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Université de Rouen

Rouen, France

paul.honeine@univ-rouen.fr

Abstract—Tracking of mobile sensors is an important research
issue in wireless sensor networks. This paper presents a zoning-
based tracking technique that works efficiently in indoor envi-
ronments. The targeted area is composed of several zones, the
objective being to determine the zone of the mobile sensor in
a real-time tracking process. The proposed method creates a
belief functions framework that combines evidence using the
sensors mobility and observations. To do this, a mobility model is
proposed by using the previous state of the sensor and its assumed
maximum speed. Also, an observation model is constructed based
on fingerprints collected as WiFi signals strengths received from
surrounding Access Points. Real experiments demonstrate the
effectiveness of this approach and its competence compared to
state-of-the-art methods.

Index Terms—Belief functions, evidence fusion, mobility, track-
ing, WiFi signals.

I. INTRODUCTION

Recent advances in computing and communication have en-

abled the proliferation of wireless sensor networks. These net-

works are tremendously being used in various fields to perform

several tasks ranging from medical and military applications,

to monitoring homes, hospitals and forests [1]. Localization

is a key aspect of such networks, since the knowledge of

the sensor’s location is critical to process the information it

acquired, to actuate responses to the environment, or to set an

alarm in an emerging situation [2]. This paper addresses the

zoning-based tracking problem in indoor environments, where

the zone of the localized sensor in real-time is of interest. This

issue is important for health-care applications for instance,

where Alzheimer’s patients might be lost in their nursing

home [3], in museums for supporting guides and emergency

management [4], for large malls to facilitate shopping [5],

etc and where locating people in a specific zone of such

environments is completely sufficient.

Many existing works have been proposed to tackle the

localization problem. The GPS technology for example, is

widely integrated in vehicle tracking systems [6]. However,

it has limitations in indoor environments due to the large

attenuation caused by buildings’ walls and ceilings [7]. To

extend the capability of mobile localization applications in

indoor environments, researchers worked on alternative so-

lutions based on various types of signals like ultra wide

band, WiFi, zigbee, bluetooth, etc [8], [9], [10]. One of

the advantages of WiFi signals over the others is that one

can rely only on the Access Points (APs) present inside

the building, with no need to additional hardware. For that

reason, several localization algorithms and connectivity-based

methods that use received signal strengths (RSS) of WiFi

signals were developed [11], [12], [13]. These methods depend

on a pathloss model, which is not efficient especially in

indoor environments. Alternatively, techniques that employ

fingerprinting are widely implemented. They collect strengths

of WiFi signals at exact reference positions in a database

and then apply the k-nearest neighbors scheme [14], neural

networks [15] or kernel-based learning [16], [17] to solve the

localization problem.

This paper proposes a new tracking method for indoor

environments. The proposed method uses belief functions to

estimate the sensors zones by combining the evidence related

to the sensors mobility and observations, as described in the

following. The method makes use of the sensors mobility

by assuming a maximum speed of movement of sensors in

indoor environments. This allows a prediction of the next

possible destinations of the mobile sensor, and hence leading

to a mobility model. Here, the belief functions framework is

used to propagate the previous step evidence till the current

one. Moreover, the proposed method consists in constructing

a fingerprinting database that associates to each zone a set of

WiFi signals strengths collected from the APs. This database

is used with the belief functions theory to create supersets of

zones and affiliate evidence to each one according to each AP.

The APs, which are the sources of information, are discounted

according to their error rate. Their evidence is then combined

via the belief functions fusion rule. Mobility and observation

evidence is then combined to determine a level of confidence

of having the mobile sensor residing in each zone. By taking

into account information uncertainty, the proposed method

yields several possibilities of zones with different levels of

confidence of covering the new observation. Real experiments

are conducted in a Living Lab to track elderly people. Results

show the effectiveness of the proposed method, compared to

state-of-the-art algorithms.

The rest of the paper is organized as follows. Section

II describes the problem. Section III presents the tracking

approach. Section IV demonstrates the experimental results

and the comparison to state-of-the-art algorithms. Section V

concludes the paper.



