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Abstract
We study the problem of learning predictors that are robust to adversarial examples with respect to
an unknown perturbation set, relying instead on interaction with an adversarial attacker or access to
attack oracles, examining different models for such interactions. We obtain upper bounds on the
sample complexity and upper and lower bounds on the number of required interactions, or number
of successful attacks, in different interaction models, in terms of the VC and Littlestone dimensions
of the hypothesis class of predictors, and without any assumptions on the perturbation set.
Keywords: adversarially robust PAC learning, unknown adversaries, sample and oracle complexity.

1. Introduction

We consider the problem of learning predictors that are robust to adversarial corruptions at test time.
Given an instance space X and label space Y = {±1}, we would like to be robust against some
perturbation set U : X → 2X , where U(x) ⊆ X represents the set of possible corruptions of x.

Almost all prior work on adversarial robustness starts with specifying a perturbation set U we
would like to be robust against. The type of perturbation sets we are truly interested in are often
sets U that capture “natural” or “imperecptible” perturbations. But partially because of the need to
specify U explicitly during training, simpler sets are often used, such as `p-norm balls (Goodfellow
et al., 2015), or orbits w.r.t. translations and rotations (Engstrom et al., 2019). Furthermore, training
procedures are often specific to the perturbation set U , or have the perturbation set “hard coded”
inside them. Some methods rely on predictor implementations that need to “know” the specific
perturbation set U at test-time (e.g., randomized smoothing Lécuyer et al., 2019; Cohen et al., 2019;
Salman et al., 2019), and some methods use “explicit” knowledge of U only during training-time
(e.g., Wong and Kolter, 2018; Raghunathan et al., 2018a,b; Montasser et al., 2019).

Main Question:
Can we design robust learning algorithms that do not require explicit knowledge of the

adversarial perturbations U?
What reasonable models of access to, or interactions with, U could we rely on instead?

In this paper, we ask whether it is possible to develop generic learning algorithms with robustness
guarantees, without knowing the perturbation set U a-priori. That is, we want to design general robust
algorithmic frameworks that work for any perturbation set U , given a reasonable form of access to U ,
and avoid algorithms tailored to a specific U such as `∞ or `2 perturbations. This is important if we
want to be able to easily adapt our training procedures to different perturbation sets, or would like
to build ML systems that are robust to fairly abstract perturbation sets U such as “images that are
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Sample Complexity Oracle Complexity

Realizable
Õ(lit(H)) Õ(lit(H)) Montasser et al. (2020b).
Õ(vc(H)vc∗2(H)) 2Õ(vc2(H)vc∗2(H))lit(H) New result in this paper (Theorem 2).

Ω(lit(H)) New result in this paper (Theorem 5).

Agnostic Õ(lit(H)) Õ(lit2(H)) New result in this paper (Theorem 3).
Õ(vc(H)vc∗2(H)) 2Õ(vc2(H)vc∗2(H))lit(H) New result in this paper (Theorem 4).

TABLE 1: We show that a hypothesis class H is robustly learnable in the Perfect Attack Oracle
model if and only if H is online learnable. We give upperbounds (corresponding to algorithms)
in the realizable setting (Section 3.1) and the agnostic setting (Section 3.2), and lower bounds on
the oracle complexity in the realizable setting (Section 3.3). Futhermore, our results show that
sophisticated algorithms that leverage online learners can be favorable to more traditional online-to-
batch conversion schemes in terms of their robust generalization guarantees. The Õ notation hides
logarithmic factors and dependence on error ε and failure probability δ, vc(H) and vc∗(H) denote
the primal and dual VC dimension ofH, and lit(H) denotes the Littlestone dimension ofH.

indistinguishable to the human eye” (see e.g., Laidlaw, Singla, and Feizi, 2020). In our frameworks,
instead of redesigning or reprogramming the training algorithm, one would only need to implement
or provide specific “attack procedures” for U .

In this paper, we consider robustly learning a hypothesis classH ⊆ YX (e.g., neural networks).
The learning algorithm receives as input m iid samples S = {(xi, yi)}mi=1 drawn from an unknown
distribution D over X × Y . A predictor h : X → Y is robustly correct on an example (x, y) w.r.t. U
if supz∈U(x) 1[h(z) 6= y] = 0. The learning algorithm has no explicit knowledge of U , but instead is
allowed the following forms of access:

Access to a (perfect) adversarial attack oracle In this model, the learning algorithm has access to
a “mistake oracle”, which we can also think of as a perfect attack oracle for U . A perfect attack oracle
for U receives as input a predictor g : X → Y and a labeled example (x, y), and is asked to either
assert that g is robustly correct on (x, y), or return a perturbation z ∈ U(x) that is miss-classified
(see Definition 4). The learning algorithm can query the perfect attack oracle for U by calling it T
times with queries of the form: (gt, (x

′
t, y
′
t)), where gt is a predictor and (x′t, y

′
t) is a labeled example

(not necessarily from the training set S). The goal of the learning algorithm is to output a predictor ĥ
with small robust risk

RU (ĥ;D) , E
(x,y)∼D

ñ
sup
z∈U(x)

1[ĥ(z) 6= y]

ô
. (1)

In Section 3, we present algorithms, guarantees on the required sample complexity and number
of oracle accesses, and lower bounds on the required number of accesses, for robustly learningH in
the Perfect Attack Oracle model. These results are summarized in Table 1.

To program such a perfect attack oracle, U still has to be specified inside it. And even for
simple U , a perfect attack oracle is generally intractable. Furthermore, practical attack engines used
in training (e.g., PGD Madry et al., 2018) are not perfect, and are not always guaranteed to find
miss-classified adversarial perturbations even when they do exist. Can we still provide meaningful
robustness guarantees if we only have access to an imperfect attack oracle?
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Access to an (imperfect) adversarial attack oracle In this model, the learning algorithm has
access to a possibly imperfect attacking algorithm A for U . The learning algorithm can query A
by calling it T times with queries of the form: (gt, (x

′
t, y
′
t)), where gt : X → Y is a predictor and

(x′t, y
′
t) is a labeled example. The goal of the learning algorithm is to output a predictor ĥ with small

error w.r.t. future attacks from A,

errA(ĥ;D) , Pr
(x,y)∼D

randomness of A

î
ĥ(A(ĥ, (x, y))) 6= y

ó
. (2)

In Section 5, we give an algorithm with sample and oracle complexity of Õ(lit(H)) that guaran-
tees small errA when then attacker A is “stationary”, i.e., A doesn’t learn or adapt over time.

But what happens if the adversary A changes over time? In the above model, the predictor ĥ is
fixed after training, and thus if the adversary A changes, e.g., by adapting to the returned predictor, or
perhaps if we encounter an altogether different adversary than the one we accessed during training,
this might result in a much higher error rate. Is it possible to continually adapt to changing adversaries
in a meaningful way, ensuring strong robustness guarantees?

Interaction with an actual attacker In this online model, the learning algorithm B can monitor
the behaviour of an actual attacker A and adapt accordingly. The attacker knows the current predictor
h used, as well as the perturbation set U , and attempts attacks on an iid stream of samples (xt, yt).
Whenever the attacker succeeds in finding a perturbation zt ∈ U(xt) s.t. h(xt) 6= yt, it scores a
“successful attack”, but the perturbation zt is revealed to learner B, who can also obtain the true label
yt, and learner B can update its predictor. The goal of the learner is to bound the total number of
successful attacks.

Monitoring and adapting to an attacker might sometimes be possible and appropriate, e.g., when
attacks to predictors can be detected in hindsight and when the predictor is running on the cloud or
when predictor updates can be pushed to devices, which is becoming increasingly common. But
beyond such scenarios, this online model is also useful as an analysis tool of the imperfect attack
oracle model above, and our methods for the imperfect attack oracle model are based on this online
model.

In Section 4, we show upper bounds and lower bounds on the the number of successful attacks in
terms of the Littlestone dimension lit(H), although our results leave open a possible exponential
gap in the bound on the number of successful attacks (in a setting where the learner has access to
infinitely many uncorrupted samples, i.e. knows the uncorrupted source distribution).

Practical Relevance Our goal is to understand how, from a theoretical perspective, it is possible to
depart from assuming full and explicit knowledge of the perturbation set, and what types of other
accesses and interactions could still enable adversarially robust learning. We obviously need some
dependence on the perturbation set or possible attacks during training, and we are making the first
steps in establishing what forms of access (beyond explicit exact knowledge) could be sufficient, and
how they could be used, and what are the limits (lower bounds) on what might be possible using
different access models. Some of the models above already capture approaches used in practice.
But perhaps more importantly, we hope this study will lead to interest in defining “better” access
models, and finding the “right” framework for adversarially robust learning, perhaps, by way of
analogy, similar to how early studies of privacy in data analysis struggled with finding the “right”
attack models and definitions.
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Related Work Most prior work on adversarial robustness has focused on methods that are tailored
to specific perturbation sets U . For example, in randomized smoothing (Lécuyer et al., 2019;
Cohen et al., 2019; Salman et al., 2019), computing a prediction on a test-point x requires sampling
perturbations z from a distribution P over U(x), and returning the most likely prediction given
by a learned predictor f : X → Y . Distribution P is chosen based on U , for example, if U is
`2 perturbations, then P is an isotropic Gaussian distribution N (x, σ2I). In addition, there are
algorithms (certified defenses) that minimize some surrogate loss `U where the construction of `U
depends on U (e.g., Wong and Kolter, 2018; Raghunathan et al., 2018a,b).

The adversarial training framework (Goodfellow et al., 2015; Madry et al., 2018) does not use
explicit knowledge of U , but only uses an attacking algorithm (e.g., FGSM or PGD) implemented
for the perturbation set U . However, no formal guarantees are known about adversarial training in
terms of robust generalization. Specifically, it is not known whether adversarial training will yield
predictors that generalize to future adversarial perturbations from U , or even generalize to specific
perturbations chosen by PGD or FGSM. It has been observed that common forms of adversarial
training on deep neural nets do not generalize to future attacks from PGD (Schmidt et al., 2018). Our
work can be seen as a theoretical study of such generic approaches, which leads to different, and
considerably more sophisticated methods (yet at this stage, perhaps not easily implementable).

Towards our quest in this paper for finding the right form of access to U , we build on algorithms by
Montasser et al. (2019) and Montasser et al. (2020b) by re-interpreting them in light of our questions,
but also extending them significantly in the following ways: we avoid using a robust empirical
risk minimization RERMU oracle that requires explicit knowledge of U as used in Montasser et al.
(2019) and use an online learning algorithm instead, and we carry-out a technical inflation procedure
of the training sample to include perturbations by utilizing a perfect attack oracle for U without
explicit knowledge of U as was done in Montasser et al. (2019, 2020b). Furthermore, Montasser
et al. (2020b) considered robustly PAC learningH using only black-box access to a non-robust PAC
learner forH but allowed explicit knowledge of U , their reduction makes oracle calls that depend
on the bit complexity log |U|, and they show this is unavoidable. In this work, our algorithms can
be viewed as black-box reductions that use an online learner forH (instead of just a PAC learner),
furthermore, they do not require a explicit knowledge of U but only an attack oracle for U . Our
algorithms achieve the same sample complexity bound, but with number of calls to the online learner
that is independent of log |U| and only depends on the VC dimension vc(H).

