An aggregator view of NL-Means

E. Le Pennec and J. Salmon

LPMA - Université Paris Diderot (Paris 7) SELECT - INRIA Saclay

Aug 2009 - SPIE

Setting

• Estimate an image *I* from a noisy observation *Y* $Y = I + \sigma W$ (*W* Gaussian white noise)

Setting

• Estimate an image I from a noisy observation Y $Y = I + \sigma W$ (W Gaussian white noise)

State of the art

- Classical solution: replace the pixel values by a local average...
- "Patch" based approach: use pixel neighborhoods instead of pixel values.
- NL-Means: Gaussian smoothing in a patch space.

Setting

• Estimate an image I from a noisy observation Y $Y = I + \sigma W$ (W Gaussian white noise)

State of the art

- Classical solution: replace the pixel values by a local average...
- "Patch" based approach: use pixel neighborhoods instead of pixel values.
- NL-Means: Gaussian smoothing in a patch space.

An aggregator point of view

- Look at the NL-Means approach as a quest for an optimal local kernel, an optimal patch combination.
- Statistical aggregation setting.
- New point of view and new results...

Setting

• Estimate an image I from a noisy observation Y $Y = I + \sigma W$ (W Gaussian white noise)

State of the art

- Classical solution: replace the pixel values by a local average...
- "Patch" based approach: use pixel neighborhoods instead of pixel values.
- NL-Means: Gaussian smoothing in a patch space.

An aggregator point of view

- Look at the NL-Means approach as a quest for an optimal local kernel, an optimal patch combination.
- Statistical aggregation setting.
- New point of view and new results...

2 Aggregation

2 Aggregation

3 Patch based aggregation

2 Aggregation

Output Description
Output Description

Kernel methods and NL-Means Image, noise and kernel methods

• Patches and NL-Means

2 Aggregation

3 Patch based aggregation

Image N imes N

- $I(i_1, i_2) \in \mathbb{R}$ with $(i_1, i_2) \in [1, N]^2$.
- L_2 (quadratic) norm.

Image $N \times N$

- $I(i_1, i_2) \in \mathbb{R}$ with $(i_1, i_2) \in [1, N]^2$.
- L₂ (quadratic) norm.

Noisy observation

- $Y(i_1, i_2) = f(i_1, i_2) + \sigma W(i_1, i_2)$.
- ullet W standard Gaussian i.i.d. noise and σ^2 known variance.
- Other noise possible...

Image $N \times N$

- $I(i_1, i_2) \in \mathbb{R}$ with $(i_1, i_2) \in [1, N]^2$.
- L₂ (quadratic) norm.

Noisy observation

- $Y(i_1, i_2) = f(i_1, i_2) + \sigma W(i_1, i_2)$
- W standard Gaussian i.i.d. noise and σ^2 known variance.
- Other noise possible...

Estimation

- Estimate $I(i_1, i_2)$ by $\widehat{I}(i_1, i_2)$ from Y.
- Non local behavior possible...

Image $N \times N$

- $I(i_1, i_2) \in \mathbb{R}$ with $(i_1, i_2) \in [1, N]^2$.
- L₂ (quadratic) norm.

Noisy observation

- $Y(i_1, i_2) = f(i_1, i_2) + \sigma W(i_1, i_2)$
- W standard Gaussian i.i.d. noise and σ^2 known variance.
- Other noise possible...

Estimation

- Estimate $I(i_1, i_2)$ by $\widehat{I}(i_1, i_2)$ from Y.
- Non local behavior possible...

Kernel methods

General kernel method

- Estimate $I(i_1, i_2)$ through a local average $\widehat{I}(i_1, i_2) = \sum_{(k_1, k_2) \in [1, N]^2} \lambda_{i_1, i_2, k_1, k_2} Y_{k_1, k_2}$
- The weights $\lambda_{i_1,i_2,k_1,k_2}$ may (will) depend on Y.

Kernel methods

General kernel method

- Estimate $I(i_1, i_2)$ through a local average $\widehat{I}(i_1, i_2) = \sum_{(k_1, k_2) \in [1, N]^2} \lambda_{i_1, i_2, k_1, k_2} Y_{k_1, k_2}$
- The weights $\lambda_{i_1,i_2,k_1,k_2}$ may (will) depend on Y.

