own file in its own direc-
tory and this is where its automated support for co-model analysis ends. To determine
which noise detection parameters are best, we must determine which result in the pace-
maker being in the correct mode for the greatest proportion of the simulated time. The
first step in calculating this is to determine what mode the pacemaker should have been
in. This is done by comparing the noise magnitude for each simulated time step from
the CT model with a threshold. If the magnitude is below the threshold, the pacemaker
mode should be synchronous (AAI/DDD), and if it is equal to or greater than the thresh-
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noise roughness threshold
0.0005 0.001 0.002 0.003 0.004 0.005

no
is

e
w

in
do

w

5 53.3 53.3 53.3 53.9 64.7 70.8
10 53.3 53.3 53.3 64.3 76.0 83.1
20 53.3 53.3 62.5 74.6 85.7 92.5
30 53.3 53.3 69.0 83.5 81.3 81.0
40 53.3 53.6 68.9 82.3 88.0 77.2
50 53.3 53.3 72.2 83.8 82.6 73.5

Table 3. Percentage of time the controller was in the correct mode (availability) for a range of
noise window lengths (rows, 5–50ms) and noise roughness thresholds (columns, 0.0005–0.005)
for a pacemaker initially in DDD mode

Fig. 5. The simulation results as a graph showing the best result is with a noise window of 20ms
and a roughness value of 0.005

old, the mode should be asynchronous (AOO/DOO). The next step is to compare what
mode the pacemaker was in, as reported by the DE model, with the expected mode
calculated in the previous step resulting in one of the following four conditions: True
Synchronous/True Asynchronous when the pacemaker mode was appropriate for the
current noise level, and False Synchronous/False Asynchronous when the pacemaker
mode was incorrect for the current noise amplitude. Finally the ratio of “True” modes
to “False” modes is calculated to determine the score for each design. This data was fed
into a spreadsheet to allow tabular (Table 3) or graphical (Figure 5) presentation.

It was necessary to create a Java application to analyse the raw simulation output
data, and this highlights a gap in Crescendo’s current support for DSE. This gap, which
prevents Crescendo from being able to read and process simulation results, also prevents
it from autonomously using more efficient forms of design space exploration such as
simulated annealing, space culling [27] and genetic methods [28]. From our experience
here we can start to identify functionality that would be required to “close the loop” and
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inform the development of more advanced tool chains such as those being developed in
INTO-CPS9. As a minimum we suggest:

– Post-simulation support to read in CSV log files for each simulation;
– definition of functions that act on values in each time slice and return a result (e.g.,

is noise greater than a threshold?);
– definition of functions that act across the whole simulation (e.g., minimum, maxi-

mum, mean);
– counters that persist for a single simulation (e.g., count of times mode was correct

for the noise level);
– functions that are performed after reading the results of a simulation (e.g., propor-

tion of time pacemaker mode was correct);
– simple tabulation of results for human consumption.

5 Conclusions and Challenges

DE Model In addition to addressing noise acknowledgment and response, we have
demonstrated a dramatically different approach to modelling the DE controller from our
previous work [12]. The previous version directed pacing functionality via a complex
series of nested conditionals. Rather than model pacing modes explicitly, it achieved
the constraints prescribed by each mode by setting boolean flags associated with each
possible function. This resulted in a single control algorithm for all modes, which was
difficult to maintain and debug.

The model presented here exercises design pattern guidance developed throughout
DESTECS. The DE controller employs the Modal Controller Pattern described in [4] to
simplify the description of pacemaker behaviour by separating out the pacing behaviour
of each mode into an independent class. This enables modification of a single mode
without risk of inadvertent side effects on the behaviour of other modes. The overall
structure of the model is influenced by other patterns, such as the IO Synchronisation
Pattern (exercised by the IOManager class).

CT Model Our new CT model with its string of identical myocardia models is an
improvement over of the previous two capacitor model in several ways. First, the struc-
ture requires no artificial feedback connections in the model that are not present in a real
heart and thus the two heart faults, Sinus Bradycardia and Heart Block, are implemented
without the need to adjust any other part of the heart model, increasing confidence that
this is a good base for modelling further cardiac faults. The structure could also be
extended to model multiple, longer and parallel heart fibres opening the possibility of
modelling more complex arrhythmia such as Atrial Fibrillation.

