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Abstract—Indoor localization has become an important issue
for wireless sensor networks. This paper presents a zoning-
based localization technique that works efficiently in indoor
environments. The targeted area is composed of several zones,
the objective being to determine the zone of the sensor using an
observation model. The observation model is constructed based
on fingerprints collected as WiFi signals strengths received from
surrounding Access Points. The method creates a belief functions
framework that uses all available information to assign evidence
to each zone. A hierarchical clustering technique is then applied
to create a two-level hierarchy composed of clusters and of
original zones in each cluster. At each level of the hierarchy,
an Access Point selection approach is proposed to choose the
best subset of Access Points in terms of discriminative capacity
and redundancy. Real experiments demonstrate the effectiveness
of this approach and its competence compared to state-of-the-art
methods.

Index Terms—Access point selection, belief functions, hierar-
chical clustering, localization, observation model, WiFi signals.

I. INTRODUCTION

For several years, wireless sensor networks have aroused

great interest in research communities. Such networks are

being widely used in various fields to perform several tasks

ranging from medical and military applications, to monitoring

homes, hospitals and forests [1]. Localization is a key aspect of

such networks, since the knowledge of the sensor’s location

is critical to process the information it acquired, to actuate

responses to the environment, or to set an alarm in an emerging

situation [2].

The most widely adopted approach in indoor localization

is wireless fingerprinting [3]. Wireless fingerprinting leverages

the available wireless transceivers along with already deployed

networking infrastructure. The advantage of such solution is

reducing time and cost of installing any additional hardware.

This approach requires an offline training phase and an online

localization phase. Many existing works have tackled the

problem as exact positioning. The disadvantage of such ap-

proach is their need to a database with exact locations, whose

construction is time-costly and complex. In addition, there

exists several applications where the zone of the mobile sensor

is of interest and not its exact position. This issue is important

for the health-care domain for instance, where Alzheimer’s

patients might be lost in their nursing home [4], in museums

for supporting guides and emergency management [5], for

large malls to facilitate shopping [6], etc and where locating

people in a specific zone of such environments is completely

sufficient. Some researchers have studied the zoning problem

without computing exact locations [7], [8], [9]. In [7], the

signal strengths are collected while the user is moving, and

the zone is determined when a sharp change in the strength

indicator is detected. In [8], the design of overlapping zone

partitioning is implemented. In [9], the authors tackle the

zoning problem as a multi-class classification problem and

use Support Vector Machines (SVM) to solve it. Even though

a lot of approaches have been proposed in the literature using

WiFi, the indoor localization problem still remains unsolved.

The research community has not converged to a single, widely

accepted solution that can achieve the desired accuracy. In

fact, it was found that that WiFi signal strengths are unstable

and they vary widely even at the same position with time,

temperature, moving objects, and other parameters.

In our previous work [10], we proposed a basic observation

model that works well in case of small number of zones.

When the number of zones increases, the basic model fails

to achieve a high accuracy due to difficulty in discriminating

between overlapping distributions representing the different

zones. This paper presents an extended model as described

in the following. At first, the method consists in constructing

a fingerprinting database that associates to each zone a set

of WiFi signals strengths (RSS) collected from Access Points

(APs). This database is used with the belief functions theory

to create supersets of zones and affiliate evidence to each

one according to APs. A clustering technique is then applied,

leading to a two-level hierarchy composed of clusters, and the

original zones in each cluster. At each level, an Access Point

selection technique is proposed to choose the subset of APs

with maximum discrimination and minimum redundancy. All

evidence are combined to determine a level of confidence of

having the mobile sensor resides in each zone. By taking into

account information uncertainty, the proposed method yields

levels of confidence for zones of covering the new observation.

Experiments are conducted in a Living Lab, and the results

show the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Section

II presents the localization approach. Section III demonstrates

the experimental results and the comparison to state-of-the-art

algorithms. Section IV concludes the paper.



II. LOCALIZATION APPROACH

A. Formulation of the problem

The localization problem is tackled in the following manner.

