
 743

Active Boosted Learning (ActBoost)

Kirill Trapeznikov Venkatesh Saligrama David Castañón
Boston University Boston University Boston University

Abstract

Active learning deals with the problem of
selecting a small subset of examples to la-
bel, from a pool of unlabeled data, for train-
ing a good classifier. We develop an ac-
tive learning algorithm in the boosting frame-
work. In contrast to much of the recent
efforts, which has focused on selecting the
most ambiguous unlabeled example to label
based on the current learned classifier, our
algorithm selects examples to maximally re-
duce the volume of the version space of fea-
sible boosted classifiers. We show that under
suitable sparsity assumptions, this strategy
achieves the generalization error performance
of a boosted classifier trained on the entire
data set while only selecting logarithmically
many unlabeled samples to label. We also es-
tablish a partial negative result, in that with
out imposing structural assumptions it is dif-
ficult to guarantee generalization error per-
formance. We explicitly characterize our con-
vergence rate in terms of the sign pattern dif-
ferences produced by the weak learners on the
unlabeled data. We also present a convex re-
laxation to account for the non-convex sparse
structure and show that the computational
complexity of the resulting algorithm scales
polynomially in the number of weak learners.
We test ActBoost on several datasets to il-
lustrate its performance and demonstrate its
robustness to initialization.

1 Introduction

An active learner [Cohn et al., 1994] selects which ex-
amples to label from a pool of unlabeled data for train-
ing a good classifier. Active learning is based on the

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

premise that while unlabeled data is abundant, label-
ing it is expensive. This paper develops a novel active
learner based on boosting. Boosting is a method for
combining decisions of weak classifiers to form a strong
classifier. A strong classifier is parameterized by a
probability weight vector on the weak classifiers. The
significance of boosted classifiers is that if the weak
learning assumption holds, a probability weight vector
and the associated strong classifier can be constructed
with training error essentially equal to zero [Freund &
Schapire, 1996].

This feature of boosted classifiers motivates consid-
ering an active boosted learner based on the version
space approach. In our context, the version space is
the set of all probability vectors that correctly classify
the current labeled training set. Our active boosted
learning (ActBoost) algorithm, at each time, selects
examples to approximately bisect the version space.
We establish that the number of labeled examples n

necessary to reduce the volume of the version space to
a fraction � of the initial volume scales as n = O(log 1

�).
ActBoost randomly samples from the version space
and chooses an example with maximum disagreement
among the sampled boosted classifiers. We utilize the
Hit and Run algorithm from [Lovász & Vempala, 2004]
to uniformly sample from a convex body. ActBoost
has polynomial computational complexity in the num-
ber of weak learners. Hit and Run has been used for
SVM active learning by [Gilad-Bachrach et al., 2005].

Nevertheless, we show that in the context of boosting,
if all the weak hypotheses are allowed to contribute to
the final ensemble, reduction of version space does not
guarantee improvement in generalization performance.
This motivates imposition of sparsity. Sparsity in the
number of boosted weak learners has been employed in
the literature [Taylor et al., 2010] and has been shown
to improve generalization. We show that under this
assumption, our strategy achieves the generalization
error performance of a boosted classifier trained on
the entire data set while only selecting logarithmically
many unlabeled samples to label.

Active learning has been extensively studied by sev-
eral researchers (see [Settles, 2010]). In contrast to

 744

Active Boosted Learning (ActBoost)

boosted classifiers, version spaces can turn out to be
empty sets after a few iterations for important clas-
sifier classes such as SVMs. This has motivated re-
searchers to consider strategies for finding the most
ambiguous/uncertain examples based on the current
learned classifier (see [Campbell et al., 2000, Tong &
Koller, 2001,Nguyen & Smeulders, 2004,Dasgupta &
Hsu, 2008,Guo & Greiner, 2007]).

Active learning in the boosting framework with the
most ambiguous example perspective has also been
studied before [Abe & Mamitsuka, 1998, Tur et al.,
2003]. [Abe & Mamitsuka, 1998] describe Query-by-
Boosting (QBB) method using the Adaboost algo-
rithm of [Freund & Schapire, 1996]. QBB labels an
example that is most ambiguous among all examples
for the Adaboost classifier trained on the current la-
beled set. Unfortunately, no performance guarantees
for QBB can be provided since it suffers from initial-
ization bias as we will describe later. In contrast we
select examples that most closely bisects the current
space of feasible boosted classifiers. We require no ini-
tialization because our algorithm does not concentrate
on the current boundary but explores the entire exam-
ple space. We compare the performance of our algo-
rithm on several datasets to QBB algorithm from [Abe
& Mamitsuka, 1998] and to a random labeling strat-
egy. On all datasets, our algorithm performs better
or on par with QBB. However when initialization bias
is introduced into the experiments, QBB performance
deteriorates while our algorithm remains robust.