II. PROBLEM STATEMENT

The tracking problem consists of estimating the mobile

sensor’s zone in real time using its mobility and the signals

strengths or RSS it collects from the APs. It is tackled in the

following manner. Let

• NZ be the number of zones of the targeted area, denoted

by Zk, k = 1, 2, . . . , NZ ;

• NAP be the number of detected APs, denoted by

APn, n = 1, 2 . . . , NAP ;

• ρt be the vector of size NAP of RSS measurements

collected by the mobile sensor at the instant t from

surrounding Access Points;

• vmax be the maximum speed of the mobile sensor in the

indoor environment.

The aim of the proposed algorithm is to find a function h :
R

NAP → [0, 1]NZ such that h(ρt) = (Cft(Z1), . . . , Cft(ZNZ
)),

where Cft(Zk) is the level of confidence of having the mobile

sensor of observation ρt residing in the zone Zk at the instant

t.

III. TRACKING APPROACH

In this section, the tracking approach is presented. It con-

sists of assigning evidence through a mobility model and an

observation model, and combining them in a belief functions

framework, as shown in Fig. 1.

A. Mobility model

Mobility plays an important role in providing location-based

services and tracking of mobile sensors. Here a mobility-based

approach is implemented that assumes a maximum speed of

the mobile sensors, and is used as a source of information to

track in real time the movement of this sensor. We propose two

models: the basic model is based on the original succession of

zones; the advanced one is more accurate based on the tran-

sition between created sub-zones and necessitates a specific

data acquisition phase. The two models are described in the

following paragraphs.

1) basic mobility model: Let vmax be the maximum speed

of the mobile sensor in the target area, ∆tloc the time interval

in which the localization algorithm is executed, and dmin,ij

the minimal geographical distance between the two zones Zi

and Zj . To determine dmin,ij , a point is placed in zone Zi

such that it is the closest possible to zone Zj , and another one

is placed in the zone Zj such that it is the closest possible to

Zi. The maximum distance that the sensor can travel is then

deduced dmax = vmax × ∆tloc. Let pij , i, j ∈ {1, . . . , NZ},

denote the coefficient of transition from zone Zi to zone Zj

within the localization period ∆tloc. Then,

pij =







0, if dmax < dmin,ij ;

1, if dmax ≥ dmin,ij .
(1)

Being in a zone Zi at instant t−1, the sensor could be at instant

t at any zone j ∈ {1, ..., NZ} of the ones having pij = 1. These

zones are called the following zones of Zi. The confidence of
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Fig. 1: Belief functions framework to combine evidence from

both observations and mobility.

Zi at time t − 1 is then propagated to time t by distributing

it equally to its following zones, each one would be having
Cft−1(Zi)∑

j pij
. The mobility evidence given to a zone Zk at time t

is the aggregation of all evidence deduced from its preceding

ones having pik = 1, ∀i ∈ {1, ..., NZ}. This leads to a mobility

mass at time t computed in the following manner,

mM,t(Zk) =

NZ
∑

i=1

pik ×
Cft−1(Zi)
∑NZ

j=1 pij
. (2)

2) Advanced mobility model: In this paragraph, a more

precised mobility model is presented. This model requires a

specific data acquisition phase as described in the following.