Ashtiani et al. (2020) considered a weaker form of attacking algorithms – those that receive as
input a black-box predictor – in a U-specific learning framework and showed an upper bound of
Õ(vc(H)) on the sample complexity of robust PAC learning when the pair (H,U) admits a query
efficient attacking algorithm. Their learning algorithm relies on a robust empirical risk minimization
RERMU oracle that requires explicit knowledge of U . In this work, we focus on modularity and
avoid using a RERM oracle forH, and use a black-box online learner A forH.

Goldwasser et al. (2020) considered classifying arbitrary test examples in a transductive selective
classification setting. They gave an algorithm that takes as input: (a) training examples from a
distribution P over X labeled with some unknown function h∗ in a classH with finite VC dimension,
and (b) a batch of arbitrary unlabeled test examples (possibly chosen by an unknown adversary),
and outputs a selective predictor f̂ – which abstains from predicting on some examples – that
has a low rejection rate w.r.t. P , and low error rate on the test examples. Selective predictor f̂ ,
however, can potentially abstain from classifying most test examples if they are adversarial. In this
paper, we consider classifying test examples x ∼ P or adversarial perturbations z ∈ U(x) where
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the perturbation set U is unknown, and output predictors that do not abstain but always provide a
classification with low error rate. We do not require unlabeled test examples, but require black-box
access to an attack oracle for U .

2. Preliminaries

Let X denote the instance space, Y = {±1} denote the label space, and H ⊆ YX denote a
hypothesis class. We denote by vc(H) the VC dimension ofH. For a dual space G: a set of functions
gx : H → Y defined as gx(h) = h(x), for each h ∈ H and each x ∈ X , the dual VC dimesion ofH,
denoted vc∗(H), is defined as the VC dimension of G. The dual VC dimesion is known to satisfy:
vc∗(H) < 2vc(H)+1 (Assouad, 1983). While this exponential dependence is tight for some classes,
for many natural classes, such as linear predictors and some neural networks, the primal and dual
VC dimensions are equal, or at least polynomially related. The dual VC dimension is utilized in the
study of adversarially robust learning (Montasser et al., 2019), which we formally define next:

Definition 1 (Robust PAC Learnability) Learner B (ε, δ)-robustly PAC learns H ⊆ YX with
sample complexity m(ε, δ) : (0, 1)2 → N if for any perturbation set U , any distribution D over
X × Y , with probability at least 1− δ over S ∼ Dm(ε,δ) : RU (B(S);D) ≤ infh∈HRU (h;D) + ε.

Online Learnability and Littlestone Dimension An online learning algorithm A is a (measur-
able) map (X ×Y)∗ → YX . For a classH ⊆ YX , the mistake bound of A is the maximum possible
number of mistakes algorithm A makes on any sequence of examples labeled with some h ∈ H:

M(A,H) := sup
x1,x2,···∈X

sup
h∈H

∞∑
t=1

1

î
A({(xi, h(xi))}t−1i=1)(xt) 6= h(xt)

ó
. (3)

We say that a classH is online learnable if there exists an online learning algorithm A such that
M(A,H) <∞. A classH is online learnable if and only if the Littlestone dimension ofH denoted
lit(H) is finite (Littlestone, 1987). Furthermore, Littlestone (1987) proposed the Standard Optimal
Algorithm (SOA) and showed that M(SOA,H) ≤ lit(H). We now briefly recall the definition of
Littlestone dimension by introducing the notion of Littlestone trees:

Definition 2 (Littlestone trees) A Littlestone tree forH is a complete binary tree of depth d ≤ ∞
whose internal nodes are labeled by instances from X , and whose two edges connecting a node to its
children are labeled with +1 and −1 such that every finite path emanating from the root is consistent
with some concept inH. That is, a Littlestone tree is a collection

¶
xu : 0 ≤ k < d,u ∈ {±1}k

©
⊆ X

such that for every y ∈ {±1}d, there exists h ∈ H such that h(xy1:k
) = yk+1 for 0 ≤ k < d.

Definition 3 (Littlestone dimension) The Littlestone dimension ofH, denoted lit(H), is the largest
integer d such that there exists a Littlestone tree for H of depth d (see Definition 2). If no such d
exists, then lit(H) is said to be infinite.
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3. Access to a Perfect Attack Oracle

In this section, we study robust learning with algorithms that are only allowed access to a perfect
attack oracle for U at training-time. Formally,

Definition 4 (Perfect Attack Oracle) Denote by OU a perfect attack oracle for U . OU takes as
input a predictor f : X → Y and an example (x, y) ∈ X ×Y and either: (a) asserts that f is robust
on (x, y) (i.e. ∀z ∈ U(x), f(z) = y), or (b) returns a perturbation z ∈ U(x) such that f(z) 6= y.1

In the Perfect Attack Oracle model, a learning algorithm B takes as input iid distributed training
samples S = {(x1, y1), . . . , (xm, ym)} drawn from an unknown distribution D over X × Y , and a
black-box perfect attack oracle OU . Learner B can query OU by calling it T times with queries of
the form: (gt, (x

′
t, y
′
t)), where gt : X → Y is a predictor and (x′t, y

′
t) is a labeled example. The goal

of learner B is to output a predictor ĥ ∈ YX with small robust risk RU (ĥ;D) ≤ ε (see Equation 1).
Learner B (ε, δ)-robustly PAC learnsH in the Perfect Attack Oracle model with oracle complexity
T (ε, δ) if for any perturbation set U , learner B (ε, δ)-robustly PAC learns H with at most T (ε, δ)
calls to OU .

From a practical or engineering perspective, to establish robust generalization guarantees with
respect to U in the Perfect Attack Oracle model, it suffices to build a perfect attack oracle for U .
Furthermore, to achieve robustness guarantees to multiple perturbation sets U1, . . . ,Uk concurrently,
which is a goal of interest in practice (see e.g., Kang et al., 2019; Tramèr and Boneh, 2019; Maini
et al., 2020), it suffices to separately build perfect attack oracles OU1 , . . . ,OUk , and then implement
a perfect attack oracle for the union ∪i≤kUi by calling each attack oracle OU1 , . . . ,OUk separately.

Questions:
What hypothesis classesH are robustly PAC learnable in the Perfect Attack Oracle model?

How can we learn a genericH using such access?
With how many samples m and oracle calls T ?

Summary of Results We begin in Section 3.1 with the realizable setting under which it is assumed
that there is a predictor h∗ ∈ H with zero robust risk, i.e. infh∈HRU (h;D) = 0. In Theorem 1, we
give a simple algorithm (Algorithm 1) CycleRobust that robustly learns H in the Perfect Attack
Oracle model with sample complexity m = O(lit(H)) and oracle complexity T = O(lit2(H)). In
Theorem 2, we give an alternative algorithm (Algorithm 1) RLUA to robustly learnH in the Perfect
Attack Oracle model with reduced sample complexity m = Õ(vc(H)vc∗2(H)) depending only the
VC and dual VC dimension but at the cost of higher oracle complexity T ≈ 2Õ(vc2(H)vc∗2(H))lit(H).
Then, in Section 3.2, we extend our algorithmic results in Theorem 3 and Theorem 4 to the more gen-
eral agnostic setting where we want to compete with the best attainable robust risk infh∈HRU (h;D).
Finally, in Section 3.3, we give a lower bound on the oracle complexity necessary to robustly learn in
the Perfect Attack Oracle model. In Corollary 6, we show that for any classH, the oracle complexity
to robustly learnH is at least Ω(log log lit(H)). Furthermore, Corollary 7 gives a specific hypothesis
classH with vc(H) = O(1)� lit(H) such that the oracle complexity to robustly learnH is at least
Ω(lit(H)). These results are summarized in Table 1 on page 2.

1. To be clear, we suppose OU acts as a function so that the z it returns from calling OU (g, (x, y)) is deterministic and
oblivious to the history of interactions.
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Related Work Montasser et al. (2020a) recently gave an algorithm based on the Ellipsoid method
to efficiently robustly learn halfspaces (linear predictors) in the Perfect Attack Oracle model in the
realizable setting, for a broad range of perturbation sets U given access to a separation oracle for
U , with oracle complexity that depends on the bit complexity. Furthermore, using a conservative
online learner A forH, Montasser et al. (2020b) gave an algorithm to robustly PAC learnH in the
Perfect Attack Oracle model in the realizable setting with sample complexity m(ε, δ) and oracle
complexity T (ε, δ) at most O

Ä
lit(H) log(lit(H)/δ)

ε

ä
. We consider robustly learning a general classH,

and the more general agnostic setting.

3.1. Algorithms and guarantees in the realizable setting

We begin in Theorem 1 with a simple algorithm CycleRobust (Algorithm 1) based on an online-to-
batch conversion that robustly PAC learns a classH with sample complexity and oracle complexity
depending on the Littlestone dimension lit(H). Specifically, CycleRobust (Algorithm 1) cycles
an online learner A for H on the training set S until it robustly correctly classifies all training
examples. To establish a robust generalization guarantee, we show that CycleRobust (Algorithm 1)
can be viewed as a stable compression scheme for the robust loss. This conversion technique and its
connection to stable sample compression schemes have been recently studied in the standard 0-1 loss
setting (Bousquet et al., 2020). The proof is provided in Appendix A.

Theorem 1 For any classH, CycleRobust (Algorithm 1) robustly PAC learnsH w.r.t. any U with:

1. Sample complexity m(ε, δ) = O
Ä
lit(H)+log(1/δ)

ε

ä
.

2. Oracle complexity T (ε, δ) = m(ε, δ)lit(H).

Furthermore, the output of CycleRobust achieves zero robust loss on the training sample.

CycleRobust (Algorithm 1) robustly PAC learns H in the Perfect Attack Oracle model with
sample complexity and oracle complexity both depending on the Littlestone dimension lit(H). But
are there robust learning algorithms with better sample complexity and/or oracle complexity? At least
with explicit knowledge of U , we know that we can robustly PAC learn H with Õ(vc(H)vc∗(H))
sample complexity (Montasser et al., 2019) which is much smaller than lit(H) for many natural
classes (e.g., halfspaces). Can we obtain a similar sample complexity bound in the Perfect Attack
Oracle model, where explicit knowledge of U is not allowed? We prove yes in Theorem 2. Specifically,
we give an algorithm that can robustly PAC learn H in Perfect Attack Oracle model with sample
complexity Õ(vc(H)vc∗2(H)) independent of lit(H).

Theorem 2 For any classH with vc(H) = d and vc∗(H) = d∗, there exists a learning algorithm
B̃ that robustly PAC learnsH w.r.t any U with:

1. Sample Complexity m(ε, δ) = O
Ä
dd∗2 log2 d∗

ε log2
Ä
dd∗2 log2 d∗

ε

ä
+ 1

ε log(2δ )
ä
.