The idea of reducing the version space in active learn-
ing has been considered by several researchers ([Se-
ung et al., 1992, Gilad-Bachrach et al., 2005, Abe &
Mamitsuka, 1998, Freund et al., 1997,Tong & Koller,
2001, Nowak, 2009]) for the so called realizable case.
The Query By Committee (QBC) of [Freund et al.,
1997] is a version space approach described usually in
a streaming scenario. The QBC selects an unlabeled
instance to label if two random classifiers chosen from
the version space disagree. Freund et. al. describe
a PAC framework and show that if the set of classi-
fiers have a finite VC dimension, the classifiers and the
unlabeled data points are chosen from a known prior
distribution, and the so called information gain con-
dition is satisfied, the number of examples labeled is
small. Our algorithm is similar in spirit to QBC but
with important differences. We do not employ a PAC
framework or the streaming scenario. We do not as-
sume the information gain conditions or bounds on VC
dimension. Instead we draw upon margin based gen-
eralization bounds for boosted classifier. Our analysis
draws upon the concept of Generalized Binary Search
of Nowak [Nowak, 2009]. We extend [Nowak, 2009] to
the case of continuous classifier spaces, more precisely

the space of probability vectors on weak learners. We
explicitly relate our convergence rate to a function of
the hamming distances of the weak classifiers.

The paper is organized in the following manner. In
Section, 2 we define our algorithm. We perform theo-
retical analysis in Section 3. We present our numerical
experiments in Section 4.

2 Active Boosted Learning

We denote by X = {xi}
B
i=1, the pool of unlabeled data.

We let H = {hj(·)}N
j=1 denote a finite set of weak

classifiers1. Each weak classifier is a binary valued
function hj : X → {+1,−1}. Associated with each
example xi ∈ X is a binary label yi ∈ {−1, 1}, which
is revealed by querying an Oracle. We introduce the
simplex of all positive weight vectors Q:

Q =




(q1, q2, . . . , qN) |
N�

j=1

qj = 1, qj ≥ 0, j = 1, . . . , N






(1)
The space of classifiers under consideration is the set of
all weighted combinations of weak classifiers, namely,

q(x) := sgn(
N�

j=1

hj(x)qj) = sgn(h(x)T q)

where, h(x) = [h1(x) h2(x) .. hN (x)]T and q =
[q1, q2, . . . , qN]. We refer to this set of classifiers as
boosted classifiers.

Our goal is to select a small subset of examples xi ∈ X

to label so that boosted training on this labeled set
leads to a strong classifier, namely that

�
[q(xi) �=yi]

on the unlabeled data is small. Let Lt be the set of
labeled training examples at iteration t. Our version
space is the set of all classifiers parameterized by the
vector q that correctly classify the labeled training set
at an iteration t:

Qt =




q ∈ Q | yi

N�

j=1

hj(xi)qj ≥ 0, ∀ i ∈ Lt






Note that under the weak learning assumption [Freund
& Schapire, 1996], it is well known that there exists a
set of weights, qj , such that the above set is not empty.

At every iteration, a new unlabeled example is labeled
and added to Lt, and the version space Qt decreases
such that: Q = Q0 ⊃ Q1 . . . Qt ⊃ Qt+1. We want

1ActBoost can be extended to a suitably parameterized
continuous space of weak classifiers but we consider a finite
set for technical simplicity

 745

Kirill Trapeznikov, Venkatesh Saligrama, David Castañón

to maximally reduce the version space at every itera-
tion. To do so we draw upon recent ideas from gen-
eralized binary search [Nowak, 2009]. Let U t be a set
of unlabeled examples at iteration t. The goal is to
to pick an x ∈ U t, so that one half of the volume
of Qt labels this point +1 and the other −1. Once
the label y is revealed half of Qt will be eliminated.
If the space Q is discrete then the query strategy is:
xt = argminx∈Ut |

�
q∈Qt q(x)|. In our case, Q being a

continuous space of weight vectors our query strategy
is to pick:

xt = arg min
x∈Ut

����
�

q∈Qt

q(x)dq

���� (2)

:= arg min
x∈Ut

|V ol(Qt
+)− V ol(Qt

−)| (3)

where, dq represents the Lebesgue measure on the
space of normalized weight vectors; V ol(Qt

+) =�
q∈Qt [q(x)=1]dq and V ol(Qt

−) =
�

q∈Qt [q(x)=−1]dq.
The integral is well defined since Qt is a bounded poly-
hedron and the indicator functions described here are
Lebesgue measurable.