Each zone Zi is divided into NXi
sub-zones Xi.ℓ according to

its architecture: NXi
− 1 connection sub-zones and and one

main sub-zone Xi.NXi
. Each connection sub-zone is a section

area in front of a door connecting Zi with neighbor zones,

as indicated in Fig. 2. Its dimensions are defined in a way to

cover all possible positions in the zone Zi at which the sensor

could cross the door to go to a neighboring zone within the

localization period. The main sub-zone Xi.NXi
is the remaining

section area in Zi. A sensor being in the main sub-zone of

zone Zi at time t− 1 would remain in the same zone at time

t. In a data acquisition phase, RSS values are collected in

each sub-zone and fitted to a multi-dimensional statistical dis-

tribution. Let Qi.ℓ(·) be the distribution representing the data

of the connection sub-zone Xi.ℓ, ℓ ∈ {1, . . . , NXi
− 1}, and

Qi.NXi
(·) be the distribution representing the main sub-zone

Xi.NXi
. Having the previous observation ρt−1 , membership

weights qt−1(Xi.ℓ), i ∈ {1, . . . , NZ}, ℓ ∈ {1, . . . , NXi
} could

be computed to quantify the membership of the sensor to

any sub-zone of each zone Zi at t − 1. This is performed

by calculating the probability resulting from each fitted distri-

bution with respect to the previous observation followed by a

normalization phase,

qt−1(Xi.ℓ) =
Qi.ℓ(ρt−1)

∑NXi

χ=1 Qi.χ(ρt−1)
. (3)

The confidence of each zone Zi at t− 1 is then converted to

its sub-zones in the following manner,

Cf∗
t−1(Xi.ℓ) = Cft−1(Zi)× qt−1(Xi.ℓ). (4)
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Fig. 2: Part of the section area with created sub-zones.

Let ri.ℓ,j be the coefficient of transition from the connection

sub-zone Xi.ℓ, ℓ ∈ {1, . . . , NXi
} of zone Zi, i ∈ {1, . . . , NZ}

to original zone Zj, j ∈ {1, . . . , NZ}, such that

ri.ℓ,j =







0, if dmax < dmin,i.ℓ,j ;

1, if dmax ≥ dmin,i.ℓ,j ,
(5)

where dmin,i.ℓ,j is the minimal distance between connection

sub-zone Xi.ℓ and zone Zj . The mass associated to each zone

by the mobility model can be thus deduced,

mM,t(Zk)=Cf∗
t−1(Xk.NXk

)+

NZ
∑

i=1

NXi
−1

∑

ℓ=1

ri.ℓ,k×
Cf∗

t−1(Xi.ℓ)
∑NZ

j=1 ri.ℓ,j
. (6)

Here the mass of Zk at time t is the aggregation from t−1 of

the confidence of its main zone and a part of the confidence

of the connection sub-zones of other zones able to lead to it.

B. Observation model

The observation model uses RSS data received from sur-

rounding WiFi APs to estimate the zone of the mobile sensor.

In an offline phase, fingerprints are collected by measuring

the RSS of all existing APs in random positions of each zone.

Then , in the online phase, once a new measurement of RSS

is received, the model is used to assign a certain mass to each

zone.

1) Mass association: The observation model consists of

fitting the RSS observations into statistical distributions, and

using the belief functions theory as a framework for mass asso-

ciation and evidence fusion. To take into account information

uncertainty, supersets of zones are considered and not only the

singletons, which permits associating masses as per available

evidence.

Let Z = {Z1, . . . , ZNZ
} be the set of all possible zones

and let 2Z be the set of all the supersets of Z , i.e., 2Z =
{∅, {Z1}, . . . ,Z}. The cardinal of 2Z is equal to 2|Z| = 2NZ ,

where |Z| denotes the cardinal of Z . One fundamental func-

tion of the BFT is the mass function, also called the basic

belief assignment (BBA). A mass function mAPn,t(·) is a

mapping from 2Z to the interval [0, 1], defined according to a

certain source APn, n ∈ {1, . . . , NAP }. It satisfies:
∑

A∈2Z

mAPn,t(A) = 1. (7)

The mass mAPn,t(A) given to A ∈ 2Z stands for the

proportion of evidence, brought by the source APn at instant

t, saying that the observed variable belongs to A.

In order to define the APs BBAs, all observations related

to each AP belonging to a superset A ∈ 2Z are fitted to a

distribution QAPn,A. Then, having an observation ρn,t related

to APn, n ∈ {1, . . . , NAP}, the mass mAPn,t(A) is calculated

as follows,

mAPn,t(A) =
QAPn,A(ρn,t)

∑

A′∈2Z ,A′ 6=∅ QAPn,A′(ρn,t)
, A ∈ 2Z , A 6= ∅.