2. Oracle Complexity TRE(ε, δ) =
Ä
2O(d2d∗2 log2 d∗)lit(H) +m(ε, δ)

ä Ä
log (m(ε, δ))

Ä
log
Ä
log(m(ε,δ))

δ

äää
.

The full proof is deferred to Appendix B, but we briefly describe the main building blocks of this
result. We will adapt an algorithm due to Montasser et al. (2019) and establish a robust generalization
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guarantee that depends only on vc(H) and vc∗(H). In particular, the learning algorithm of Montasser
et al. (2019) required explicit knowledge of U , this knowledge was used to implement a RERMU
oracle forH, and for a sample inflation and discretization step which is crucial to establish robust
generalization based on sample compression. As explicit knowledge is not allowed in the Perfect
Attack Oracle model, we show that we can avoid these limitations and use only queries to OU .
Specifically, observe that CycleRobust (Algorithm 1) implements a RERMU oracle for H using
only black-box access to OU , since by Theorem 1 the output of CycleRobust achieves zero robust
loss on its input dataset S. Similarly, the discretization step can be carried using only queries to OU ,
by constructing queries using the output predictors of CycleRobust to force the oracle to reveal
perturbations of the empirical sample S, we leave further details to the proof. While this suffices to
establish a result of robust PAC learning in the Perfect Attack Oracle model with sample complexity
completely independent of lit(H) (Theorem 18 and its proof in Appendix B), we can further improve
the dependence on ε and δ in the oracle complexity. To this end, we treat the algorithm (Algorithm 1)
RLUA from Theorem 18 as a weak robust learner with fixed ε0 and δ0 and boost its robust error
guarantee to improve the oracle complexity and obtain the result in Theorem 2.

3.2. Algorithms and guarantees in the agnostic setting

We now consider the more general agnostic setting where we want to compete with the best attainable
robust risk infh∈HRU (h;D). Mirroring the results from the realizable section, we begin in Theorem
3 with a simple algorithm that can only guarantee a robust error at most 2 infh∈HRU (h;D) + ε with
sample and oracle complexity depending on the Littlestone dimension lit(H). Then, in Theorem 4,
we give a reduction to the realizable setting of Theorem 2, that agnostically robustly PAC learnsH in
the Perfect Attack Oracle model with sample complexity depending only on the vc(H) and vc∗(H).

Theorem 3 For any classH, Weighted Majority (Algorithm 2) guarantees that for any perturbation
set U and any distributionD overX×Y , with sample complexitym(ε, δ) = O

Ä
lit(H) log(1/ε)+log(1/δ)

ε2

ä
and oracle complexity T (ε, δ) = O(m(ε, δ)2), with probability at least 1− δ over S ∼ Dm(ε,δ),

RU (WM(S,OU );D) ≤ 2 inf
h∈H

RU (h;D) + ε.

We briefly describe the main ingredients of this result. First, in Lemma 19, we show that for
any classH with finite cardinality, a variant of the Weighted Majority algorithm (Littlestone and
Warmuth, 1994) presented in (Algorithm 2) has a regret guarantee with respect to the robust loss.
Then, in Lemma 20, we extend this regret guarantee for infiniteH using a technique due to Ben-David
et al. (2009) for agnostic online learning. Finally, we apply a standard online-to-batch conversion
(Cesa-Bianchi et al., 2004) to convert the regret guarantee to a robust generalization guarantee. These
helper lemmas and proofs are deferred to Appendix C.

Similarly to the realizable setting, we can establish an upper bound with sample complexity
independent of lit(H). This is achieved via a reduction to the realizable setting Theorem 2, following
an argument of David et al. (2016); Montasser et al. (2019). The proof is deferred to Appendix C.

Theorem 4 (Reduction to Realizable Setting) For any classH with vc(H) = d and vc∗(H) = d∗,
there is a learning algorithm B̃ that robustly agnostically PAC learnsH w.r.t any U with:

1. Sample Complexity m(ε, δ) = O
Ä
dd∗2 log2 d∗

ε2
log2
Ä
dd∗2 log2 d∗

ε

ä
+ 1

ε2
log(2δ )

ä
.

2. Oracle Complexity T (ε, δ) = 2m(ε,δ)lit(H) + TRE(ε, δ).
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3.3. Lowerbound on Oracle Complexity

In Section 3.1 and Section 3.2, we have shown that it is possible to robustly PAC learn in the Perfect
Attack Oracle model with sample complexity that is completely independent of the Littlestone
dimension, and with oracle complexity that depends on the Littlestone dimension. It is natural to ask
whether the oracle complexity can be improved. Perhaps, we can avoid dependence on Littlestone
dimension altogether? In Theorem 5, we prove that the answer is no.

Specifically, we will first establish a lower bound in terms of another complexity measure known
as the Threshold dimension ofH, denoted by Tdim(H). Informally, Tdim(H) is the largest number
of thresholds that can be embedded in classH (see Definition 5 below). Importantly, the Threshold
dimension ofH is related to the Littlestone dimension ofH and is known to satisfy: blog2 lit(H)c ≤
Tdim(H) ≤ 2lit(H) (Shelah, 1990; Hodges, 1997; Alon et al., 2019). This relationship was recently
used to establish that private PAC learnability implies online learnability (Alon et al., 2019).

Definition 5 (Threshold Dimension) We say that a class H ⊆ YX contains k thresholds if
∃x1, . . . , xk ∈ X and ∃h1, . . . , hk ∈ H such that hi(xj) = +1 if and only if j ≤ i,∀i, j ≤ k.
The Threshold dimension ofH, Tdim(H), is the largest integer k such thatH contains k thresholds.

Theorem 5 For any classH, there exists a distribution D over X × Y , such that for any learner B,
there exists a perturbation set U : X → 2X where infh∈HRU (h;D) = 0 and a perfect attack oracle
OU such that B needs to make log2 (Tdim(H)−1)

2 oracle queries to OU to robustly learn D.

The full proof is deferred to Appendix D, but we will provide some intuition behind the proof.
The main idea is to use h1, . . . , hTdim(H) thresholds to construct U1, . . . ,UTdim(H) perturbation
sets. We will setup a single source distribution D that is known to the learner, but choose a random
perturbation set from U1, . . . ,UTdim(H). In order for the learner to robustly learn D, it needs to figure
out which perturbation set is picked, and that requires Ω(log Tdim(H)) queries to the oracle OU .
Since Tdim(H) ≥ blog2 lit(H)c, Theorem 5 implies the following corollaries.

Corollary 6 For any classH, the oracle complexity to robustly learnH in the Perfect Attack Oracle
model is at least Ω(log log lit(H)).

Corollary 7 For any n ∈ N, the classHn consisting of n thresholds satisfies lit(Hn) = log2 Tdim(Hn) =
log2 n

2 and vc(Hn) = O(1). Thus, the oracle complexity to robustly learnHn in the Perfect Attack
Oracle model is Ω(lit(Hn)).

A couple of remarks are in order. First, the lower bound of Ω(log log lit(H)) applies to any
hypothesis classH, but a stronger lower bound for the special case of thresholds can be shown where
Ω(lit(H)) oracle queries are needed. Second, observe that these lower bounds apply to learning
algorithms that know the distributionD, and so even with infinite sample complexity, it is not possible
to have oracle complexity independent of Littlestone dimension.

2. We learned about this fact from the following talk: https://youtu.be/NPpPiWYcmPk
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3.4. Gaps and Open Questions

We have established thatH is robustly PAC learnable in the Perfect Attack Oracle model if and only
if H is online learnable. We provided a simple online-to-batch conversion scheme CycleRobust
(Algorithm 1) with sample and oracle complexity scaling with lit(H). Then, with a more sophisticated
algorithm, RLUA (Algorithm 1), we get an improved sample complexity depending only on vc(H)
and vc∗(H), but at the expense of higher oracle complexity with an exponential dependence on
vc(H) and vc∗(H) and linear dependence on lit(H). We also showed that for any classH, an oracle
complexity of log log lit(H) is unavoidable, and furthermore, exhibit a classH with vc(H) = O(1)
and lit(H)� vc(H) where an oracle complexity of Ω(lit(H)) is unavoidable.

An interesting direction is to improve the oracle complexity to perhaps a polynomial dependence
poly(vc(H), vc∗(H))lit(H), or more ambitiously poly(vc(H))lit(H). It would also be interesting
to establish a finer characterization for the oracle complexity that is adaptive to the perturbation sets
U , perhaps depending on some notion measuring the complexity of U . Also, can we strengthen the
lower bound and show that for anyH, Ω(lit(H)) oracle complexity is necessary to robustly learnH
or is there another complexity measure that tightly characterizes the oracle complexity?

4. Bounding the number of successful attacks

In Section 3, we considered having access to a perfect attack oracle OU . But in many settings, our
practical attack oracle attack engines, e.g., PGD (Madry et al., 2018), are not perfect—they might not
always find miss-classified adversarsial perturbations even when they do exist. Also, the perturbation
set U might be fairly abstract, like “images indistinguishable to the human eye”, and so there isn’t
really a perfect attack oracle, but rather just approximations to it. Can we still provide meaningful
robustness guarantees even with imperfect attackers?

In this section, we introduce a model where we consider working with an actual adversary
or attack algorithm that is possibly imperfect, and the goal is to bound the number of successful
attacks. In this model, a learning algorithm B first receives as input iid distributed training samples
S = {(x1, y1), . . . , (xm, ym)} drawn from an unknown distributionD overX×Y . Then, the learning
algorithm B makes predictions on examples zt ∈ U(x′t) where zt is an adversarial perturbation
chosen by an adversary A, and (x′t, y

′
t) is an iid sample drawn from D. The adversary A has access

to the random sample (x′t, y
′
t) and the predictor used by learner B, ht = B(S ∪ {(zj , yj)t−1j=1}), but

learner B only sees the perturbation zt. After learner B makes its prediction ŷt = ht(zt), the true
label yt is revealed to B. The goal is to bound the number of successful adversarial attacks where
ŷt 6= yt. For a class H and a learner B, the maximum number of successful attacks caused by an
adversary A w.r.t. U on a distribution D satisfying infh∈HRU (h;D) = 0 is defined as

MU ,A(B,H;D) :=
∞∑
t=1

1

î
B(S ∪ {(zi, yi)}t−1i=1)(zt) 6= yt

ó
, (4)

where zt = A(B(S ∪ {(zi, yi)}t−1i=1), (x′t, y
′
t)) and {(x′t, y′t)}

∞
t=1 are iid samples from D.

Questions:
Can we obtain upper bounds and lower bounds on the maximum number of successful attacks

for generic classesH? Can additional training samples from D help?

10



ROBUSTNESS TO UNKNOWN PERTURBATIONS

First, we show that we can upper bound the maximum number of successful attacks on any online
learner B forH by the online mistake bound of B.

Theorem 8 (Upper Bound) For any classH and any online learner B, for any perturbation set U ,
adversary A, and distribution D, MU ,A(B,H;D) ≤M(B,H). In particular, the Standard Optimal
Algorithm (SOA) has an attack bound of at most lit(H).

Proof The proof follows directly from the definition of the online mistake bound (see Equation 3)
and the online attack bound (see Equation 4).