Let NZ be the number of zones of the targeted area, denoted

by Zk, k = 1, 2, . . . , NZ and NAP be the number of detected

APs, denoted by APn, n = 1, 2 . . . , NAP . The aim of the

presented algorithm is to propose an observation model, using

the WiFi RSS, to assign a confidence level Cf(Zk) for each

zone Zk, for any new observation ρ. Here, ρ is a vector

of size NAP of RSS measurements collected by the mobile

sensor from surrounding APs. The observation model uses

RSS data received from surrounding WiFi APs to estimate the

zone of the mobile sensor. In an offline phase, fingerprints are

collected by measuring the RSS of all existing APs in random

positions of each zone. Then, in the online phase, once a new

measurement of RSS is received, the model is used to assign

a certain confidence to each zone.

B. Mass association

The observation model is constituted of fitting the RSS

observations into statistical distributions, and using the belief

functions theory as a framework for mass association. To

take into account information uncertainty, supersets of zones

are considered and not only the singletons, which permits

associating masses as per available evidence.

Let Z = {Z1, . . . , ZNZ
} be the set of all possible zones

and let 2Z be the set of all the supersets of Z , i.e., 2Z =
{∅, {Z1}, . . . ,Z}. The cardinal of 2Z is equal to 2|Z| = 2NZ ,

where |Z| denotes the cardinal of Z . One fundamental func-

tion of the BFT is the mass function, also called the basic

belief assignment (BBA). A mass function m(·) is a mapping

from 2Z to the interval [0, 1], defined according to a set of

sources {AP1, . . . , APNAP
}. It satisfies:

∑

A∈2Z

mAPn,t(A) = 1. (1)

The mass m(A) given to A ∈ 2Z stands for the proportion

of evidence, brought by the set of sources, saying that the

observed variable belongs to A.

In order to define the sources’ BBAs, all observations

belonging to a set A ∈ 2Z are fitted to a multi-dimensional

distribution QA. Then, having an observation ρ related to

{AP1, . . . , APNAP
}, the mass m(A) is calculated as follows,

m(A) =
QA(ρ)

∑

A′∈2Z ,A′ 6=∅ QA′(ρ)
, A ∈ 2Z , A 6= ∅. (2)

The quantity m(A) represents the amount of evidence brought

by the set of sources {AP1, . . . , APNAP
} saying that the

observation ρ belongs to the set A, A being a singleton, a

pair, or more. By taking all the supersets of Z and not only the

singletons, the proposed algorithm uses all available evidences,

even if they are uncertain about a single element. Note that

m(A) is not the probability of having ρ in A, but only an

interpretation of the information brought by the sources by

means of observation ρ, that is, m(A) could be higher than

m(B) even if A ⊂ B.

An adequate notion of the BFT to attribute masses to

singleton sets is the pignistic level [11]. It is defined as follows,

BetP (A) =
∑

A⊆A′

m(A′)

|A′|
, (3)

where A is a singleton of 2Z . The pignistic level is equivalent

to the probability of having the observation belonging to the

considered set. One could also compute the pignistic level of

higher-cardinal supersets. However, only the singleton sets are

taken into consideration, as we are interested in determining

a level of confidence for the original zones only.

C. Clustering

Clustering aims to organize a set of data into groups

called clusters, according to some criteria [12]. Hierarchical

clustering builds a hierarchy of clusters or dendrogram driving

two strategies: agglomerative or divisive approaches. In the ag-

glomerative or the bottom up approach, each observation starts

as an independent cluster, and pairs of clusters are merged

upon moving up in the hierarchy; whereas in the divisive or

top down approach, all observations start as one single cluster,

and are split upon moving down in the hierarchy [13]. Here,

the agglomerative strategy is adopted since it is less complex

than the divisive case [14]. To avoid having observations of the

same zone in different clusters, the proposed method considers

the zones as units. Indeed, a statistical distribution is assigned

to each zone, by fitting its corresponding observations to one

of the existing statistical distributions. Let Q1, . . . , QNZ
be

the fitted multi-dimensional distibutions, defined over a set of

parameters, of the zones Z1, . . . , ZNZ
respectively. Each zone

is then considered as an independent cluster at the beginning

of the algorithm. To merge clusters according to a criterion,

the agglomerative hierarchical clustering technique measures

the dissimilarity between the clusters. Of these criteria are

single-linkage, complete linkage, Ward’s minimum variance,

etc [15].