(8)

The quantity mAPn,t(A) represents the amount of evidence

brought by the source APn saying that the observation ρn
belongs to the set A, A being a singleton, a pair, or more. By

taking all the supersets of Z and not only the singletons, the

proposed algorithm uses all available evidences, even if they

are uncertain about a single element. Note that mAPn,t(A)
is not the probability of having ρn,t in A, but only an

interpretation of the information brought by the source APn by

means of observation ρn,t, that is, mAPn,t(A) could be higher

than mAPn,t(B) even if A ⊂ B.
2) Discounting operation: The detected APs are not com-

pletely reliable. Indeed, each AP could yield an erroneous

interpretation of evidence for some observations. In order to

correct this, one can discount the BBAs of Eq. (8) by taking

into account the error rate of the AP. The discounted BBA
αmAPn,t related to APn having an error rate αn is deduced

from the BBA mAPn,t as follows [18],

α
mAPn,t(A) =







(1− αn)mAPn,t(A), if A ∈ 2Z , A 6= Z;

αn + (1− αn)mAPn,t(A), if A = Z.
(9)

By doing this, the amounts of evidence given to the supersets

of Z are reduced, and the remaining evidence is given to the

whole set Z .

Now, to compute the error rate of a certain source APn,

consider an observation ρn,· being truly in A. The source APn

is assumed not reliable if, according to ρn,·, it associates more

evidence to any set other than A, that is, the mass associated

to A is less than the mass of another subset of 2Z . Since the

BBAs are defined using the statistical distributions related to

each set, then an AP is erroneous for all observations of A
where QAPn,A(ρn,·) is less than any QAPn,A′(ρn,·), for any

A′ 6= A. Let ǫn(A) be the error rate related to the set A with

respect to APn. Then,

ǫn(A) =

∫

Dn,A

QAPn,A(ρ)dρ, (10)

such that Dn,A is the domain of error of set A according to

APn, defined as follows,

Dn,A = {ρ | QAPn,A(ρ) ≤ max
A′∈2Z ,A′ 6=A

(QAPn,A′(ρ))}. (11)

The error rate αn of APn is then the average error of all sets

according to this AP, namely

αn =

∑

A∈2Z ǫn(A)

2|Z|
. (12)



3) Fusion of evidence: According to the information re-

trieved from the APs, the mass functions αmAPn,t(·) are

defined. Combining the evidence consists in aggregating the

information coming from all the APs [19]. The mass functions

can then be combined using the conjunctive rule of combina-

tion as follows,

m∩,t(A) =
∑

A(n)∈2Z

∩nA
(n)=A

αmAP1,t(A
(1))×...×αmAPNAP

,t(A
(NAP )), (13)

for all the sets A ∈ 2Z , with A(n) is the set A with respect

to the Access Point APn. This fusion rule leads to a more

informative and specialized mass function [20]. The mass

function is then normalized, leading to the Dempster rule of

combination:

m⊕
,t(A) =

m∩,t(A)
∑

A′∈2Z m∩,t(A′)
(14)

4) Pignistic transformation: An adequate notion of the

BFT to attribute masses to singleton sets is the pignistic level

[21]. It is defined as follows,

BetPt(A) =
∑

A⊆A′

m⊕
,t(A

′)

|A′|
, (15)

where A is a singleton of 2Z . The pignistic level is equivalent

to the probability of having the observation belonging to the

considered set. One could also compute the pignistic level of

higher-cardinal supersets. However, only the singleton sets are

taken into consideration, as we are interested in determining

a level of confidence for the original zones only. Hence, the

mass associated to each zone by the basic observation model

at each instant t can be computed as follows,

mO,t(Zk) = BetPt({Zk}), k ∈ {1, . . . , NZ}. (16)

C. Confidence-based zone estimation

The associated masses by the mobility model and the

observation model are combined by fusing the evidence of the

two models to yield a confidence level of having the mobile

sensor resides in each zone as follows,

Cft(Zk) = mM
⊕

O,t(Zk) =
mO,t(Zk)×mM,t(Zk)

∑NZ
χ=1

mO,t(Zχ)×mM,t(Zχ)
. (17)

The zone having the highest confidence is then selected. It is

worth noting that this method yields ranked results, allowing

for a second zone choice if the first one was erroneous.