Is this the best achievable upper bound on the number of successful attacks? Perhaps there are
learning algorithms with an attack bound that is much smaller than lit(H), maybe an attack bound
that scales with vc(H)? We next answer this question in the negative. Using the same the lower
bound construction from Theorem 5 in Section 3.3, we first establish a lower bound on the number
of the successful attacks based on the Threshold dimension ofH (see Definition 5) (proof deferred to
Appendix E). We then utilize the relationship Tdim(H) ≥ blog2 lit(H)c to get the corollaries.

Theorem 9 (Lower Bound) For any classH, there exists a distribution D over X × Y , such that
for any learner B, there is a perturbation set U where infh∈HRU (h;D) = 0 and an adversary A
that makes at least log2 (Tdim(H)−1)

2 successful attacks on learner B.

Corollary 10 For any class H, there is a distribution D, such that for any learner B, there is a
perturbation set U and adversary A such that MU ,A(B,H;D) ≥ Ω(log log lit(H)).

Corollary 11 For any n ∈ N, the class Hn consisting of n thresholds satisfies lit(Hn) =
log2 Tdim(Hn) = log2 n and vc(Hn) = O(1). Thus, ∃D∀B∃U ,AMU ,A(B,Hn;D) ≥ Ω(lit(Hn)).

We remark that these lower bounds hold even for learning algorithms B that perfectly know the
source distribution D. For the classHn of n thresholds, we cannot expect a learning algorithm that
leverages extra training data that avoids the Ω(lit(Hn)) lower bound. But it might be that for other
classesH, additional training data might help reduce the attack bound to log lit(H) or log log lit(H).

Gaps and Open Questions We have only considered the realizable setting, where there is a
predictor h ∈ H that is perfectly robust to the attacker A. It would be interesting to extend the
guarantees to the agnostic setting. Can we strengthen the lower bound and show that for any H,
an attack bound of Ω(lit(H)) is unavoidable or is there another complexity measure that tightly
characterizes the attack bound? Are there examples of classesH where collecting additional samples
from D helps reduce the number of successful attacks?

5. Robust generalization to imperfect attack algorithms

In Section 4, given an online learning algorithm, we can guarantee a finite number of successful
attacks from any attacking algorithm even if it was imperfect. But what if we want to work in a more
traditional train-then-ship approach, where we first ensure adversarial robustness without releasing
anything, and only then release? Can we provide any robust generalization guarantees when we only
have access to an imperfect attacking algorithm such as PGD (Madry et al., 2018) at training-time?

11



MONTASSER HANNEKE SREBRO

In this model, a learning algorithm B takes as input a black-box (possibly imperfect) attacker A,
and iid distributed training samples S = {(x1, y1), . . . , (xm, ym)} from an unknown distribution D
over X × Y . Learner B can query A by calling it T times with queries of the form: (gt, (x

′
t, y
′
t)),

where gt : X → Y is a predictor and (x′t, y
′
t) is a labeled example. The goal of learner B is to output

a predictor ĥ ∈ YX with small error w.r.t. future attacks from A, errA(ĥ;D) ≤ ε (see Equation 2).

Definition 6 (Robust PAC Learnability with Imperfect Attackers) LearnerB (ε, δ)-robustly PAC
learns H ⊆ YX with sample complexity m(ε, δ) : (0, 1)2 → N and oracle complexity T (ε, δ) :
(0, 1)2 → N if for any (possibly randomized and imperfect) attacker A : YX × (X × Y)→ X , any
distribution D over X ×Y , with at most T (ε, δ) oracle calls to A and with probability at least 1− δ
over S ∼ Dm(ε,δ) : errA(B(S,A)) ≤ infh∈H errA(h) + ε.

In this model, access to an imperfect attacker A at training-time ensures robust generalization
to this specific attacker A at test-time. This is a different guarantee from robust generalization to a
perturbation set U , because it might well be that that there is a stronger attack algorithm A′ than A
such that errA′(ĥ;D)� errA(ĥ;D). Furthermore, since the “strength” of the attack algorithm A is
a function of the predictor ĥ it is attacking, establishing a generalization guarantee w.r.t. A is not
immediate, and does not follow for example from our results in Section 3.

We relate robust learnability in this model to the online model from Section 4. In Theorem 12,
we observe that we can apply a standard online-to-batch conversion based on the longest survivor
technique (GALLANT, 1986) to establish generalization guarantees with respect to future attacks
made by A. Specifically, we simply output a predictor ĥ that has survived a sufficient number of
attacks from A. The full algorithm and proof are presented in Appendix F.

Theorem 12 For any classH, Algorithm 4 robustly PAC learnsH w.r.t. any (possibly randomized
and imperfect) attacker A and any distribution D such that infh∈H errA(h;D) = 0, with sample
complexity m(ε, δ) and oracle complexity T (ε, δ) at most O

Ä
lit(H) log(lit(H)/δ)

ε

ä
.

Gaps and Open Questions Currently we only provide generalization guarantees in the realizable
setting. It would be interesting to extend our guarantees to the agnostic setting. Are there algorithms
with better sample complexity perhaps depending only on the VC dimension? We established such a
result in Section 3 with access to a perfect attack oracle, but the same approach does not go through
when using an imperfect attacker. What about better oracle complexity? Can we obtain similar
generalization guarantees for adaptive attacking algorithms that change over time? Can we obtain
generalization guarantees against a family of attacking algorithms (e.g., first order attacks)?

6. Discussion

In this paper, we consider robust learning with respect to unknown perturbation sets U . We initiate the
quest to find the “right” model of access to U by considering different forms of access and studying
the robustness guarantees achievable in each case. One of the main takeaways from this work is that
we need to be mindful about what form of access to U we are assuming, because the guarantees that
can be achieved can be different. So knowledge about U should not be thought of as a free resource,
but rather we should quantify the complexity of the information we are asking about U .

In some ways, adversarial learning is an arms race, and Athalye et al. (2018) have illustrated that
predictors trained to be secure against a specific attack, might be easily defeated by a different attack.
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Our imperfect attack oracle model in Section 5 certainly suffers from this problem. But, it can also be
viewed as taking a step towards addressing it, as it provides a generic way of turning any new attack
into a defence, and thus defending against it, and since this is done in a black-box manner, could at
the very least hasten the development time needed to defend against a new attack. The online model
in Section 4 in a sense does so explicitly, and can indeed handle arbitrary new attacks.

In Section 3 we establish robust generalization guarantees w.r.t. any attacking algorithm A for
U , but it requires a perfect adversarial attack oracle for U : OU , and in Section 5, we establish a
generalization guarantee w.r.t. a specific attack algorithm A when given black-box access to A at
training-time. These are in a sense two opposing ends of the spectrum. Are there other interesting
models that provide weaker access than a perfect attack oracle OU , but also provide a stronger
guarantee than that of generalization to a particular attack? For example, under what conditions,
can we generalize to a test-time attacker Atest that is different from the attacker Atrain used at
training-time. What if we are interested in providing guarantees to a family of test-time attackers
(e.g. first-order algorithms), what form of access would be sufficient and necessary?

Under explicit knowledge of the perturbation set U , Montasser et al. (2019) showed that we can
robustly learn any hypothesis classH that is PAC learnable, i.e., finite vc(H). Given only a perfect
attack oracle to U , we show in this paper that we can robustly learn any hypothesis classH that is
online learnable, i.e., finite lit(H), and we give lower bounds showing that online learnability is
necessary. Are there other models of access to U that would allow us to robustly learn a broader
family of hypothesis classes beyond those that are online learnable?

Our approach to robust learning in this work is modular, in particular, the perfect and imperfect
attack oracles that we consider are independent of the hypothesis classH since they just receive a
predictor g : X → Y as input. But how is g provided? And do we expect the oracles to accept as
input any predictor g regardless of its complexity? A more careful look reveals that for the simple
algorithm CycleRobust (Algorithm 1) it suffices for the perfect attack oracle OU to accept only
predictors h ∈ H. This seems like it creates a dependency and breaks the modularity, but it does not,
since, e.g., the oracle might be implemented in terms of a much larger and more generic class, such
as neural nets with any architecture, as opposed to the specific architecture we are trying to learn, and
which the oracle need not be aware of. But the more sophisticated algorithm RLUA (Algorithm 1)
requires calling the oracle on predictors outsideH and so we do need the oracle to accept arbitrary
predictors, or at least predictors from a much broader class thanH. How can this be translated to a
computational rather than purely mathematical framework, and implemented in practice?

Are there sensible but generic assumptions on the perturbation set U that can lead to improved
guarantees? Either assumptions that are on U separate from the classH, i.e., that hold even ifH is
applied to one relabeling or permutation of X and U is applied to a different relabeling, or that rely
on simple and generic relationships between U andH.
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Lemma 13 (Robust Generalization with Stable Sample Compression) Let (κ, ρ) be a stable
sample compression scheme of size k for H with respect to the robust loss supz∈U(x) 1[h(z) 6= y].
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Then, for any distribution D over X × Y such that infh∈HRU (h;D) = 0, any integer m > 2k, and
any δ ∈ (0, 1), with probability at least 1− δ over S = {(x1, y1), . . . , (xm, ym)} iid D-distributed
random variables,

RU (ρ(κ(S));D) ≤ 2

m− 2k

Å
k ln(4) + ln

Å
1

δ

ãã
.

Proof The argument follows an analogous proof from Bousquet et al. (2020) for the 0-1 loss. We
observe that the same argument applies to the robust loss, and we provide an explicit proof for
completeness. Split the m samples of S into 2k sets S1, . . . , S2k each of size m

2k . Observe that
the k compression points chosen by κ, κ(S), are in at most k of these sets Si∗1 , . . . , Si∗k where
i∗1, . . . , i

∗
k ∈ {1, . . . , 2k}. Stability of (κ, ρ) implies that ρ(κ(∪kj=1Si∗j )) = ρ(κ(S)). Since by

definition of (κ, ρ), the robust risk RU (ρ(κ(S));S) = 0, it follows that RU (ρ(κ(∪kj=1Si∗j )));S) = 0.
This implies that ρ(κ(∪kj=1Si∗j )) is robustly correct on the remaining sets ∪j /∈{i∗1,...,i∗k}Sj .

Observe that the event that RU (ρ(κ(S));D) > ε implies the event that there exists i1, . . . , ik ∈
{1, . . . , 2k} such that RU (ρ(κ(∪kj=1Sij ));D) > ε and ρ(κ(∪kj=1Sij )) robustly correct on∪j /∈{i1,...,ik}Sj .
Thus,

Pr
S∼Dm

[RU (ρ(κ(S));D) > ε]

≤ Pr
S∼Dm

î
∃i1, . . . , ik : RU (ρ(κ(∪kj=1Sij ));D) > ε ∧ RU (ρ(κ(∪kj=1Sij ));∪j /∈{i1,...,ik}Sj) = 0

ó
(i)

≤
Ç

2k

k

å
Pr

S∼Dm

î
RU (ρ(κ(∪kj=1Sij ));D) > ε ∧ RU (ρ(κ(∪kj=1Sij ));∪j /∈{i1,...,ik}Sj) = 0

ó
(ii)

≤
Ç

2k

k

å
(1− ε)m/2 < 4ke−εm/2,

where inequality (i) follows from a union bound, and inequality (ii) follows from observing that the
m
2 samples in ∪j /∈{i1,...,ik}Sj are independent of ρ(κ(∪kj=1Sij ). Setting 4ke−εm/2 = δ and solving

for ε yields the stated bound.