Classic kernel

•
$$\lambda_{i_1,i_2,k_1,k_2} = \frac{K(i_1 - k_1, i_2 - k_2)}{\sum_{k'_1,k'_2} K(i_1 - k'_1, i_2 - k'_2)}$$
 (no dependency on Y).

- Example: Gaussian kernel $K(i_1, i_2) = e^{-(i_1^2 + i_2^2)/2h^2}$.
- Adaptation of the local kernel K (dependency on Y).

Kernel methods

General kernel method

- Estimate $I(i_1, i_2)$ through a local average $\widehat{I}(i_1, i_2) = \sum_{(k_1, k_2) \in [1, N]^2} \lambda_{i_1, i_2, k_1, k_2} Y_{k_1, k_2}$
- The weights $\lambda_{i_1,i_2,k_1,k_2}$ may (will) depend on Y.

Classic kernel

•
$$\lambda_{i_1,i_2,k_1,k_2} = \frac{K(i_1 - k_1, i_2 - k_2)}{\sum_{k'_1,k'_2} K(i_1 - k'_1, i_2 - k'_2)}$$
 (no dependency on Y).

- Example: Gaussian kernel $K(i_1, i_2) = e^{-(i_1^2 + i_2^2)/2h^2}$.
- Adaptation of the local kernel K (dependency on Y).

Data dependent methods

Example of data dependent methods

- *-let thresholding (complex dependency of the weights).
- Bilateral filtering (dependency on pixelwise difference).

Data dependent methods

Example of data dependent methods

- *-let thresholding (complex dependency of the weights).
- Bilateral filtering (dependency on pixelwise difference).

Bilateral filtering

•
$$\lambda_{i_1,i_2,k_1,k_2} = \frac{K(i_1 - k_1, i_2 - k_2) \times K'(Y(i_1, i_2) - Y(k_1, k_2))}{\sum_{k'_1,k'_2} K(i_1 - k'_1, i_2 - k'_2) \times K'(Y(i_1, i_2) - Y(k'_1, k'_2))}$$

• Gaussian version:
 $\lambda_{i_1,i_2,k_1,k_2} = \frac{e^{-\frac{(i_1 - k_1)^2 + (i_2 - k_2)^2}{2h^2}} \times e^{-\frac{(Y(i_1,i_2) - Y(k_1,k_2))^2}{2h'^2}}}{\sum_{k'_1,k'_2} e^{-\frac{(i_1 - k'_1)^2 + (i_2 - k'_2)^2}{2h^2}} \times e^{-\frac{(Y(i_1,i_2) - Y(k'_1,k'_2))^2}{2h'^2}}.$

- Intuition: average values that are close in both distance and values.
- Issue: pixel value is a too local feature...

Data dependent methods

Example of data dependent methods

- *-let thresholding (complex dependency of the weights).
- Bilateral filtering (dependency on pixelwise difference).

Bilateral filtering

•
$$\lambda_{i_1,i_2,k_1,k_2} = \frac{K(i_1 - k_1, i_2 - k_2) \times K'(Y(i_1, i_2) - Y(k_1, k_2))}{\sum_{k'_1,k'_2} K(i_1 - k'_1, i_2 - k'_2) \times K'(Y(i_1, i_2) - Y(k'_1, k'_2))}$$

$$\lambda_{i_1,i_2,k_1,k_2} = \frac{e^{-\frac{(i_1-k_1)^2 + (i_2-k_2)^2}{2h^2}} \times e^{-\frac{(Y(i_1,i_2) - Y(k_1,k_2))^2}{2h'^2}}}{\sum_{k'_1,k'_2} e^{-\frac{(i_1-k'_1)^2 + (i_2-k'_2)^2}{2h^2}} \times e^{-\frac{(Y(i_1,i_2) - Y(k'_1,k'_2))^2}{2h'^2}}.$$

- Intuition: average values that are close in both distance and values.
- Issue: pixel value is a too local feature...

Patch based method

Patch

- Patch: less localized version of pixel values.
- Centered patch $P(I)(i_1, i_2)$ of width W: $P(I)(i_1, i_2)(j_1, j_2) = I(i_1 + j_1, i_2 + j_2)$ with $-\frac{W-1}{2} \le j_1, j_2 \le \frac{W-1}{2}$
- Easy reprojection from patch collection P(I) to an image I...