IV. EXPERIMENTS

To evaluate the performance of the proposed method, real

experiments were conducted in a Living Lab addressing the

localization of elderly people. As shown in Fig. 3, the con-

sidered floor of approximated area of 500 m2 is partitioned

into eighteen zones. A personal computer, with a WiFi scanner

software, can distinguish APs of the network throughout their

MAC addresses. It measures then the RSS of their transmitted

signals. Note that 38 APs networks could be detected at the

considered area. Sets of 30 measurements were taken in each

Fig. 3: The Living Lab at the University of Technology of

Troyes.

zone to create the training database. Other 10 trajectories, each

of 50 observations, were considered to validate the proposed

algorithm. The measures were taken in random positions and

orientations of the personal computer. The collected RSS of

the database were statistically fitted according to a significance

level of 0.02. The two mobility models, each by its own, were

used to affiliate certain evidence to each zone by considering

a maximum speed of 1.5 m/s. The observation model was

then constructed by using the fitted distributions in the belief

functions framework. The method generated then a set of

masses using the presented observation model. It is noted

that by using the proposed method with the basic mobility

model, an average accuracy of 88.67% could be attained.

This important enhancement in the overall average accuracy is

due to the presence of diametrically opposed erroneous zones

with respect to Access Points. These types of errors could

be easily recovered by the basic mobility model. Another

amelioration in the overall accuracy to 91.82% has been

noted upon combining the advanced mobility model with the

observation model. The advantage of this proposed model is in

the high accuracy achieved in assigning masses for sub-zones.

This is due to the large number of APs selected inside each

zone, which yields a more accurate decision when combined.

The proposed method is compared to well-known classifi-

cation techniques such as k-nearest neighbors, naive Bayes,

multinomial logistic regression, neural networks, and support

vector machines (SVM). The parameters of these methods

were determined and tuned using a ten-fold cross validation.

For k-nearest neighbors, the optimal number of neighbors used

to estimate the class membership was found to be 19. For

naive Bayes and multinomial logistic regression, the maximum

likelihood estimate was used to evaluate the probability of

having the data instance belong to each class. As for neural

networks, radial basis functions were used as activation func-

tions for a one single hidden layer. A Gaussian kernel was used

for SVM. Table I shows the percentage of accuracy and the

processing time of the proposed technique compared to the

aforementioned methods. The proposed method outperforms

all the other ones in terms of classification accuracy, with



TABLE I: Performance of methods on tracking in terms of accuracy and processing time.

Method Accuracy (%) Training time (s) Execution time (s)

K-nearest neighbors 81.82 14 0.1311

Naive Bayes 78.76 42 0.1042

Multi nomial logistic regression 82.94 76 0.1559

Neural networks 83.82 83 0.1883

SVM 86.47 96 0.1912

Proposed

Observation model 84.91 87 0.1774

Observation model + basic mobility model 88.67 102 0.2157

Observation model + advanced mobility model 91.82 129 0.2388

comparable processing time.

V. CONCLUSION AND FUTURE WORK

This paper presented a new confidence-based tracking tech-

nique for indoor environments. The method creates a belief

functions framework that uses two models: a mobility model

based on assuming a maximum speed of sensors in indoor

environments, where two models are proposed to associate

an evidence to each zone. The basic mobility model is based

on the original succession of zones, while the advanced one

creates sub-zones and requires an additional data acquisition

phase; and an observation model, based on the belief functions

theory, that creates supersets of zones and affiliates masses

to each one using the APs as sources of information. The

mobility and observation models are combined in the created

belief functions framework to determine a level of confidence

of having the mobile sensor resides in each zone. Real exper-

iments in a Living Lab demonstrate the effectiveness of the

proposed tracking algorithm and its competence as compared

to state-of-the-art techniques. Future work will focus on an

extended version of the observation model to enhance the

overall accuracy. Moreover, tracking of sensors on multi-floor

buildings will also be investigated.
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