Proof [of Theorem 1] Let A : (X × Y)∗ → YX be a conservative online learner forH with mistake
bound equal to lit(H). Let U : X → 2X be an arbitrary adversarial set that is unknown to the learning
algorithm and OU a black-box perfect attack oracle for U . Let D be an arbitrary distribution over
X × Y that is robustly realizable with some concept h∗ ∈ H, i.e., RU (h∗;D) = 0. Fix ε, δ ∈ (0, 1)
and a sample size m that will be determined later. Let S = {(x1, y1), . . . , (xm, ym)} be an iid
sample from D. Our proof will be divided into two main parts.

Zero Empirical Robust Loss Observe that the output of CycleRobust (Algorithm 1): ĥ =
B(S,OU ,A), achieves zero robust loss on the training data, RU (ĥ;S) = 0. This follows because
whenever CycleRobust (Algorithm 1) terminates, Steps 4-11 imply that it made a full pass on dataset
S without encountering any example (xi, yi) where predictor ĥ is not robustly correct. Furthermore,
since conservative online learner A has a finite mistake bound of lit(H), it implies that the number
of full passes (execution of Step 3) Algorithm 1 makes over S is at most lit(H), and in each pass
m oracle queries to OU are made. Thus, with at most mlit(H) oracle queries to OU , CycleRobust
(Algorithm 1) outputs a predictor ĥ with zero robust loss on S, RU (ĥ;S) = 0.
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Robust Generalization through Stable Sample Compression CycleRobust (Algorithm 1) can
be viewed as a stable compression scheme for the robust loss. Specifically, the output of the
compression function κ(S,OU ,A) is an order-dependent sequence that contains all examples (xi, yi)
on which ĥ was not robustly correct while cycling through dataset S (Steps 6-7), since A has a
finite mistake bound of lit(H), it follows that |κ(S,OU ,A)| ≤ lit(H). The reconstruction function ρ
simply runs CycleRobust (Algorithm 1) on the compressed dataset S′ = κ(S,OU ,A). The fact that
A is a conservative online learner implies that ĥ = B(S,OU ,A) = B(S′,OU ,A). Since RU (ĥ;S) =
0, this establishes that (κ, ρ) is a sample compression scheme for the robust loss. Furthermore, since
A is a conservative online learner, observe that for any S′′ such that κ(S,OU ,A) ⊆ S′′ ⊆ S it holds
that κ(S,OU ,A) = κ(S′′,OU ,A). That is, removing any of the examples from S on which ĥ was
robustly correct in Step 6 will not change the output of the compression function κ. Thus, the pair
(κ, ρ) is a stable sample compression scheme for the robust loss of size lit(H). To conclude the
proof, Lemma 13 guarantees that for a sample size m(ε, δ) = O

Ä
lit(H)+log(1/δ)

ε

ä
, the robust risk

RU (ĥ;D) ≤ ε.

Appendix B. Auxiliary Lemmas and Proof of Theorem 2

Lemma 14 (Properties of α-Boost, see, e.g., Corollary 6.4 and Section 6.4.3 in Schapire and Freund (2012))
Let S = {(xi, c(xi))}mi=1 be a dataset where c ∈ C is some target concept, and A an arbitrary PAC
learner for C (for ε = 1/3, δ = 1/3). Then, running α-Boost on S with black-box oracle access

to A with α = 1
2 ln

(
1 +
»

2 lnm
T

)
for T = d112 ln(m)e = O(logm) rounds suffices to produce a

sequence of hypotheses h1, . . . , hT ∈ im(A) such that

∀(x, y) ∈ S, 1

T

T∑
i=1

1[hi(x) = y] ≥ 5

9
.

In particular, this implies that the majority-vote MAJ(h1, . . . , hT ) achieves zero error on S.

Lemma 15 (Sparsification of Majority Votes, Moran and Yehudayoff (2016)) Let H be a hy-
pothesis class with finite primal and dual VC dimension, and h1, . . . , hT be predictors inH. Then,
for any (ε, δ) ∈ (0, 1), with probability at least 1 − δ over N = O

Ä
vc∗(H)+log(1/δ)

ε2

ä
independent

random indices i1, . . . , iN ∼ Uniform({1, . . . , T}), we have:

∀(x, y) ∈ X × Y,

∣∣∣∣∣∣ 1

N

N∑
j=1

1[hij (x) = y]− 1

T

T∑
i=1

1[hi(x) = y]

∣∣∣∣∣∣ < ε.

Lemma 16 (Montasser et al. (2019)) For any k ∈ N and fixed function φ : (X × Y)k → YX ,
for any distribution P over X × Y and any m ∈ N, for S = {(x1, y1), . . . , (xm, ym)} iid P -
distributed random variables, with probability at least 1 − δ, if ∃i1, . . . , ik ∈ {1, . . . ,m} s.t.
R̂U (φ((xi1 , yi1), . . . , (xik , yik));S) = 0, then

RU (φ((xi1 , yi1), . . . , (xik , yik));P ) ≤ 1

m− k
(k ln(m) + ln(1/δ)).
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Algorithm 1: Robust Learner against Unknown Adversaries (RLUA)
Input: Training dataset S = {(x1, y1), . . . , (xm, ym)}, black-box online learner A forH,

black-box perfect attack oracle OU .

1 Set n = O(vc(A)).
2 Foreach L ⊂ S such that |L| = n, run CycleRobust on (L,A,OU ), and denote by Ĥ the

resulting set of predictors.
3 Call Discretizer on (S, Ĥ,OU ), and denote by ŜU its output.
4 Initialize D1 to be uniform over ŜU , and set T = O(log |SU |).
5 for 1 ≤ t ≤ T do
6 Sample S′ ∼ Dn

t , and project S′ to dataset Lt ⊆ S by replacing each perturbation z with its
corresponding example x.

7 Call CycleRobust on (Lt,A,OU ), and denote by ft its output predictor.
8 Compute a new distribution Dt+1 by applying the following update for each (z, y) ∈ ŜU :

Dt+1({(z, y)}) =
Dt({(z, y)})

Zt
×
®
e−2α if ft(z) = y

1 otherwise

where Zt is a normalization factor and α is set as in Lemma 14.

9 Sample N = O(vc∗(A)) i.i.d. indices i1, . . . , iN ∼ Uniform({1, . . . , T}).
10 (repeat previous step until g = MAJ(fi1 , . . . , fiN ) satisfies RU (g;S) = 0)

Output: A majority-vote MAJ(fi1 , . . . , fiN ) predictor.

11 CycleRobust(Dataset L, Learner A, Oracle OU):
12 Initialize Z = {}, and initialize ĥ = A(Z).
13 Set FullRobustPass = False.
14 while FullRobustPass is False do
15 Set FullRobustPass = True.
16 for 1 ≤ i ≤ m do
17 Certify the robustness of ĥ on (xi, yi) by sending the query (ĥ, (xi, yi)) to the

perfect attack oracle OU .
18 if ĥ is not robustly correct on (xi, yi) then
19 Let z be the perturbation returned by OU where ĥ(z) 6= yi.
20 Add (z, yi) to the set Z.
21 Update ĥ by running A on example (z, yi), or equivalently, set ĥ = A(Z).
22 Set FullRobustPass = False.

23 return Predictor ĥ.

24 Discretizer(Dataset S, Predictors Ĥ, Oracle OU):
25 Initialize for (x, y) ∈ S do
26 Initialize P = {(x, y)}.
27 Let fyP : X → Y be a predictor of the form:
28 fyP (x′) = y if and only if

(
∃(z,y)∈P

) (
∀h∈Ĥ

)
1[h(z)6=y] = 1[h(x′)6=y].

29 Send the query (fyP , (x, y)) to the perfect attack oracle OU .
30 while fyP is not robustly correct on (x, y) do
31 Let z be the perturbation returned by OU where fyP (z) 6= y.
32 Append (z, y) to the set P .
33 Send an updated query (fyP , (x, y)) to the perfect attack oracle OU .
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Lemma 17 (Montasser et al. (2020b)) Let cok(H) = {x 7→ MAJ(h1, . . . , hk)(x) : h1, . . . , hk ∈ H}.
Then, the dual VC dimension of cok(H) satisfies vc∗(cok(H)) ≤ O(d∗ log k).

Theorem 18 (Weak Robust Learner) For any class H with vc(H) = d and vc∗(H) = d, RLUA
(Algorithm 1) robustly PAC learnsH w.r.t any U with:

1. Sample Complexity m(ε, δ) = O
Ä
dd∗2 log2 d∗

ε log
Ä
dd∗2 log2 d∗

ε

ä
+ log(1/δ)

ε

ä
.

2. Oracle Complexity T (ε, δ) = O
Ä
m(ε, δ)dd

∗2 log2 d∗ +m(ε, δ)dd
∗ log d∗ lit(H)

ä
.

Proof Let A : (X × Y)∗ → YX be an online learner for H with mistake bound M(A,H) =
O(lit(H)). We do not require A to be “proper” (i.e. returns a predictor in H), but we will rely on
it returning a predictor in some, possibly much larger, class which still has finite VC-dimension.
To this end, we denote by vc(A) = vc(im(A)) and vc∗(A) = vc∗(im(A)) the primal and dual
VC dimension of the image of A, i.e. the class im(A) = {A(S)|S ∈ (X × Y)∗} of the possible
hypothesis A might return. We will first prove a sample and oracle complexity bound stated in terms
of vc(A) and vc∗(A), and later, at the end of the proof, we will use a result due to (Hanneke et al.,
2021) to bound vc(A) and vc∗(A) in terms of d = vc(H) and d∗ = vc(H) for a specific online
learner A.

Let U : X → 2X be an arbitrary adversary that is unknown to the learner. Let D be an arbitrary
distribution over X × Y that is robustly realizable with some concept h∗ ∈ H, i.e., RU (h∗;D) = 0.
Fix ε, δ ∈ (0, 1) and a sample sizem that will be determined later. Let S = {(x1, y1), . . . , (xm, ym)}
be an iid sample from D.

Zero Empirical Robust Loss. LetL ⊆ S. LetAcyc be CycleRobust (Algorithm 1) from Theorem
1. By Theorem 1, running Acyc on input L with black-box access to OU and black-box access to
A, guarantees that the output ĥ = Acyc(L,OU ,A) satisfies RU (ĥ;L) = 0 with at most |L| lit(H)
oracle queries to OU .