Patch based method

Patch

- Patch: less localized version of pixel values.
- Centered patch $P(I)(i_1, i_2)$ of width W: $P(I)(i_1, i_2)(j_1, j_2) = I(i_1 + j_1, i_2 + j_2)$ with $-\frac{W-1}{2} \le j_1, j_2 \le \frac{W-1}{2}$
- Easy reprojection from patch collection P(I) to an image I...

Intuition

• Use weights that take into account the patch similarity:

Patch $P(Y)(i_1, i_2) = P_{(i_1, i_2)}$:

- Patch $P(Y)(i_1, i_2)$ to denoise,
- Similar patches, useful: large weights,
- Less similar patches, less useful: small weights,
- Very different patches, useless: no weights.

Patch based method

Patch

- Patch: less localized version of pixel values.
- Centered patch $P(I)(i_1, i_2)$ of width W: $P(I)(i_1, i_2)(j_1, j_2) = I(i_1 + j_1, i_2 + j_2)$ with $-\frac{W-1}{2} \le j_1, j_2 \le \frac{W-1}{2}$
- Easy reprojection from patch collection P(I) to an image I...

Intuition

• Use weights that take into account the patch similarity:

Patch $P(Y)(i_1, i_2) = P_{(i_1, i_2)}$:

- Patch $P(Y)(i_1, i_2)$ to denoise,
- Similar patches, useful: large weights,
- Less similar patches, less useful: small weights,
- Very different patches, useless: no weights.

NL-Means (Buadès, Coll and Morel)

- Choose a dissimilarity measure D between patches.
- Use a weight $\lambda_{i_1,i_2,k_1,k_2} = \frac{K'(D(P_{(i_1,i_2)},P_{(k_1,k_2)}))}{\sum_{k'_1,k'_2}K'(D(P_{(i_1,i_2)},P_{(k'_1,k'_2)}))}$
- Use $D(P_{(i_1,i_2)}, P_{(k_1,k_2)}) = ||P_{(i_1,i_2)} P_{(k_1,k_2)}||$ to measure the dissimilarity, a Gaussian kernel $K'(x) = \exp(-x^2/\beta)$ and a temperature $\beta = \gamma \sigma^2$.

NL-Means (Buadès, Coll and Morel)

- Choose a dissimilarity measure D between patches.
- Use a weight $\lambda_{i_1,i_2,k_1,k_2} = \frac{K'(D(P_{(i_1,i_2)},P_{(k_1,k_2)}))}{\sum_{k'_1,k'_2}K'(D(P_{(i_1,i_2)},P_{(k'_1,k'_2)}))}$
- Use $D(P_{(i_1,i_2)}, P_{(k_1,k_2)}) = ||P_{(i_1,i_2)} P_{(k_1,k_2)}||$ to measure the dissimilarity, a Gaussian kernel $K'(x) = \exp(-x^2/\beta)$ and a temperature $\beta = \gamma \sigma^2$.

Results

- Fast and efficient method.
- Performance very close to the best denoising method.

NL-Means (Buadès, Coll and Morel)

- Choose a dissimilarity measure D between patches.
- Use a weight $\lambda_{i_1,i_2,k_1,k_2} = \frac{K'(D(P_{(i_1,i_2)},P_{(k_1,k_2)}))}{\sum_{k'_1,k'_2}K'(D(P_{(i_1,i_2)},P_{(k'_1,k'_2)}))}$
- Use $D(P_{(i_1,i_2)}, P_{(k_1,k_2)}) = ||P_{(i_1,i_2)} P_{(k_1,k_2)}||$ to measure the dissimilarity, a Gaussian kernel $K'(x) = \exp(-x^2/\beta)$ and a temperature $\beta = \gamma \sigma^2$.

Results

- Fast and efficient method.
- Performance very close to the best denoising method.

Variations

- Adapt automatically the search zone. (Kervrann et al.)
- Use a higher order local approximation. (Buades et al.)
- Use a different dissimilarity measure. (Guichard et al.)

NL-Means (Buadès, Coll and Morel)

- Choose a dissimilarity measure D between patches.
- Use a weight $\lambda_{i_1,i_2,k_1,k_2} = \frac{K'(D(P_{(i_1,i_2)},P_{(k_1,k_2)}))}{\sum_{k'_1,k'_2}K'(D(P_{(i_1,i_2)},P_{(k'_1,k'_2)}))}$
- Use $D(P_{(i_1,i_2)}, P_{(k_1,k_2)}) = ||P_{(i_1,i_2)} P_{(k_1,k_2)}||$ to measure the dissimilarity, a Gaussian kernel $K'(x) = \exp(-x^2/\beta)$ and a temperature $\beta = \gamma \sigma^2$.