The pacemaker leads and their connections to the heart fibres are explicitly repre-
sented in the heart model rather than just being a voltage signal read from the capacitor
in our earlier model. This presents two avenues of exploration: the effects of placement
and area of contact of the pacing leads, and modelling the results on pacing and sensing
of a lead becoming detached from the heart wall.

9 http://into-cps.au.dk
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Monitoring The CSV log output feature of Crescendo allowed us to monitor the state
of both the heart model and the pacemaker for the purpose of our analysis. Where it
failed to meet our needs was in providing support in itself to read in and analyse the
content of the logs. In Section 4 we outlined some functions that could provide this
support and in doing so permit use of more efficient DSE techniques. We hope that this
experience will influence the design of tool chains in the INTO-CPS project.

Future Work We have shown that Crescendo is suitable for co-modelling a heart and
pacemaker but that, in its current form, the model is only suitable for studying short-
timescale effects, the simulation speed on a 2.4 GHz dual core CPU being on the order
of 1/10th real time. Thus the model is suitable for our goals of studying the effects of
mode changing, noise detection, pacing lead faults, etc. We would also like to consider
effects over longer simulated times, such as the correctness of pacing data gathered by
the pacemaker, total energy consumed or even whole life cycle of pacemaker implan-
tation to removal), in which case it will be necessary to pair the current DE controller
with either a simplified CT model and IOManager to reduce the co-modelling overhead,
or with a completely DE heart model and simulate entirely within Overture.
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Abstract. Both the TASTE and Overture toolsets have successfully
demonstrated that method integration is a very promising strategy to
create robust and effective tool suites. We explore the path of integrat-
ing both open source tool suites, to leverage their effectiveness even fur-
ther, with the aim to provide a potential platform for the end-to-end
design and engineering of dependable embedded systems, with a focus
on spacecraft avionics.

1 Introduction

The European Space Agency (ESA) designs, commissions and operates launchers
and spacecraft for a multitude of mission profiles, such as science and robotic ex-
ploration, earth observation, navigation, telecommunications and human space-
flight. It is paramount that software plays a significant role in this domain, as
all of these applications rely on the use of computers in order to reach their
mission objective. Computers are used, amongst others, to provide attitude and
orbit control, payload data handling, thermal control and health assessment and
management. In this paper, we focus on the spacecraft itself, or rather the avion-
ics subsystem that provides the aforementioned services, even though the Earth
bound ground segment and operations account for a significant part of the en-
tire mission eco-system. We take this focal point because after lauch, access to
the spacecraft is restricted to telecommand and telemetry only, which limits our
options to monitor and influence the spacecraft behavior.

The complexity of spacecraft design is driven by the need to operate under
extreme environmental conditions for very long periods of time, typically several
years upto decades. Moreover, the launch into space as well as execution of the
mission itself poses engineering challenges in its own right. Even though space-
craft are continuously operated under ground control, some level of autonomy
is always required in order to ensure mission success. Communication delays
may take several minutes due to the distance between ground station and the
spacecraft, or may not be possible at all for some time, for example during the
launch phase or due to partial visibility of the spacecraft orbit in relation to the
position of the ground station(s) or when another celestial object is directly in
the line of sight between the spacecraft and Earth. Sometimes, communication
is relayed as direct communication to Earth is not possible. An example of this
is the Philae probe that recently landed on the 67P/Churyumov-Gerasimenko
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comet, which communicates to Earth through the Rosetta mothership. This im-
plies that action needs to be taken by the spacecraft itself if unforeseen events
occur in between ground contact opportunities, at the very minimum to bring
the spacecraft back into a known “safe” state.

Moreover, maintenance of the spacecraft is typically not possible, or very
expensive and complex,1 which implies that robustness to “wear and tear” needs
to be addressed upfront as equipment performance will deteriorate over time or
may even break down unexpectantly. In contrast, it is interesting to note that
software maintenance is technically feasible and relatively low cost, by updating
over the air. Nevertheless, it remains complex because it directly affects system
operability and the overall health state.

It is clear that resilience to faults is an important design driver in order to
demonstrate that the level of dependability is sufficient to support the mission
objectives during its entire life-time. This focal point propagates throughout all
system design artifacts and all supporting life-cycle processes [8] and is proba-
bly the single most dominant contributor to the cost of the mission. Therefore,
improvement of our capability to support design and analysis of dependability
has a high potential gain in terms of cost and risk reduction. This is one of the
reasons why ESA is actively supporting research and development in this area,
for example through funding mechanisms such as TRP and GSTP 2.