Discretization Before we can apply the compression approach, we will inflate dataset S to a
(potentially infinite) larger dataset SU =

⋃
i≤m {(z, yi) : z ∈ U(xi)} that includes all possible

adversarial perturbations under U . There are two challenges that need to be addressed. First, SU
can be potentially infinite, and so we would need to discretize it somehow. Second, the learner
does not know U and so the inflation can be carried only through interaction with the perfect attack
oracle OU . Denote by Ĥ = {Acyc(L) : L ⊆ S, |L| = n} where n = O(vc(A)). Think of Ĥ as the
effective hypothesis class that is used by our robust learning algorithm B that we are constructing.
Note that |Ĥ| ≤ |{L : L ⊆ S, |L| = n}| =

(m
n

)
≤
(
em
n

)n. We will now apply classic tools from VC
theory to argue that there is a finite number of behaviors when projecting the infinite unknown set
SU onto Ĥ. Specifically, consider a dual class G: a set of functions g(x,y) : Ĥ → {0, 1} defined
as g(x,y)(h) = 1[h(x) 6= y], for each h ∈ Ĥ and each (x, y) ∈ SU . The VC dimension of G is at
most the dual VC dimension of Ĥ: vc∗(Ĥ), which is at most vc∗(A) since Ĥ ⊆ im(A). The set of
behaviors when projecting SU onto Ĥ is defined as follows:

SU |Ĥ =
{(
g(z,y)(h1), . . . , g(z,y)(h|Ĥ|)

)
: (z, y) ∈ SU

}
.

Now denote by ŜU a subset of SU which includes exactly one (z, y) ∈ SU for each distinct
classification

(
g(z,y)(h)

)
h∈Ĥ of Ĥ realized by some (z, y) ∈ SU . In particular, by applying Sauer’s
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lemma Vapnik and Chervonenkis (1971); Sauer (1972) on the dual class G, |ŜU | =
∣∣SU |Ĥ∣∣ ≤(

e|Ĥ|
d∗

)d∗
, which is at most mnd∗ . In particular, note that for any T ∈ N and h1, . . . , hT ∈ Ĥ, if

1
T

∑T
t=1 1[ht(x) = y] > 1

2 for every (z, y) ∈ ŜU , then 1
T

∑T
t=1 1[ht(x) = y] > 1

2 for every (z, y) ∈
SU as well, which would further imply RU (MAJ(h1, . . . , hT );S) = 0. Thus, we have shown that
there exists a finite discretization ŜU of SU where it suffices to find predictors h1, . . . , hT ∈ Ĥ that
achieve zero loss on ŜU .

It remains to show how to construct the discretization ŜU using only interactions with the perfect
attack oracle OU . To this end, for each (x, y) ∈ S, initialize P = {(x, y)}. The robust learner B
constructs a query (fP , (x, y)) where fP : X → Y is a predictor of the form:

fP (x′) = y if and only if
(
∃(z,y)∈P

) (
∀h∈Ĥ

)
g(z,y)(h) = g(x′,y)(h).

By the definition of fP , if there is a perturbation z′ ∈ U(x) such that the classification pattern(
g(z′,y)(h)

)
h∈Ĥ is distinct from the classification pattern

(
g(z,y)(h)

)
h∈Ĥ of any of the points (z, y) ∈

P , then fP (z′) 6= y, and therefore the oracle OU would reveal to the learner perturbation z′. Next,
the learner adds the point (z′, y) to P , and repeats the procedure again until fP is robustly correct
on example (x, y). In each oracle query, the learner is forcing the oracle OU to reveal perturbations
z ∈ U(x) with distinct classification patterns that the learner did not see before. Since we know
that

∣∣∣ŜU ∣∣∣ ≤ mnvc∗(A), the learner makes at most mnvc∗(A) oracle calls to OU before fP is robustly
correct on (x, y). This process is repeated for each training example (x, y) ∈ S, and so the total
number of oracle calls to OU is at most mnvc∗(A)+1.

Oracle Complexity Our robust learner B makes
(
em
n

)n
nlit(H) oracle calls to OU to construct Ĥ

and mnvc∗(A)+1 oracle calls to OU to construct ŜU .

Sample Complexity and Robust Generalization We proceed by running the sample compression
scheme from Montasser et al. (2019) on the discretized dataset ŜU . In this stage no more oracle
queries to OU are needed since the learner has already precomputed Ĥ and the discretized dataset
ŜU . As mentioned above, our goal in this stage is to find predictors h1, . . . , hT ∈ Ĥ where the
majority-vote MAJ(h1, . . . , hT ) achieves zero loss on ŜU . This implies that MAJ(h1, . . . , hT )
achieves zero robust loss on S, RU (MAJ(h1, . . . , hT );S) = 0, by properties of Ĥ and ŜU . We will
next go about finding such a set of ht predictors.

We run the α-Boost algorithm on the discretized dataset ŜU , this time with Acyc (CycleRobust
(Algorithm 1)) as the subprocedure. Specifically, on each round of boosting, α-Boost computes an
empirical distribution Dt over ŜU . We draw n = O(vc(A)) samples S′ from Dt, and project S′ to
a dataset Lt ⊂ S by replacing each perturbation (z, y) ∈ S′ with its corresponding original point
(x, y) ∈ S, and then we run Acyc on dataset Lt (this is already precomputed since Acyc(Lt) ∈ Ĥ
by definition of Ĥ). The projection step is crucial for the proof to work, since we use a sample
compression argument to argue about robust generalization, and the sample compression must be
done on the original points that appeared in S rather than the perturbations in ŜU .

By classic PAC learning guarantees Vapnik and Chervonenkis (1974); Blumer et al. (1989), with
n = O(vc(A)), we are guaranteed uniform convergence of 0-1 risk over predictors in Ĥ. So, for
any distribution D over X × Y with infh∈H err(h;D) = 0, with nonzero probability over S′ ∼ Dn,
every h′ ∈ Ĥ satisfying errS′(h

′) = 0, also has errD(h′) < 1/3. As discussed above, we know
that ht = Acyc(Lt) achieves zero robust loss on Lt, RU (ht;Lt) = 0, which by definition of the
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projection means that errS′(ht) = 0, and thus errDt(ht) < 1/3. This allows us to use Acyc with
α-Boost to establish a robust generalization guarantee. Specifically, Lemma 14 implies that running
the α-Boost algorithm with ŜU as its dataset for T = O(log(|ŜU |)) rounds, using Acyc to produce
the hypotheses ht ∈ Ĥ for the distributionsDt produced on each round of the algorithm, will produce
a sequence of hypotheses h1, . . . , hT ∈ Ĥ such that:

∀(z, y) ∈ ŜU ,
1

T

T∑
i=1

1[hi(z) = y] ≥ 5

9
.

Specifically, this implies that the majority-vote over hypotheses h1, . . . , hT achieves zero robust
loss on dataset S, RU (MAJ(h1, . . . , hT );S) = 0. Note that each of these classifiers ht is equal to
A(Lt,OU ) for some Lt ⊆ S with |Lt| = n. Thus, the classifier MAJ(h1, . . . , hT ) is representable
as the value of an (order-dependent) reconstruction function φ with a compression set size

nT = O(n log(|SU |)).

We can further reduce the compression set size by sparsifying the majority-vote. Lemma 15 (with
ε = 1/18, δ = 1/3) guarantees that for N = O(vc∗(A)), the sampled predictors hi1 , . . . , hiN ∈ Ĥ
satisfy:

∀(z, y) ∈ ŜU ,
1

N

N∑
j=1

1[hij (z) = y] >
1

T

T∑
i=1

1[hi(z) = y]− 1

18
>

5

9
− 1

18
=

1

2
,

so that the majority-vote achieves zero robust loss on S, RU (MAJ(hi1 , . . . , hiN );S) = 0. Since
again, each hij is the result of A(Lt,OU ) for some Lt ⊆ S with |Lt| = m0, we have that the
classifier MAJ(hi1 , . . . , hiN ) can be represented as the value of an (order-dependent) reconstruction
function φ with a compression set size nN = O(vc(A)vc∗(A)). Lemma 16 (Montasser et al. (2019))
which extends to the robust loss the classic compression-based generalization guarantees from the
0-1 loss, implies that for m ≥ cvc(A)vc(A)∗ (for an appropriately large numerical constant c), with
probability at least 1− δ over S ∼ Dm,

RU (MAJ(hi1 , . . . , hiN );D) ≤ O
Å

vc(A)vc∗(A)

m
log(m) +

1

m
log(1/δ)

ã
. (5)

Bounding the complexity of A A result due to (Hanneke et al., 2021, Theorem 3) states that for
any class H of Littlestone dimension lit(H) and dual VC dimension d∗, there is an online learner
A with mistake bound M(A,H) = O(lit(H)) which represents its hypotheses as (unweighted)
majority votes of O(d∗) predictors ofH. In other words,

im(A) ⊆ coO(d∗)(H) ,
{
x 7→ MAJ(h1, . . . , hO(d∗))(x) : h1, . . . , hO(d∗) ∈ H

}
.

By (Blumer et al., 1989), the VC dimension of coO(d∗)(H) is at most O(dd∗ log d∗), and
by Lemma 17, the dual VC dimension of coO(d∗)(H) is at most O(d∗ log d∗). Since im(A) ⊆
coO(d∗)(H), this implies that vc(A) = O(dd∗ log d∗) and vc∗(A) = O(d∗ log d∗). Substituting
these upper bounds in Equation 5, and setting it less than ε and solving for a sufficient size of m
yields the stated sample complexity bound.
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Proof [of Theorem 2] Let B be the robust learning algorithm (Algorithm 1) described in Theo-
rem 18. We will use B as a weak robust learner with fixed parameters ε0 = 1/3 and δ0 = 1/3.
By the guarantee of Theorem 18, with fixed sample complexity m0 = O(dd∗2 log2 d∗), for any
distribution D over X × Y such that infh∈HRU (h;D) = 0, with probability at least 1/3 over
S ∼ Dm0 , RU (B(S);D) ≤ 1/3. Furthermore, B makes at most O(dd∗2 log2 d∗)O(dd∗2 log2 d∗) +
O(dd∗2 log2 d∗)O(dd∗ log d∗)lit(H) = exp

{
O(dd∗2 log2 d∗)

}
+ exp

{
O(d2d∗2 log2 d∗)

}
lit(H) ora-

cle calls to OU .
We will now boost the confidence and robust error guarantee of the weak robust learner B

by running boosting with respect to the robust loss (rather than the standard 0-1 loss). Specif-
ically, fix (ε, δ) ∈ (0, 1) and a sample size m(ε, δ) that will be determined later. Let S =
{(x1, y1), . . . , (xm, ym)} be an iid sample from D. Run the α-Boost algorithm on dataset S using
B as the weak robust learner for a number of rounds L = O(logm). On each round t, α-Boost
computes an empirical distribution Dt over S by applying the following update for each (x, y) ∈ S:

Dt({(x, y)}) =
Dt−1({(x, y)})

Zt−1
×
®
e−2α if supz∈U(x) 1[ht−1(z) 6= y] = 0

1 otherwise

where Zt−1 is a normalization factor, α is set as in Lemma 14, and ht−1 is the weak robust pre-
dictor outputted by B on round t − 1 that satisfies RU (ht−1;Dt−1) ≤ 1/3. Note that computing
Dt requires |S| = m oracle calls to OU . Once Dt is computed, we sample m0 examples from
Dt and run weak robust learner B on these examples to produce a hypothesis ht with robust er-
ror guarantee RU (ht;Dt) ≤ 1/3. This step has failure probability at most δ0 = 1/3. We will
repeat it for at most dlog(2L/δ)e times, until B succeeds in finding ht with robust error guarantee
RU (ht;Dt) ≤ 1/3. By a union bound argument, we are guaranteed that with probability at least
1− δ/2, foreach 1 ≤ t ≤ L, RU (ht;Dt) ≤ 1/3. Furthermore, by Lemma 14, we are guaranteed that
RU (MAJ(h1, . . . , hL);S) = 0. Note that each of these classifiers ht is equal to B(S′t,OU ) for some
S′t ⊆ S with |S′t| = m0. Thus, the classifier MAJ(h1, . . . , hL) is representable as the value of an
(order-dependent) reconstruction function φ with a compression set size m0L = m0O(logm). Now,
invoking Lemma 16, with probability at least 1− δ/2,

RU (MAJ(h1, . . . , hL);D) ≤ O
Ç
m0 log2m

m
+

log(2/δ)

m

å
,

and setting this less than ε and solving for a sufficient size of m yields the stated sample complexity
bound.