Results

- Fast and efficient method.
- Performance very close to the best denoising method.

Variations

- Adapt automatically the search zone. (Kervrann et al.)
- Use a higher order local approximation. (Buades et al.)
- Use a different dissimilarity measure. (Guichard et al.)

Diffusion / Smoothing on the patch manifold

Intuitive explanation but proof requires some strong assumptions.

Diffusion / Smoothing on the patch manifold

• Intuitive explanation but proof requires some strong assumptions.

Optimized local kernel

 NL-Means induces a local kernel adapted to the local geometry.

Diffusion / Smoothing on the patch manifold

• Intuitive explanation but proof requires some strong assumptions.

Optimized local kernel

• NL-Means induces a local kernel adapted to the local geometry.

A best local kernel?

• Can we compare the NL-Means to the best local kernel:

$$E(\|I-\widehat{I}\|^2) \le C \arg\min_{\lambda} \underbrace{\sum_{i_1,i_2} |I(i_1,i_2) - \sum_{k_1,k_2} \lambda_{i_1-k_1,i_2-k_2} I(k_1,k_2)|^2}_{\text{Vertices}} + \underbrace{N^2 \sigma^2 \|\lambda\|^2}_{\text{Vertices}}?$$

Diffusion / Smoothing on the patch manifold

• Intuitive explanation but proof requires some strong assumptions.

Optimized local kernel

• NL-Means induces a local kernel adapted to the local geometry.

A best local kernel?

• Can we compare the NL-Means to the best local kernel:

$$E(\|I-\widehat{I}\|^2) \leq C \arg\min_{\lambda} \underbrace{\sum_{i_1,i_2} |I(i_1,i_2) - \sum_{k_1,k_2} \lambda_{i_1-k_1,i_2-k_2} I(k_1,k_2)|^2}_{\text{bias}} + \underbrace{N^2 \sigma^2 \|\lambda\|^2}_{\text{variance}}?$$

2 Aggregation

- Preliminary estimators and aggregation
- PAC-Bayesian aggregation

3 Patch based aggregation

Model and preliminary estimators

• $Y = I + \sigma W$ of size $N \times N$.

{P_k} set of M preliminary estimators of I (obtained independently).

Model and preliminary estimators

- $Y = I + \sigma W$ of size $N \times N$.
- $\{P_k\}$ set of *M* preliminary estimators of *I* (obtained independently).

Aggregation

- Estimate I as a weighted average $\widehat{I} = P_{\lambda} = \sum_{k} \lambda_{k} P_{k}$.
- Aggregation procedure: way to choose λ_k from Y.

Model and preliminary estimators

- $Y = I + \sigma W$ of size $N \times N$.
- $\{P_k\}$ set of *M* preliminary estimators of *I* (obtained independently).

Aggregation

- Estimate I as a weighted average $\hat{I} = P_{\lambda} = \sum_{k} \lambda_{k} P_{k}$.
- Aggregation procedure: way to choose λ_k from Y.

Oracle type inequalities

Typical results: "Optimal" aggregation amongst a class Λ,

$$E(\|I - \widehat{I}\|^2) \le C \inf_{\lambda \in \Lambda} \|I - P_{\lambda}\|^2 + \sigma^2 \mathsf{pen}(\lambda)$$

C, Λ and pen depend on the procedure.

Model and preliminary estimators

- $Y = I + \sigma W$ of size $N \times N$.
- $\{P_k\}$ set of *M* preliminary estimators of *I* (obtained independently).

Aggregation

- Estimate I as a weighted average $\hat{I} = P_{\lambda} = \sum_{k} \lambda_{k} P_{k}$.
- Aggregation procedure: way to choose λ_k from Y.

Oracle type inequalities

 \bullet Typical results: "Optimal" aggregation amongst a class $\Lambda,$

$$E(\|I - \widehat{I}\|^2) \le C \inf_{\lambda \in \Lambda} \|I - P_{\lambda}\|^2 + \sigma^2 \mathsf{pen}(\lambda)$$

• C, Λ and pen depend on the procedure.