Since distributions are being clustered here, statistical

measures could be applied like Kullback-Leibler divergence,

Hellinger distance, total variation distance, etc [16]. The

Kullback-Leibler divergence or relative entropy of two dis-

tributions Qi and Qj of input ρ is defined as

DKL(Qi||Qj) =

∫

ρ

log

(

Qi(ρ)

Qj(ρ)

)

Qi(ρ)dρ. (4)

The relative entropy is asymmetric, always positive and equal

to zero when the two distributions are identical. The J-

divergence [17] symmetrizes the Kullback-Leibler divergence

as follows

DJ(Qi||Qj) = DKL(Qi||Qj) +DKL(Qj||Qi). (5)

This divergence computes the level of discrepancy or lack of

similarity between probability distributions. It is a measure

of how different two probability distributions, over the same

event space, are [18]. The proposed clustering method employs

the J-divergence as the dissimilarity measure to construct the



dendrogram. At each iteration, it merges the two clusters

whose distributions have the maximal divergence. Merging

two clusters means here a merge of all the observations of

the infant clusters and a computation of a new distribution

according to the new set of observations. By maximizing the

divergence, the infant clusters would be dissimilar, which helps

in discriminating between zones of each cluster. The algorithm

is iterated until all the zones are merged into one cluster.

After the dendrogram is created, it should be cut based on

the desired number of clusters. However, since there is no prior

knowledge regarding this parameter, it is calculated by solving

an optimization problem that takes into account both inter- and

intra- clusters scatters. Several indices have been proposed to

solve this problem [19], [20], [21]. A method developed by

Krzanowski and Lai [22] finds the optimal number of clusters

NC as follows,

NC = argmax
l

∣

∣

∣

∣

DIFF (l)

DIFF (l + 1)

∣

∣

∣

∣

(6)

such that

DIFF (l) = (l − 1)
2

NAP W (l − 1)− (l)
2

NAP W (l), (7)

where W (l), the within cluster sums of squares, is equal to:

W (l) =

l
∑

j=1

∑

k
Zk∈Cj

∑

η

||ρk,η − µj ||
2, (8)

where ρ
k,η represents an RSS observation taken in zone Zk,

l takes its first value as NZ − 1 and decreases by 1 at each

iteration, µj is the mean of the distribution of the cluster Cj ,

and || · || is the Euclidean norm operator.

The dendrogram is cut at a certain level where NC clusters

are obtained, denoted by Cj with j ∈ {1, . . . , NC}. All infant

clusters of each selected cluster are merged yielding a set of

zones for each cluster. The set Ij denotes the set of indices of

the zones included in the cluster j, that is, Zi ∈ Cj , ∀i ∈ Ij .

D. Access Point Selection

The Access Points are the sources of information, and hence

the choice of reliable ones is indispensable for the localization

process. Practically, the same installed AP in a certain building

transmits signals on different terminals, each to give access

to a certain population (staff, residents, visitors, etc) and on

different channel bands (2.4 GHZ, 5 GHZ, etc). The original

emitted power on each network is controlled and changed by

the IT services as needed. Though information carries some

redundancy, we aim here at using all available evidence to

reach the best decision. So, what is meant here by AP selection

is the choice of networks and not only physical APs. The

observations have NAP components, each one being related

to a certain AP, of the set F = {APn}, n = 1, 2, . . . , NAP .

Having the two-level hierarchy, the AP selection is applied

at the cluster level, and also at the zones level within each

cluster, the aim being to select the most useful APs that are

capable of discriminating zones of each cluster and between

clusters.

The AP selection algorithm is applied equivalently at zones

of each cluster and between clusters. For the sake of simplicity,

unique notations for clusters and zones are considered in the

following, that is, let z denote either a cluster or a zone

within a cluster, and let N denote their numbers. A greedy AP

selection method is adopted to maximize the discriminative

capacity and minimize the dependency of the selected APs.

APs cannot be treated independently, since one that might be

useless by itself can provide a significant improvement in the

performance when taken with others [23]. Let F ′ ⊆ F denote

one non-empty subset. All the observations at the APs of F ′

belonging to each entity zj are thus taken, and they are fitted to

a distribution denoted QF ′,j , j ∈ {1, . . . , N}. The distribution

QF ′,j is either univariate or multivariate depending on the

cardinal of F ′.