Oracle Complexity Observe that we run boosting for L rounds, in each round the weak ro-
bust learner is invoked at most dlog(2L/δ)e times. In each of these invocations, B makes at
most exp

{
O(dd∗2 log2 d∗)

}
+ exp

{
O(d2d∗2 log2 d∗)

}
lit(H) oracle calls to OU , and an additional

m(ε, δ) oracle calls to OU are made by α-Boost to compute the robust error of the ht hypotheses
produced by B. Thus, the total number of calls to OU is at most

dL log(2L/δ)e
Ä
exp
¶
O(dd∗2 log2 d∗)

©
+ exp

¶
O(d2d∗2 log2 d∗)

©
lit(H) +m(ε, δ)

ä
.
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Algorithm 2: Weighted Majority
Input: paramter η ∈ [0, 1), black-box perfect attack oracle OU , and finite hypothesis classH.

1 Initialize P0 to be uniform overH, i.e. ∀h ∈ H, P0(h) = 1.
2 for 1 ≤ t ≤ T do
3 Receive (xt, yt).
4 Certify the robustness of the weighted-majority-vote MAJPt−1 on (xt, yt) by sending the

query (MAJPt−1 , (xt, yt)) to the perfect attack oracle OU .
5 if MAJPt−1 is not robustly correct on (xt, yt) then
6 Let zt be the perturbation returned by OU where MAJPt−1(zt) 6= yt.
7 Foreach h ∈ H such that h(zt) 6= yt, update Pt(h) = ηPt−1(h).

Output: The weighted-majority-vote MAJPT overH.

8 Expert(Indices i1 < i2 < · · · < iL, and hypothesis classH):
9 Initialize V1 = H.

10 for 1 ≤ t ≤ T do
11 Receive xt.
12 Let V y

t = {h ∈ Vt : h(xt) = y} for y ∈ {±1}.
13 Let ỹt = argmaxy∈{±1} lit(V y

t ) (in case of a tie set ỹt = +1).
14 if t ∈ {i1, . . . , iL} then
15 Predict ŷt = −ỹt.
16 else
17 Predict ŷt = ỹt.

18 Update Vt+1 = V ŷt
t .

Appendix C. Proofs for Agnostic Setting – Section 3.2

Lemma 19 For any classH with finite cardinality, Weighted Majority (Algorithm 2) guarantees
that for any U and any sequence of examples (x1, y1), . . . , (xT , yT ):

T∑
t=1

sup
z∈U(xt)

1[MAJPt−1(z) 6= yt] ≤ aη min
h∈H

T∑
t=1

sup
z∈U(xt)

1[h(z) 6= yt] + bη ln |H| ,

where aη = ln(1/η)
log(2/(1+η)) and bη = 1

ln(2/(1+η)) . In particular, setting 1−η = min{(2 ln |H|)/T, 1/2}
yields

T∑
t=1

sup
z∈U(xt)

1[MAJPt−1(z) 6= yt] ≤ 2OPT + 4
»
OPT ln |H|.

Furthermore, Weighted Majority (Algorithm 2) makes at most T oracle queries to OU .

Proof This proof follows from standard analysis for the Weighted Majority algorithm (see
e.g. Schapire (2006); Blum and Monsour (2007)). Let Wt =

∑
h∈H Pt(h). Observe that on
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round t, if the weighted-majority-vote MAJPt−1 is not robustly correct on (xt, yt), then:

Wt = η
∑

h∈H:h(zt)6=y

Pt−1(h) +
∑

h∈H:h(zt)=y

Pt−1(h) = η
∑

h∈H:h(zt) 6=y

Pt−1(h) +Wt−1 −
∑

h∈H:h(zt)6=y

Pt−1(h)

= Wt−1 − (1− η)

Ñ ∑
h∈H:h(zt)6=y

Pt−1(h)

é
≤Wt−1 − (1− η)

1

2
Wt−1 =

Å
η + 1

2

ã
Wt−1,

where the last inequality follows from the fact that
∑

h∈H:h(zt)6=y Pt−1(h) ≥
∑

h∈H:h(zt)=y
Pt−1(h).

Denote by M =
∑T

t=1 supz∈U(xt) 1[MAJPt−1(z) 6= yt] the number of rounds on which the
weighted-majority-vote was not robustly correct during the total T rounds. The above implies that

WT ≤
Ä
η+1
2

äM
W0 =

Ä
η+1
2

äM
|H|. On the other hand, denote by OPT = minh∈H

∑T
t=1 supz∈U(x) 1[h(z) 6=

y] the number of rounds on which the best predictor h∗ inH was not robustly correct. Whenever the
weighted-majority-vote is not robustly correct, h∗ might make a mistake on (zt, yt). It follows that
after T rounds, PT (h∗) ≥ ηOPT. Combining the above inequalities, we get

ηOPT ≤ PT (h∗) ≤WT ≤
Å
η + 1

2

ãM
|H| ,

and solving for M yields

M ≤ ln(1/η)

ln(2/(1 + η))
OPT +

1

ln(2/(1 + η))
ln |H| .

To conclude the proof, observe that for η ∈ [0, 1), ln(2/(1 + η)) ≥ 1−η
2 , and ln(1/η) ≤ (1− η) +

(1− η)2 for 0 ≤ 1− η ≤ 1/2. Setting 1− η = min{(2 ln |H|)/T, 1/2} yields the desired bound.

Lemma 20 For any class H with finite Littlestone dimension lit(H) < ∞ and integer T , let
ExpertsH = {Expert(i1, . . . , iL) : 1 ≤ i1 < · · · < iL ≤ T, L ≤ lit(H)} be a set of experts as de-
scribed in Algorithm 2. Then, running Weighted Majority (Algorithm 2) with ExpertsH guarantees
that for any perturbation set U and any sequence of examples (x1, y1), . . . , (xT , yT ),

T∑
t=1

sup
z∈U(xt)

1[MAJPt−1(z) 6= yt] ≤ 2OPT + 4
»
OPT ln |ExpertsH|,

where OPT = minh∈H
∑T

t=1 supz∈U(xt) 1[h(z) 6= yt], and 1−η = min{(2 ln |ExpertsH|)/T, 1/2}.
Furthermore, Weighted Majority (Algorithm 2) makes at most T oracle queries to OU .

Proof Let U be an arbitrary adversary, and (x1, y1), . . . , (xT , yT ) ∈ X ×Y be an arbitrary sequence.
Let h∗ ∈ H be an optimal robust predictor on this sequence, i.e.

∑T
t=1 supz∈U(xt) 1[h∗(z) 6= yt] =

OPT. Let ExpertsH = {Expert(i1, . . . , iL) : 1 ≤ i1 < · · · < iL ≤ T, L ≤ lit(H)} denote the
set of experts instantiated that simulate the Standard Optimal Algorithm as described in Algorithm 2.

Consider running Weighted Majority (Algorithm 2) with ExpertsH as its finite cardinality set
of experts on the sequence (x1, y1), . . . , (xT , yT ). Consider the set of perturbations returned by the
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perfect attack oracle OU during the rounds on which the weighted-majority-vote was not robustly
correct,

Q =
{

(zt, yt) : 1 ≤ t ≤ T ∧MAJPt−1 is not robustly correct on (xt, yt)
}
.

By Algorithm 2, there is a choice of rounds i∗1 < · · · < i∗L such that Expert(i∗1, . . . , i
∗
L) ∈

ExpertsH agrees with the predictions of h∗ on this particular sequenceQ. Observe that the number
of mistakes h∗ makes on this sequence M(h∗) := |{(z, y) ∈ Q : h∗(z) 6= y}| ≤ OPT. Thus, the
weight of Expert(i∗1, . . . , i

∗
L) is at least ηM(h∗) ≥ ηOPT (since η < 1). The remainder of the proof

follows exactly as in the proof of Theorem 3.

Proof [of Theorem 3] LetH ⊆ YX be a hypotesis class with finite Littlestone dimension lit(H) <∞.
Let B : (X × Y)∗ → YX denote the Weighted Majority algorithm running with experts ExpertsH
as described in Theorem 3. We will apply a standard online-to-batch conversion Cesa-Bianchi et al.
(2004) to get the desired result. Specifically, on input dataset S = {(xj , yj)}mj=1 that is drawn
iid from some unknown distribution D over X × Y , output a uniform distribution over hypotheses
ĥ0, ĥ1, . . . , ĥm−1 where ĥi = B({(xj , yj)}i−1j=1). We are guaranteed that with probability at least
1− δ over S ∼ Dm,

E
j∼Unif{0,...,m−1}

î
RU (ĥj ;D)

ó
≤ 1

m

m∑
j=1

sup
z∈U(xj)

1[ĥj−1(z) 6= yj ] +

 
2 ln(1/δ)

m

≤ 2 min
h∈H

1

m

m∑
j=1

sup
z∈U(xj)

1[h(z) 6= yj ] + 4

 
ln |ExpertsH|

m
+

 
2 ln(1/δ)

m

≤ 2 min
h∈H

RU (h;D) + 4

 
ln |ExpertsH|

m
+ 2

 
2 ln(1/δ)

m
.

This yields a sample complexity bound of m(ε, δ) = O
Ä
ln|ExpertsH|+ln(1/δ)

ε2

ä
. The oracle complexity

T (ε, δ) = O(m(ε, δ)2) since we invoke learner B m times on datasets of size at most m.

Proof [of Theorem 4] This proof follows an argument originally made by David et al. (2016) to reduce
agnostic sample compression to realizable sample compression in the non-robust setting, and later
adapted by Montasser et al. (2019) for the robust setting. LetD be an arbitrary distribution overX×Y .
Fix ε, δ ∈ (0, 1) and a sample sizem that will be determined later. Let S = {(x1, y1), . . . , (xm, ym)}
be an iid sample from D. Denote by B̃ the robust learning algorithm in the realizable setting from
Theorem 2, and denote by Acyc CycleRobust (Algorithm 1) from Theorem 1. The proof is broken
into two parts.