PAC-Bayesian aggregation

PAC-Bayesian aggregation

• Specific aggregation procedure based on exponential weights.

ullet Defined from a prior π on λ by $\widehat{I}=P_{\lambda_\pi}$ with

$$\lambda_{\pi} = \int_{\mathbb{R}^{M}} \frac{e^{-\frac{1}{\beta} \|Y - P_{\lambda}\|^{2}}}{\int_{\mathbb{R}^{M}} e^{-\frac{1}{\beta} \|Y - P_{\lambda'}\|^{2}} d\pi(\lambda')} \lambda d\pi(\lambda) \quad .$$

For the prior $\pi = \sum_{k} \delta_{k}$: $\hat{I} = \sum_{k} \frac{e^{-\frac{1}{\beta} \|Y - P_{k'}\|^{2}}}{\sum_{k'} e^{-\frac{1}{\beta} \|Y - P_{k'}\|^{2}}} P_{k} \quad .$

PAC-Bayesian aggregation

PAC-Bayesian aggregation

- Specific aggregation procedure based on exponential weights.
- Defined from a prior π on λ by $\hat{I} = P_{\lambda_{\pi}}$ with

$$\lambda_{\pi} = \int_{\mathbb{R}^{M}} \frac{e^{-\frac{1}{\beta} \|Y - P_{\lambda}\|^{2}}}{\int_{\mathbb{R}^{M}} e^{-\frac{1}{\beta} \|Y - P_{\lambda'}\|^{2}} d\pi(\lambda')} \lambda d\pi(\lambda) \quad .$$

• For the prior $\pi = \sum_{k} \delta_{k}$: $\widehat{I} = \sum_{k} \frac{e^{-\frac{1}{\beta} \|Y - P_{k}\|^{2}}}{\sum_{k'} e^{-\frac{1}{\beta} \|Y - P_{k'}\|^{2}}} P_{k} \quad .$

Oracle inequality

• Sharp oracle inequality: If $eta \geq 4\sigma^2$,

$$E(\|I-\widehat{I}\|^2) \leq \inf_{p} \int_{\lambda \in \mathbb{R}^M} \|I-P_{\lambda}\|^2 dp + \beta \mathcal{K}(p,\pi)$$

with $\mathcal{K}(p,\pi)$ the Kullback-Leibler divergence.

PAC-Bayesian aggregation

PAC-Bayesian aggregation

- Specific aggregation procedure based on exponential weights.
- Defined from a prior π on λ by $\hat{I} = P_{\lambda_{\pi}}$ with

$$\lambda_{\pi} = \int_{\mathbb{R}^{M}} \frac{e^{-\frac{1}{\beta} \|Y - P_{\lambda}\|^{2}}}{\int_{\mathbb{R}^{M}} e^{-\frac{1}{\beta} \|Y - P_{\lambda'}\|^{2}} d\pi(\lambda')} \lambda d\pi(\lambda) \quad .$$

• For the prior $\pi = \sum_{k} \delta_{k}$: $\hat{I} = \sum_{k} \frac{e^{-\frac{1}{\beta} \|Y - P_{k}\|^{2}}}{\sum_{k'} e^{-\frac{1}{\beta} \|Y - P_{k'}\|^{2}}} P_{k} \quad .$

Oracle inequality

• Sharp oracle inequality: If $\beta \ge 4\sigma^2$,

$$E(\|I-\widehat{I}\|^2) \leq \inf_p \int_{\lambda \in \mathbb{R}^M} \|I-P_\lambda\|^2 dp + \beta \mathcal{K}(p,\pi)$$

with $\mathcal{K}(p, \pi)$ the Kullback-Leibler divergence.

Error bound and prior

•
$$E(\|I-\widehat{I}\|^2) \leq \inf_p \int_{\lambda \in \mathbb{R}^M} \|I-P_\lambda\|^2 dp + \beta \mathcal{K}(p,\pi)$$

• Trade-off between a localization of p close to the best "oracle" aggregation P_{λ} and a proximity with the prior π .

• Prior π should be chosen so that this quantity is small "uniformly"...

Error bound and prior

•
$$E(\|I-\widehat{I}\|^2) \leq \inf_p \int_{\lambda \in \mathbf{R}^M} \|I-P_\lambda\|^2 dp + \beta \mathcal{K}(p,\pi)$$

- Trade-off between a localization of p close to the best "oracle" aggregation P_{λ} and a proximity with the prior π .
- Prior π should be chosen so that this quantity is small "uniformly"...