Randomly Sampling a Polyhedron: The expres-
sion in (2) is hard to evaluate so we approximate it by
uniformly sampling from Qt. If we draw D random
samples q1, q2, .., qD then approximation is the follow-
ing:

xt = arg min
x∈Ut

|
D�

d=1

qd(x)| (4)

This sampling from the version space is related to QBC
algorithm of Freund et. al. [Freund et al., 1997,Seung
et al., 1992] with one principle difference, namely, our
goal is to find the best example to approximate the
volume(s) of the version space2, while [Freund et al.,
1997] employs it to determine whether or not an in-
stance is to be labeled.

Since our version space is a bounded polyhedron we
can uniformly sample by employing the Hit and Run
algorithm [Lovász & Vempala, 2004]. The ”Hit” step
generates a random direction and draws a line in that
direction through the interior point. The ”Run” step
generates a new interior point by uniformly sampling
along the interval defined by the line in the ”Hit” step
and the boundary of the polyhedron. As two steps
are repeated, the generated interior points converge to
a uniform sample from the polyhedron. For a given
labeled set, we can employ a phase I optimization ap-
proach [Boyd & Vandenberghe, 2004] to find a feasible

2Note that the random variable qd(x) is Bernoulli for
each x and one can obtain a precise approximate charac-
terization for sufficiently large D by using a combination
of Chernoff and Union bounds.

point and a cutting plane or barrier method [Boyd &
Vandenberghe, 2004] to find a point near the center
of the polyhedron. Recently, Kannan et. al. [Kannan
& Narayanan, 2009] have developed techniques which
produces a uniformly random sample with complexity
scaling as O(|Lt|N2).

Algorithm 1 Active Boosted Learning (ActBoost)
INPUT: H {problem matrix}, T {number of itera-
tions}
L0 ← ∅, U0 ← X , Q0 ← {q|1T q = 1, q ≥ 0}, t ← 0
while t ≤ T do

q0 ← init(Qt) {compute initial classifier in ver-
sion space: q0 ∈ Qt}
for d = 1 to D do

qd ← sample(q0, Qt) {draw a uniform random
samples from version space}

end for
xt ← arg minx∈Ut |

�D
d=1 qd(x)| {find the closest

bisecting example}
yt ← label(xt), Qt+1 ← Qt ∩ {q|yth(xt)T q ≥ 0}
{label and update the version space}
Lt+1 ← Lt ∪ {xt, yt}, U t+1 ← U t \ xt, t ← t + 1

end while
OUTPUT: {xi, yi} ∈ LT {labeled set of examples}

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

1

La
be
l

Samples

Cluster 1

Cluster 2

Cluster 3

(a) 1D Linear Clusters Dataset.
Red: +1, Blue: −1 class

20 40 60 80 100
50
60
70
80
90

100

Training Samples (#)

Ac
cu

ra
cy

 (%
)

ActBoost
QBB

(b) Accuracy on 1D linear
clusters

Figure 1: Initialization bias is tested on a 1D linear set
(in 1(a)) consisting of three clusters ActBoost and QBB
are initialized with examples drawn only from the first two
clusters. Both ActBoost and QBB are trained using Ad-
aboost on their respective labeled examples. ActBoost is
robust to initialization bias while QBB does not find the
third cluster until all the first two clusters are labeled.

2.1 ActBoost vs. Query-by-Boosting(QBB)

As we described earlier recent effort in active learning
has focused on finding examples that are most am-
biguous for the currently trained classifier. QBB is
such an algorithm based on boosting. In contrast the
ActBoost algorithm is based on finding an example

 746

Active Boosted Learning (ActBoost)

that approximately bisects the version space. We use
1D example with three clusters in Figure 1(b) to point
out an important attribute of ActBoost, namely, that
it does not suffer from initialization bias.

QBB in [Abe & Mamitsuka, 1998] labels an exam-
ple with the smallest margin with respect to the cur-
rent classifier: xQBB = arg minxi∈Ut |

�N
j=1 hj(xi)qt

j |

(where qt are the weights of the adaboost classifier
trained on the labeled data).

Initial training set L0 is forced to sample from only
the first two clusters. QBB is a margin based algo-
rithm and only queries examples in the vicinity of the
current boundary estimate. Since the initialization is
skewed to omit the third cluster, the second bound-
ary is not detected until all the samples in the first
two clusters are labeled (Figure 1(b)). ActBoost is
not affected and starts to query from the third cluster
much sooner. Margin based classifiers fail to explore
the space far from the boundary. They heavily rely on
the current classifier estimate and become sensitive to
initialization.