Finding Maximal Subsequence S′ with Zero Robust Loss We will use Acyc to find a maximal
subsequence S′ ⊆ S on which the robust loss can be zero, i.e. infh∈HRU (h;S′) = 0. This can be
done by running Acyc on all 2m possible subsequences, with a total oracle complexity of 2mlit(H).

Agnostic Sample Compression We now run the boosting algorithm B̃ on S′. Theorem 2 guar-
antees that the robust risk of ĥ = B̃(S′,OU ,Acyc) is zero, RU (ĥ;S′) = 0. Since S′ is a maximal
subsequence on which the robust loss can be zero, this implies that

RU (ĥ;S) ≤ min
h∈H

RU (h;S).
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Furthermore, the predictor ĥ can be specified using m0O(log |S′|) ≤ m0O(logm) points from
S, which is due to the robust compression guarantee in the proof of Theorem 2. Now, we can apply
agnostic sample compression generalization guarantees for the robust loss.

Similarly to the realizable case (see Lemma 16), uniform convergence guarantees for sample
compression schemes Graepel et al. (2005) remain valid for the robust loss, by essentially the same
argument; the essential argument is the same as in the proof of Lemma 16 except using Hoeffding’s
inequality to get concentration of the empirical robust risks for each fixed index sequence, and then a
union bound over the possible index sequnces as before. We omit the details for brevity. In particular,
denoting Tm = O(logm), for m > m0Tm, with probability at least 1− δ/2,

RU (ĥ;D) ≤ R̂U (ĥ;S) +

 
m0Tm ln(m) + ln(2/δ)

2m− 2m0Tm
.

Let h∗ = argminh∈HRU (h;D) (supposing the min is realized, for simplicity; else we could take
an h∗ with very-nearly minimal risk). By Hoeffding’s inequality, with probability at least 1− δ/2,

R̂U (h∗;S) ≤ RU (h∗;D) +

 
ln(2/δ)

2m
.

By the union bound, if m ≥ 2m0Tm, with probability at least 1− δ,

RU (ĥ;D) ≤ min
h∈H

R̂U (h;S) +

 
m0Tm ln(m) + ln(2/δ)

m

≤ R̂U (h∗;S) +

 
m0Tm ln(m) + ln(2/δ)

m

≤ RU (h∗;D) + 2

 
m0Tm ln(m) + ln(2/δ)

m
.

Since Tm = O(log(m)), the above is at most ε for an appropriate choice of sample size m =
O
(
m0
ε2

log2
(
m0
ε

)
+ 1

ε2
log
(
1
δ

))
.

Appendix D. Lower Bound Proof for Section 3.3

Proof [of Theorem 5] Let d = Tdim(H). By definition of the threshold dimension, ∃P =
{x1, . . . , xd} ⊆ X that is threshold-shattered using C = {h1, . . . , hd} ⊆ H. Let D be a uni-
form distribution over (x1,+1) and (xd,−1). Let B be an arbitrary learner in the Perfect Attack
Oracle model. For any h ∈ C \ {hd}, let Uh : X → 2X be defined as:

Uh(x1) = {x ∈ P : h(x) = +1} ,
Uh(xd) = {x ∈ P : h(x) = −1} = P \ Uh(x1),

Uh(x) = {x0} ∀x ∈ X \ {x1, xd} ,

where x0 ∈ X \ P .
For any such Uh, observe that finding a predictor ĥ : X → Y that achieves zero robust loss on

D, RUh(ĥ;D) = 0, is equivalent to figuring out which threshold h ∈ C \ hd was used to construct
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Uh, since RUh(h;D) = 0 by definition of Uh, but for any other threshold h′ ∈ C \ hd where h′ 6= h,
RU (h′;D) ≥ 1/2.

We will pick h uniformly at random from C \ hd, and we will show that in expectation over the
random draw of h, learner A needs to make at least Ω(log |C \ hd|) oracle queries to OUh in order
to achieve robust loss zero on D. For ease of presentation, for each i ∈ [d − 1], we will encode
hi ∈ C \ hd with the binary representation r(i) of integer i, for example:

x1 x2 x3 x4 x5 x6 x7 x8

h001 h100

Thus, drawing h uniformly at random from C \ hd is equivalent to drawing a random bit-string r
of length dlog2 |C \ hd|e bits. Next, we will define the behavior of the oracle OUh .

Algorithm 3: Perfect Attack Oracle OUh
Input: A predictor f : X → Y and a labeled example (x, y).
Output: Assert that f is robustly correct on (x, y) or return a z ∈ Uh(x) such that f(z) 6= y.

1 if x = x1 then
2 Output the first z ∈ Uh(x1) (to the right of x1) such that f(z) 6= y. If no such z exists,

assert that f is robustly correct on (x1, y).
3 else if x = xd then
4 Output the first z ∈ Uh(xd) (to the left of xd) such that f(z) 6= y. If no such z exists, assert

that f is robustly correct on (xd, y).
5 else
6 Output x if f(x) 6= y, otherwise assert that f is robustly correct on (x, y).

Before learning starts, from the perspective of the learnerB, the version space V0 = {h1, . . . , hd−1},
as any of these thresholds could be the true threshold used by OUhr where r was drawn uniformly at
random. On each round t, learner B constructs a predictor ht : X → Y and asks the oracle OUhr
with a query qt = (ht, (xt, yt)), and the oracle OUhr responds as described in Algorithm 3. Without
loss of generality, we can assume that (xt, yt) = (x1,+1) or (xt, yt) = (xd,−1), since queries
concerning other points x ∈ X \ {x1, xd} do not reveal helpful information for robustly learning
distributionD. Foreach round t, the version space Vt describes the set of thresholds that are consistent
with the queries constructed by the learner so far, i.e. ∀i ≤ t,∀h, h′ ∈ Vt,OUh(qi) = OUh′ (qi). So,
from the perspective of the learner B, any h ∈ Vt could be the true threshold.

We will show that with each oracle query qt constructed by the learner B, in expectation over
the random draw of r, the size of the newly updated version space |Vt| ≥ 1

4 |Vt−1|. Formally, the
expected size of the version space Vt after round t conditioned on query qt and Vt−1 is:

E
rt

[|Vt| |qt, Vt−1] = Pr
rt

[rt = 0]E [|Vt| |qt, Vt−1, rt] + Pr
rt

[rt = 1]E [|Vt| |qt, Vt−1, rt],

where rt is the tth random bit in the random bit string r. We need to consider two possible cases
depending on the query qt = (ht, (xt, yt)). (Without loss of generality, we are assuming that
ht ∈ C \ hd, as the oracle OUhr will treat it as such by Steps 2 and 4).

If (xt, yt) = (x1,+1), and the tth bit of ht is 0, then:

E
rt

[|Vt| |qt, Vt−1] ≥ Pr
rt

[rt = 1]E [|Vt| |qt, Vt−1, rt] =
1

2
· 1

2
|Vt−1| .
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If (xt, yt) = (xd,−1), and the tth bit of ht is 1, then:

E
rt

[|Vt| |qt, Vt−1] ≥ Pr
rt

[rt = 0]E [|Vt| |qt, Vt−1, rt] =
1

2
· 1

2
|Vt−1| .

Therefore, it follows that Ert [|Vt| |qt, Vt−1] ≥ 1
4 |Vt−1|. Thus, after T rounds, Er [|VT | |V0] ≥

1
4

T |V0|. This implies that there exists a fixed bit-string r∗ (or equivalently, an adversary Uhr∗ ) such
that for T ≤ log|V0|

2 rounds, |VT | ≥ 1. This implies that learner B needs at least log|V0|
2 oracle queries

to OUhr∗
in order to robustly learn distribution D.

Appendix E. Proofs for Section 4

Proof [of Theorem 9] Observe that the same lowerbound construction from Theorem 5 can be used
in the setting of the online model. Specifically, by importing that construction, we get the following:
there is a distribution D over X × Y , such that for any learner B : (X × Y)∗ → YX , there is a
perturbation set U : X → 2X and an adversary A : YX × (X × Y)→ X (Algorithm 3) such that:

MU ,A(B,H;D) =
∞∑
t=1

1

î
B({(zi, yi)}t−1i=1)(zt) 6= yt

ó
≥ log2 (Tdim(H)− 1)

2
.

This is because in the setting of the Perfect Attack Oracle model, learner B chooses which
example (x, y) ∈ supp(D) to feed into A, and still learner B makes log2 (Tdim(H)−1)

2 mistakes before
fully robustly learning distribution D. While in this setting, the examples (x, y) that are fed into A
are drawn iid from D, and so its at least as hard as the other setting.

Appendix F. Proofs for Section 5

Algorithm 4: Robust Learner with Imperfect Attack.
Input: S = {(x1, y1), . . . , (xm, ym)}, ε, δ, black-box conservative online learner A, black-box

attacker A.
1 Initialize ĥ = A(∅).
2 for 1 ≤ i ≤ m do
3 Let zi = A(ĥ, (xi, yi)) be the perturbation returned by the attacker A.
4 If ĥ is not correct on (zi, yi), update ĥ by running online learner on A on (zi, yi).
5 Break when ĥ is correct on a consecutive sequence of perturbations of length 1

ε log
Ä
lit(H)
δ

ä
.

Output: ĥ.

Proof [of Theorem 12] LetH ⊆ YX be an arbitrary hypothesis class, and A a conservative online
learner forH with mistake bound of lit(H). Let U be an arbitrary adversary and A an arbitrary fixed
(but possibly randomized) attack algorithm. Let D be an arbitrary distribution over X × Y that is
robustly realizable,i.e. infh∈HRU (h;D) = 0.

Fix ε, δ ∈ (0, 1) and a sample size m = 2 lit(H)
ε log

Ä
lit(H)
δ

ä
. Since online learner A has a

mistake bound of lit(H), Algorithm 4 will terminate in at most lit(H)
ε log

Ä
lit(H)
δ

ä
steps, which is an
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upperbound on the number of calls to the attack algorithm A. It remains to show that the output of
Algorithm 4, the final predictor ĥ, will have low error w.r.t. future attacks from A:

errA(ĥ;D) , Pr
(x,y)∼D

randomness of A

î
ĥ(A(ĥ, (x, y))) 6= y

ó
.

Throughout the runtime of Algorithm 4, the online learner A generates a sequence of at most
lit(H) + 1 predictors. There’s the initial predictor from Step 1, plus the lit(H) updated predictors
corresponding to potential updates by online learner A. By a union bound over these predictors, the
probability that the final predictor ĥ has error more than ε

Pr
S∼Dm

î
errA(ĥ;D)>ε

ó
≤ Pr
S∼Dm

[∃j∈ [lit(H)+1] : errA(hj ;D)>ε]≤(lit(H)+1)(1−ε)
1
ε
log
Ä
lit(H)+1

δ

ä
≤δ.

Therefore, with probability at least 1− δ over S ∼ Dm, Algorithm 4 outputs a predictor ĥ with error
errA(ĥ;D) ≤ ε.
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