Discrete prior

• Prior
$$\pi = \sum_k \delta_k$$
: $E(\|I - \widehat{I}\|^2) \le \inf_k \|I - P_k\|^2 + \beta \log M$

• As good as the best preliminary estimator...

Error bound and prior

•
$$E(\|I-\widehat{I}\|^2) \leq \inf_{p} \int_{\lambda \in \mathbf{R}^M} \|I-P_{\lambda}\|^2 dp + \beta \mathcal{K}(p,\pi)$$

- Trade-off between a localization of p close to the best "oracle" aggregation P_{λ} and a proximity with the prior π .
- Prior π should be chosen so that this quantity is small "uniformly"...

Discrete prior

• Prior
$$\pi = \sum_k \delta_k$$
: $E(\|I - \widehat{I}\|^2) \le \inf_k \|I - P_k\|^2 + \beta \log M$

• As good as the best preliminary estimator...

Sparsifying prior

• Prior π : i.i.d. Student or Gaussian mixture (Dalalyan et al.).

• Bound: $E(\|I-\widehat{I}\|^2) \leq \inf_{\lambda} \|I-P_{\lambda}\|^2 + C\beta \|\lambda\|_0 \log M$.

• As good as the best "sparse" aggregation...

Error bound and prior

•
$$E(\|I-\widehat{I}\|^2) \leq \inf_{p} \int_{\lambda \in \mathbf{R}^M} \|I-P_{\lambda}\|^2 dp + \beta \mathcal{K}(p,\pi)$$

- Trade-off between a localization of p close to the best "oracle" aggregation P_{λ} and a proximity with the prior π .
- Prior π should be chosen so that this quantity is small "uniformly"...

Discrete prior

• Prior
$$\pi = \sum_k \delta_k$$
: $E(\|I - \widehat{I}\|^2) \le \inf_k \|I - P_k\|^2 + \beta \log M$

• As good as the best preliminary estimator...

Sparsifying prior

- Prior π : i.i.d. Student or Gaussian mixture (Dalalyan et al.).
- Bound: $E(\|I-\widehat{I}\|^2) \leq \inf_{\lambda} \|I-P_{\lambda}\|^2 + C\beta \|\lambda\|_0 \log M$.

• As good as the best "sparse" aggregation...

1 Kernel methods and NL-Means

2 Aggregation

8 Patch based aggregation

- Patch based aggregation and theoretical results
- How to compute the PAC-Bayesian estimate?
- Numerical results

Localization to patches

- Consider patch P(Y)(i₁, i₂) as observation and patches P(Y)(k₁, k₂) as preliminary estimators.
- Only issue: non independency with the observation $P(Y)(i_1, i_2)$.

Localization to patches

- Consider patch P(Y)(i₁, i₂) as observation and patches P(Y)(k₁, k₂) as preliminary estimators.
- Only issue: non independency with the observation $P(Y)(i_1, i_2)$.

Theorem

• Same flavor than for regular aggregation: $E(\|P(I)(i_1, i_2) - \widehat{P(I)}(i_1, i_2)\|^2)$ $\leq \inf_p \int_{\lambda \in \mathbb{R}^M} \left(\|P(I)(i_1, i_2) - P_\lambda\|^2 + W^2 \sigma^2 \|\lambda\|^2 \right) dp + \beta \mathcal{K}(p, \pi)$

Localization to patches

- Consider patch P(Y)(i₁, i₂) as observation and patches P(Y)(k₁, k₂) as preliminary estimators.
- Only issue: non independency with the observation $P(Y)(i_1, i_2)$.

Theorem?

- Same flavor than for regular aggregation: $E(\|P(I)(i_1, i_2) - \widehat{P(I)}(i_1, i_2)\|^2)$ $\leq \inf_p \int_{\lambda \in \mathbb{R}^M} \left(\|P(I)(i_1, i_2) - P_\lambda\|^2 + W^2 \sigma^2 \|\lambda\|^2 \right) dp + \beta \mathcal{K}(p, \pi)$
- Proof require either some splitting or some more homework...

Patch based priors

- Discrete (NL-Means): selection...
- Sparsifying (Student, Gaussian mixture): sparse kernel optimization!

Localization to patches

- Consider patch P(Y)(i₁, i₂) as observation and patches P(Y)(k₁, k₂) as preliminary estimators.
- Only issue: non independency with the observation $P(Y)(i_1, i_2)$.