On one hand, having erroneous APs harms the performance

of loclization. But since the computation of the exact error rate

is cumbersome especially for high dimensions, the discrimi-

native capacity of APs which is inversely proportional to the

error rate is used [24]. Indeed, the farther the distributions

QF ′,z1 , . . . , QF ′,zN are one from the other, the more discrim-

inative the AP subset F ′ is, and thus the less error rate is

obtained. The Kullback-Leibler divergence is used to measure

such a quantity. The discriminative capacity of a subset of APs

F ′ ⊆ F is then defined as follows,

DisC(F ′) =

N
∑

a=1

N
∑

b=1

DKL(QF ′,za ||QF ′,zb), (9)

DKL(QF ′,za ||QF ′,zb) being the Kullback-Leibler divergence

measured between the distributions of the observations belong-

ing to zones za and zb, while considering only the APs of F ′.

The error rate of subset F ′ is defined as follows [24],

E(F ′) = 2−DisC(F ′). (10)

On the other hand, dependency is an important factor in

AP selection. Having two or more dependent APs leads to a

higher dimensionality and redundant performance. Here, the

coefficient of multiple correlation is used as it is a measure of

how much an AP is dependent upon other ones. The square

of the multiple correlation coefficient of APj in a set of APs

F ′ with respect to the group of APs F ′ \ {APj} is defined as

follows,

R2
j = cTj R

−1
xx,jcj , (11)

where cj is the column vector with entries dAPiAPj
for

APi ∈ F ′ \{APj}, dAPiAPj
being the correlation between APs

APi and APj computed using their observations, cTj being the

transpose of cj , and R−1
xx,j the inverse of the matrix of entries

dAPiAPi′
for APi and APi′ ∈ F ′ \ {APj}. The dependency

between all the APs of a set F ′ is the average multiple

correlation coefficient of all APj ∈ F ′, namely

R(F ′) =
∑

j

Rj

|F ′|
, (12)

where |F ′| is the cardinal of F ′.



The objective of the AP selection technique is to find

the subset Fs ⊆ F such that both E(Fs) and R(Fs) are

simultaneously minimized. This can be solved using any multi-

objective optimization technique such as Pareto front [25];

yet these solutions require the knowledge of E and R for

all subsets, which is computationally unfeasible for large

number of APs. For this purpose, a greedy search algorithm

with backward elimination strategy is applied to choose this

subset. One starts with the whole set of APs and progressively

eliminates an AP, whose elimination satisfies a function that

considers the two objectives mentioned above. Let Fy be the

AP subset chosen at iteration y ≥ 1, with F0 = F and

the cardinal |Fy | of Fy equal to NAP − y. At each iteration

y ≥ 1, all the subsets of Fy−1 having NAP − y elements are

considered. Let F
(λ)
y , λ = 1, . . . , NAP − y + 1, denote these

subsets. We define the function gy
(

F
(λ)
y

)

as follows,

gy(F
(λ)
y )=α

E(Fy−1) − E(F
(λ)
y )

max(E(Fy−1), E(F
(λ)
y ))

+(1−α)
R(Fy−1)−R(F

(λ)
y )

max(R(Fy−1),R(F
(λ)
y ))

,

(13)

where α ∈ [0, 1] is a tradeoff parameter chosen by the user

to assign a weight for each objective. A positive value of

gy
(

F
(λ)
y

)

means that the subset F
(λ)
y is better than Fy−1

in optimizing the objectives. The greater gy(·) is, the better

the subset is. This leads to a selected subset at iteration

y, Fy = argmaxλ gy
(

F
(λ)
y

)

. A negative value of g means

that there is no significant improvement in the objectives for

the considered parameters and hence iterations stop when all

gk
(

F
(λ)
y

)

, λ = 1, . . . , NAP − y + 1, are negative and one

chooses the set of APs Fs = Fy−1. This algorithm is applied

at the clusters level to yield Fs and at the zones level of each

cluster Cj to yield Fs,j , j ∈ {1, . . . , NC}.

E. Confidence-based zone estimation

We consider the outputs of the two preceding phases. Let

Cj , j ∈ {1, . . . , NC} be the set of created clusters, and Ij be

the set of indices of the zones included in cluster j, that is,

Zk ∈ Cj , ∀k ∈ Ij . Let Fs be the selected subset of available

APs at the clusters level, and Fs,j the selected subset at the

zones level of cluster Cj . The computations of Eq. (3) are

applied at the two levels of the hierarchy, leading respectively

to pignistic levels of all clusters and zones within each cluster

BetPC({Cj}), j ∈ {1, . . . , NC}, and BetP j({Zk}), k ∈ Ij .