Model based software and systems engineering (MBSSE) is a focal point in
these activities, with the aim to alleviate the increasing project schedule pressure
by improving the quality of the early design artifacts such that less effort is
required in the later engineering stages and supporting processes, in particular
for on-board software. Rigorous development approaches are proposed to support
a wide range of engineering activities, such as:

– the use of ontologies and formal verification techniques to create a catalogue
of system and software properties, which can form the basis for correct-by-
construction software synthesis and re-use of requirements across missions.

– the use of architecture description languages to explore system resilience by
analysing explicit fault models using model checking [4,9].

– improve the production of flight software by integrating well-founded formal
technologies in those parts of the engineering chain where their benefit is
clear and the gain is significant.

– the use of time and space partitioning kernels to implement mixed criticality
applications on multi-core processors, supported by formal analysis tech-
niques to study deterministic schedulability in the presence of uncertainty.

We first focus on the third item and we will revisit the other areas of interest
in Section 4. Our starting point is The ASSERT Set of Tools for Engineering
(TASTE) [20], which was originally developed in the EU-FP6 ASSERT project

1 Such as the International Space Station and the Hubble Space Telescope.
2 Technology Research Program, aimed at technology readiness level (TRL) 2-4 and

General Support Technology Program, aimed at TRL 4-6/8. See http://emits.sso.
esa.int and http://sci.esa.int/sre-ft/37710-strategic-readiness-level/
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[3] and is still being actively maintained today. We will introduce this technology
in Section 2, and discuss the possible aligment with Overture in Section 3. It is
assumed that the reader is already familiar with Overture and Crescendo, we
refer the reader to [14,15] and [11,7,6] respectively, for further details.

2 The TASTE toolset

TASTE is a robust and open-source tool-chain for software development. It tar-
gets heterogeneous embedded systems using a model-centric development ap-
proach. Likewise to Overture, it is also meant as a laboratory for experimenting
with new software related technologies, based on free and open-source solutions.
It supports a rigourous process using formal models and automatic code gener-
ation. It is focused on the development of high-reliability applications, but not
necessarily restricted to aerospace. But of course, due to its heritage, many of
the technologies used have their roots in this domain.

The main philosophy has been to create a consistent set of interoperable tools,
based on mature languages with long-term support. Interoperability is achieved
by providing translators between the notations used, such that applications can
be composed of elements coming from a rich set of source languages. In essence, a
domain specific language approach has been adopted, whereby a notation is only
applied to that part of the problem domain where its matches best. Productivity
is improved because the power of each individual language and supporting tool
is leveraged by the ability to seamlessly integrate artifacts derived from those
languages into the target application. The main elements of TASTE are:

– An interface definition language; ASN.1 [2]
The Abstract Syntax Notation One (ASN.1, an ITU-T standard, endorsed
by ISO) is used to describe all datatypes and their constraints. This allows
high-level specification of data in a language neutral format, for example to
describe all telecommands (TC) and telemetry (TM). The set of standards
also provides methods for the physical representation of data. TASTE pro-
vides a compiler not only to verify ASN.1 specifications, but also to generate
application code in C and Ada, in order to read and write values based on
the chosen physical representation. Moreover, it can also generate interface
specification documents and test data sets fully automatically.

– A language to describe the system architecture; AADL [1,10]
The Architecture Analysis and Design Language (AADL, approved by SAE
International) is used to model the logical and physical architecture of the
system. It provides both a textual and graphical format to denote the sys-
tem composition. It is used in TASTE to capture the system structure: the
hardware artifacts, their physical interfaces and the deployment of software
over these elements. This allows for example early schedulability analysis,
with tools such as MAST 3 and Cheddar 4. AADL is designed as an extensi-

3 http://mast.unican.es
4 http://beru.univ-brest.fr/~singhoff/cheddar/
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ble language; user defined properties can be attached to any language arti-
fact and so-called annexes allow semantically consistent language extensions.
The System-Level Integrated Modeling language (SLIM) was developed in
the COMPASS [4] and FAME [9] projects to introduce explicit fault models
[18,17].