Theorem?

- Same flavor than for regular aggregation: $E(\|P(I)(i_1, i_2) - \widehat{P(I)}(i_1, i_2)\|^2)$ $\leq \inf_p \int_{\lambda \in \mathbb{R}^M} \left(\|P(I)(i_1, i_2) - P_\lambda\|^2 + W^2 \sigma^2 \|\lambda\|^2 \right) dp + \beta \mathcal{K}(p, \pi)$
- Proof require either some splitting or some more homework...

Patch based priors

- Discrete (NL-Means): selection...
- Sparsifying (Student, Gaussian mixture): sparse kernel optimization!

SURE and its role

Stein Unbiased Risk Estimate

- $\widehat{r}_{\lambda} = \|Y P_{\lambda}\|^2 N^2 \sigma^2$ is an unbiased estimate of $\|I P_{\lambda}\|^2$
- In the classical aggregation proof, use of $\exp(-\frac{1}{\beta}\hat{r}_{\lambda})$ instead of $\exp(-\frac{1}{\beta}||Y P_{\lambda}||^2) + PAC$ -Bayesian machinery.
- No modification of the resulting estimate as the bias of $\|Y-P_{\lambda}\|^2$ does not depend on λ
- Key to generalization to non independent preliminary estimators (Barron and Leung).

SURE and its role

Stein Unbiased Risk Estimate

- $\hat{r}_{\lambda} = \|Y P_{\lambda}\|^2 N^2 \sigma^2$ is an unbiased estimate of $\|I P_{\lambda}\|^2$.
- In the classical aggregation proof, use of $\exp(-\frac{1}{\beta}\hat{r}_{\lambda})$ instead of $\exp(-\frac{1}{\beta}||Y P_{\lambda}||^2) + PAC$ -Bayesian machinery.
- No modification of the resulting estimate as the bias of $\|Y-P_\lambda\|^2$ does not depend on λ
- Key to generalization to non independent preliminary estimators (Barron and Leung).

Consequence for the patch based aggregation

• $\hat{r}_{\lambda} = \|P(Y)(i_1, i_2) - P_{\lambda}\|^2 - W^2(1 - 2\lambda_0)\sigma^2$ should be used instead of $\|P(Y)(i_1, i_2) - P_{\lambda}\|^2$.

• NL-Means: use a weight $\propto \exp(-\frac{1}{\beta}W^2\sigma^2)$ for the central patch (numerical improvement)

SURE and its role

Stein Unbiased Risk Estimate

- $\hat{r}_{\lambda} = \|Y P_{\lambda}\|^2 N^2 \sigma^2$ is an unbiased estimate of $\|I P_{\lambda}\|^2$.
- In the classical aggregation proof, use of $\exp(-\frac{1}{\beta}\hat{r}_{\lambda})$ instead of $\exp(-\frac{1}{\beta}||Y P_{\lambda}||^2) + PAC$ -Bayesian machinery.
- No modification of the resulting estimate as the bias of $\|Y-P_\lambda\|^2$ does not depend on λ
- Key to generalization to non independent preliminary estimators (Barron and Leung).

Consequence for the patch based aggregation

- $\hat{r}_{\lambda} = \|P(Y)(i_1, i_2) P_{\lambda}\|^2 W^2(1 2\lambda_0)\sigma^2$ should be used instead of $\|P(Y)(i_1, i_2) P_{\lambda}\|^2$.
- NL-Means: use a weight $\propto \exp(-\frac{1}{\beta}W^2\sigma^2)$ for the central patch (numerical improvement)

PAC-Bayesian estimate and Monte Carlo method

The PAC-Bayesian estimate

• Explicit form: with $\widehat{r}_{\lambda} = \|P(Y)(i_1, i_2) - P_{\lambda}\|^2 - W^2(1 - 2\lambda_0)\sigma^2$,

$$\lambda_{\pi} = \int_{\mathbb{R}^{M}} \frac{e^{-\frac{1}{\beta}\widehat{r}_{\lambda}}}{\int_{\mathbb{R}^{M}} e^{-\frac{1}{\beta}\widehat{r}_{\lambda'}} d\pi(\lambda')} \lambda d\pi(\lambda) \quad .$$

• High dimensional integral similar to some integrals appearing in the Bayesian framework...