To attribute a confidence level by the observation model to

each zone, pignistic levels of zones and clusters are combined

as follows,

Cf(Zk) = BetPC({Cj})×BetP j({Zk}), (14)

with k ∈ Ij , j ∈ {1, . . . , NC}.

III. EXPERIMENTS

To evaluate the performance of the proposed method, real

experiments were conducted in a WLAN environment at the

first floor of the Living Lab at the University of Technology

of Troyes, France. The considered floor of approximated area

of 500 m2 is partitioned into nineteen zones. A personal

computer, with a WiFi scanner software, can distinguish APs

of the network throughout their MAC addresses. It measures

then the RSS of their transmitted signals. Note that 38 AP

networks could be detected at the considered area. Sets of 50

measurements were taken in each zone, of which 30 were

randomly used to construct the databases, and the others

were kept for test. The collected RSS of the database were

statistically fitted according to a significance level of 0.02.

Table I shows the results of applying the observation model

to 380 test points and the influence of each phase over the

percentage of accuracy and the processing time. An estimation

is said to be correct if the algorithm assigns the highest

confidence level to the right zone. As this table clearly shows,

the basic observation model attains an accuracy of 82.84%

over the training data and 81.63% over new data. This low

accuracy percentage is due to the wide overlapping of the

various functions representing the distributions of the data in

the different zones. However, when the two-level hierarchical

clustering was carried out, a great enhancement in the per-

centage of accuracy was noted (88.21% over training data and

86.26% over new data). This amelioration is at the expense

of the processing time. It is clear that both the offline training

time and the online test time were almost doubled. In addition,

the AP selection phase had a significant impact on the overall

process. An accuracy of 92.78% on training data and 90.42%

over new data could be obtained with a slight gain in the online

test time, yet with an increase in the offline training time.

In this section, the proposed method is compared to some

of the well-known classification techniques such as k-nearest

neighbors, naive Bayes, multinomial logistic regression, neural

networks, and SVM. The parameters of these methods were

determined and tuned using a ten-fold cross validation. For

k-nearest neighbors, the optimal number of neighbors was

found to be 19. For naive Bayes and multinomial logistic

regression, the maximum likelihood estimate was used to

evaluate the probability of each zone. As for neural networks,

radial basis functions were used as activation functions for

a one single hidden layer. A Gaussian kernel was used for

SVM. Table II shows the percentage of accuracy and the

processing time of the proposed technique compared to the

aforementioned methods. The proposed method outperforms

all the other ones in terms of localization accuracy, with a

competitive processing time.

IV. CONCLUSION AND FUTURE WORK

This paper presented a confidence-based localization tech-

nique for indoor environments. The method proposes an ob-

servation model, in a belief functions framework, that creates

supersets of zones and affiliates masses to each one using

the APs as sources of information. A two-level hierarchy is

then created using a hierarchical clustering technique. An AP

selection approach is also proposed to choose the best subset of

APs in terms of discriminative capacity and redundancy. Real

experiments in a Living Lab demonstrate the effectiveness

of the proposed localization approach and its competence as

compared to state-of-the-art techniques. Future work will focus



TABLE I: Influence of each phase of the observation model on the accuracy and the processing time.

Applying the observation model Accuracy over training data / new data (%) training time / test time (s)

without clustering and AP selection 82.84 / 81.63 45 / 0.1174

without AP selection 88.21 / 86.26 92 / 0.2369

as it is 92.78 / 90.42 126 / 0.2172

TABLE II: Performance of methods in terms of localization accuracy and processing time.

Method Accuracy over training data / new data (%) training time / test time (s)

K-nearest neighbors 82.53 / 80.15 14 / 0.1311

Naive Bayes 83.33 / 80.95 42 / 0.1042

Multi nomial logistic regression 84.12 / 85.33 76 / 0.1559

Neural networks 86.51 / 85.71 83 / 0.1883

SVM 88.10 / 87.30 96 / 0.1912

Proposed method 92.78 / 90.42 126 / 0.2172

on the usage of mobility of sensors in combination of the

observation model to enhance the overall accuracy.
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