– A language to specify system behavior; SDL [19]
The Specification and Description Language (SDL, an ITU-T standard) is a
formal language for describing state machines, both in a graphical and tex-
tual format. It is easy to use yet very powerful, with a precise and complete
semantics. SDL natively supports ASN.1 data types. TASTE comes with an
integrated SDL editor and Ada code generator called OpenGEODE. Execu-
tion (or simulation) traces can be visualised using the well-known message
sequence chart (MSC) notation. TASTE also provides features to record and
playback these traces for analysis and testing respectively.

Note that several other techniques are supported to specify system behavior
(i.e. Simulink, SCADE, VHDL, Ada and C) but in this paper we focus on SDL.
An full overview of TASTE is provided in [16,12], all tools can be found at [20].
The Ocarina tool [5] is used to generate high-integrity compliant Ada code from
the AADL models. This code can be combined with the generated Ada code from
the SDL and ASN.1 models to form an application, which can be deployed on
the PolyORB-HI middleware. TASTE also provides the functionality to manage
the build process. A range of target environments are supported:

– Linux (for non-realtime analysis of the application behavior);

– simulation environments supporting the SMP2 standard;

– real-time operating systems such as RTEMS and Xenomai, using virtualisa-
tion technologies such as QEMU and TSIM;

– RTEMS or Ada-Ravenscar run-times on target hardware, usually part of an
avionics test bench in order to emulate all external sensors and actuators.

The TASTE development process consist of the following steps:

1. describe the system logical architecture and interfaces (ASN.1, AADL)

2. describe the system behavior (SDL)

3. describe the deployment of functionality on the avionics hardware

4. verify the models (i.e. schedulability, fault resilience)

5. generate code, build the system and download on simulator or target

6. monitor and interact with the system at run-time

The development process above is used in an iterative style, whereby results
obtained in any step can lead to changes made in previous steps. The high degree
of automation and the seamless integration of the tools and techniques enables
short turn-around times.
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3 Potential alignment with Overture

A birdseye overview of TASTE was presented in Section 2. We base the potential
alignment of Overture and TASTE on a short quantitative comparison of both
toolsets and associated processes.

– Overture and Crescendo are both aimed at early design validation, whereas
TASTE is aimed at improving the production of high-quality software ar-
tifacts. Both are driven from formal models and rely on the integration of
robust and specialist tools. Therefore, they naturally complement each other,
as is also demonstrated by the goals of the INTO-CPS Horizon 2020 project
[13], from which the future development of Crescendo is now actively sup-
ported. The aim of this project is to extend Crescendo to upstream modeling
technologies such as SysML 5 and downstream with code generation to sup-
port hardware in the loop (HIL) simulations.

– Both Overture (through Crescendo with 20-sim 6) and TASTE (through em-
bedding code generated from Matlab/Simulink models) support the ability
to perform co-simulation, albeit at different levels of abstraction. The need
for this facility is clearly recognized in both approaches, in order to validate
the design in the former and in order to test the generated application in
the latter.

– The family of VDM languages, that is at the core of Overture and Crescendo,
provide an extremely powerful set of model oriented specification languages
that can be used for a wide range of applications. However, this versatility
comes at a price. Creating a VDM model for a specific application domain
usually requires development of a framework or a set of libraries in order to
improve productivity and maintainability. In particular in the area of em-
bedded systems, which are reactive systems by nature, the lacking built-in
notion of state machines is an example of such a weakness.

– The reverse seems to be true for SDL, a language that is naturally suited to
describe state machines with events described using ASN.1. SDL has built-
in features to describe the actions taken during state transitions, but the
expressive power of the notation is limited and does not allow complex al-
gorithmic specifications. It has to rely on so-called “external calls” to model
these complex transactions, but this also limits the ability to simulate SDL
models as a synthesis step is required to get the external call (implemented
in some other programming language) into to loop. Even though this process
is automated in TASTE, it remains cumbersome, in particular if debugging
is required across this interface to find the root cause of some test failure.

5 http://sysml.org
6 http://www.20sim.com
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– VDM, SDL and ASN.1 support powerful techniques to support testing,
to complement more heavy-weight verification technologies such as model
checking and proof.