PAC-Bayesian estimate and Monte Carlo method

The PAC-Bayesian estimate

• Explicit form: with $\hat{r}_{\lambda} = \|P(Y)(i_1, i_2) - P_{\lambda}\|^2 - W^2(1 - 2\lambda_0)\sigma^2$,

$$\lambda_{\pi} = \int_{\mathbb{R}^{M}} rac{e^{-rac{1}{eta} \widehat{r}_{\lambda}}}{\int_{\mathbb{R}^{M}} e^{-rac{1}{eta} \widehat{r}_{\lambda'}} d\pi(\lambda')} \lambda d\pi(\lambda) \quad .$$

• High dimensional integral similar to some integrals appearing in the Bayesian framework...

Computing the PAC-Bayesian estimate

Important issue!

- Monte Carlo method based on a Langevin diffusion equation.
- Approximate values only... but sufficient precision.
- Some convergence issues still under investigation.
- Patch preselection seems to help...

PAC-Bayesian estimate and Monte Carlo method

The PAC-Bayesian estimate

• Explicit form: with $\hat{r}_{\lambda} = \|P(Y)(i_1, i_2) - P_{\lambda}\|^2 - W^2(1 - 2\lambda_0)\sigma^2$,

$$\lambda_{\pi} = \int_{\mathbb{R}^{M}} rac{e^{-rac{1}{eta} \widehat{r}_{\lambda}}}{\int_{\mathbb{R}^{M}} e^{-rac{1}{eta} \widehat{r}_{\lambda'}} d\pi(\lambda')} \lambda d\pi(\lambda) \quad .$$

• High dimensional integral similar to some integrals appearing in the Bayesian framework...

Computing the PAC-Bayesian estimate

- Important issue!
- Monte Carlo method based on a Langevin diffusion equation.
- Approximate values only... but sufficient precision.
- Some convergence issues still under investigation.
- Patch preselection seems to help...

Original

Noisy (22.06 dB)

NL Means (29.69 dB)

PAC-Bayesian (29.69 dB)

Experimental setting

- Comparison with classic NL-Means with $\gamma = 12$.
- PAC-Bayesian aggregation with Student prior.

Original

Noisy (22.06 dB)

NL Means (29.69 dB)

PAC-Bayesian (29.69 dB)

Experimental setting

- Comparison with classic NL-Means with $\gamma = 12$.
- PAC-Bayesian aggregation with Student prior.

Results

- Results similar to those obtained with NL-Means...
- with less hyperparameter dependency and room for improvement.

Original

Noisy (22.06 dB)

NL Means (29.69 dB)

PAC-Bayesian (29.69 dB)

Experimental setting

- Comparison with classic NL-Means with $\gamma = 12$.
- PAC-Bayesian aggregation with Student prior.

Results

- Results similar to those obtained with NL-Means...
- with less hyperparameter dependency and room for improvement.

Original

NL Means (29.69 dB)

Noisy (22.06 dB)

PAC-Bayesian (29.69 dB)

Original

NL Means (31.59 dB)

Noisy (22.28 dB)

PAC-Bayesian (30.78 dB)

Original

NL Means (24.23dB)

Noisy (22.21 dB)

PAC-Bayesian (26.96 dB)

Conclusion

Statistical aggregation: a novel point of view on the NL-Means

- A new look on the exponential weights and the L₂ patch dissimilarity measure.
- A new procedure which performs as well as the NL-Means but with (some) theoretical control.
- A heuristic for the weight of the central patch in the classical NL-Means.

Conclusion

Statistical aggregation: a novel point of view on the NL-Means

- A new look on the exponential weights and the L₂ patch dissimilarity measure.
- A new procedure which performs as well as the NL-Means but with (some) theoretical control.
- A heuristic for the weight of the central patch in the classical NL-Means.

Work in progress...

- Extend the theorem to the fully dependent case,
- How to accelerate the Monte Carlo chain convergence?,
- Best choice for the prior,
- Use of sparse representation for the kernel,

Conclusion

Statistical aggregation: a novel point of view on the NL-Means

- A new look on the exponential weights and the L₂ patch dissimilarity measure.
- A new procedure which performs as well as the NL-Means but with (some) theoretical control.
- A heuristic for the weight of the central patch in the classical NL-Means.

Work in progress...

Ο...

- Extend the theorem to the fully dependent case,
- How to accelerate the Monte Carlo chain convergence?,
- Best choice for the prior,
- Use of sparse representation for the kernel,