From this short assessment, incomplete as it may be, we can already conclude
that a lot of common ground is available, despite several distinct differences. We
argue that both tool environments can benefit from each other, by adressing the
weakness of one by the strength of the other and vice versa. We believe that
this will leverage the potential impact of both tool environments at lesser cost
than implementing new features to resolve or address some of the weaknesses in
either toolset individually. Of course, an investment must be made to achieve
this goal, and we make a few suggestions here, ordered in increasing perceived
impact and complexity:

– To convert ASN.1 definitions into VDM data types and values; this would
enable the independent specification of functionality over those data types
in VDM, with the ability to perform validation, for example using combina-
torial testing in Overture.

– To convert VDM data types into ASN.1 definitions, with the obvious benefit
that robust code generators are already available to read and write instances
according to an independently selected physical format. This alleviates the
need to write error prone “glue code” that is required when VDM models
are coupled, either to simulators or real hardware.

– To couple OpenGEODE with Overture, such that SDL “external calls” can
be realised by executing specific operation calls inside a VDM model, using
the built-in interpreter already available in Overture. This would allow ani-
mation of SDL models without the need to perform a synthesis step, while
re-using the powerful debugging features already available in both tool sets.
The abstraction mechanisms in VDM can be fully exploited to write concise
state machine transition specifications, rather than including hand-written
code. It provides the VDM world with a strong and well-defined notion of
state machines, almost for free. Note that this approach relies on the avail-
ability of the ASN.1 translators mentioned earlier, as this is the technique
used to specify data types in SDL.

– Assuming the previous step is feasible and successful, a similar approach can
be taken with Crescendo, which then also allows simulation of the physical
world without the need to instantiate a full avionics test bench. This will
provide the opportunity to use TASTE earlier in the design process.

– Analogous, implementing a code generator for MISRA-C or high-dependability
ADA (SPARK-ADA) directly from the VDM specification, would allow to
use these artifacts also for downstream engineering processes, whereby TASTE
already provides the infrastructure for managing the build process and for
creating and deploying the target image.
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4 Summary and conclusions

We consider the suggestions from the previous section as the “low-hanging fruit”
even though we recognise that the amount of effort to realise each step can be
significant. We have not quantified this effort on purpose, as our primary aim is
to motivate the community to consider these options as interesting and viable,
both from an academic as well as a practical viewpoint. For this, we require
further dialogue with the Overture community at the workshop.

On a more fundamental note, we see other opportunities on the horizon that
pose a greater challenge and investment, but also with likewise higher potential
benefits and rewards. Over the past decade, the VDM-RT dialect has matured
into the modelling technology now used as the key asset in the Crescendo tool.
The VDM++ notation was extended with asynchronous operations and specific
language elements such as BUS, CPU and system to construct explicit architec-
tures onto which other software artifacts specified in VDM can be deployed
[21]. This allows the possibility to analyse the timing and performance behav-
ior of real-time applications. This also proved to be a great step forward in the
early life-cycle analysis of system resilience to faults, as was demonstrated in the
DESTECS project. However, the fidelity of those models is restricted (i.e. only
a single bus can connect between any two CPUs) and defining (and changing)
properties of the model is cumbersome (i.e. message length is implictly based on
the “size” of the VDM datatype). Instead of improving the situation by extend-
ing the built-in notation, we believe that adopting AADL as the mechanism to
describe the system architecture is a better, more future proof, solution.

The richness of the AADL notation allows to describe a far wider range of
embedded applications, keeping the existing notions of deployment already avail-
able in VDM-RT intact, but then described in AADL. Eclipse based tool support
for AADL is readily available, for example OSATE2 7. Moreover, AADL was de-
fined with extensions in mind, which may provide a very convenient mechanism
to change model properties without affecting the structure of the model. And
last but not least, other modeling extensions, such as the SLIM language can be
used orthogonal to the same model, allowing the application of other verification
and schedulability analysis tools. It even opens up the possibility to describe and
analyse mixed criticality applications on multi-core or time and space partioning
kernels, for example by using the ARINC653 AADL extension.

In summary, we offer our brief viewpoint on the future of Overture in this
paper, as input to the on-going discussion on the strategic research agenda of
the open source project. Of course this is driven from our business perspective
and background. Nevertheless, we believe that these suggestions are sufficiently
generic to be of interest to a wider community and we hope that they will trigger
the appetite to consider coupling TASTE with Overture. Furthermore, we also
hope that it brings the different formal methods communities closer together, as
we believe that gaining critical mass is paramount not only to gain momentum

7 https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
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in terms of tool development and cool stuff we can do with it, but also to increase
our user community.
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