3 Theory

All proofs of theorem and lemma statements appear in
the supplementary section. Our main result is based
on establishing that ActBoost achieves exponential re-
duction of version space volume. Nevertheless, Theo-
rem 1 shows that if the set of weak learners is nega-
tion complete, there is no labeling strategy that can
guarantee generalization performance. Consequently,
structural assumptions on the target boosted classi-
fier must be imposed. Under sparsity assumptions,
which is practically well-motivated, we show that ver-
sion space reduction results in generalization.

At stage t suppose Lt is the set of labeled examples and
the version space Qt = {q ∈ Q|h(x)T q ≥ 0, x ∈ Lt}.
We suppose that our weak hypothesis set H = {hj}

N
j=1

is negation complete, i.e., corresponding to each weak
learner the hypothesis set admits its complement.
Theorem 1. Suppose the weak hypothesis set is nega-
tion complete and the weak learning hypothesis is sat-
isfied. Then for any unlabeled example xk /∈ Lt there
exists q+, q− ∈ Qt such that both h(xk)T q+ > 0 and
h(xk)T q− < 0 are satisfied. Consequently, regardless
of the labeling strategy and at any stage t it follows
that, maxq,q�∈Qt |q(x)− q�(x)| = 1.

Thus the version space always contains two classifiers
that disagree on any unlabeled example. This implies
that one cannot obtain useful information on the un-
labeled samples based on the labeled samples. This
situation calls for imposing additional constraints on
the hypothesis set. Generalization ability of boost-

ing has been shown to depend on two aspects: the
margin [Schapire et al., 1997] and the sparsity in the
hypotheses weight vector q [Taylor et al., 2010] . A
boosted subset of weak hypothesis achieves better gen-
eralization error than an ensemble of a complete set.
More so, [Koltchinskii & Panchenko, 2005] showed that
generalization can be improved if the weights for a sub-
set of weak hypothesis decay to zero at an exponential
rate. And experimentally, majority of boosting algo-
rithms when trained on common datasets also favor
sparse ensembles. Consequently, sparsity and margin
assumptions on the boosted classifier trained on the
entire data set appears to arise naturally and we will
impose such conditions to relate volume reduction rate
to error rates in Section 3.2. In the following section
we quantify volume reduction rates when the initial
version space is the entire simplex. We then extend
these results to the sparse setting and relate version
space volume to error rates.

3.1 Volume Convergence Rate

In this section we prove that the ActBoost algorithm
has an exponential rate of convergence, namely, that
to reduce the version space to an � fraction of its
original volume requires labeling O

�
log 1

�

�
unlabeled

points. To establish this fact we introduce the con-
cept of coherence and neighborliness for continuous
spaces of weight vectors based on concepts developed
by [Nowak, 2009] for the generalized binary search
problem.

For convenience we introduce the matrix, H to denote,

H = [hij], hij = hj(xi); i = 1, 2, . . . , B, j = 1, 2, . . . , N

In other words the jth column of the matrix H denotes
the sign-pattern for the jth weak learner on all the data
points, while the ith row denotes the sign pattern of
all the weak learners on data point xi. We say that xi

and xj are K-neighborly if the difference in the sign
patterns across all classifiers is smaller than K:

dh(xi, xj) =
N�

k=1

[hk(xi) �=hk(xj)] ≤ K

The significance of K-neighborliness of two data points
is described in the following important lemma. The
lemma provides a connection between the discrete
world of Hamming distances to volumes on continu-
ous spaces.
Lemma 1. If x and x� are K-neighbors then, for any
Q� ⊂ Q, where Q is as in Equation 1,

1
2

�

Q�
[q(x) �=q(x�)]dq ≤

2K + 1
2N

V ol(Q) (5)

where dq is the Lebesgue measure on Q.

 747

Kirill Trapeznikov, Venkatesh Saligrama, David Castañón

K-Connected Graph: We introduce a graph based
on the neighborliness property introduced above for
later use. We form a graph G with nodes, x ∈ X . Two
nodes xi, xj , have an edge if they are K-neighborly. A
graph is said to be K-connected if the K-NNG3 graph
so formed is connected. Note that K-connectedness is
a property of the matrix H.

Example: We note that 1D stumps are 1-connected.
Figure 2 depicts stump classifiers which are our weak
classifiers. A 1D stump is defined as follows: hj(xi) =
sgn(xi − tj), where tj is a threshold.

x1 x2 x3

h1 h2 h3 h4

q(x) = +1q(x) = −1 q(x) = −1

p1 = .5 p2 = 0 p3 = .5

Figure 2: Stump Classifiers

Finally, we need the notion of coherence. Let Q� ⊂ Q,
and denote by

ρ∗(X , Q�) = minP
i pi=1, pi≥0

sup
q∈Q�

|
�

xi∈X
q(xi)pi| (6)

where, pi denotes the weight of the ith data point.
Note that by construction 0 ≤ ρ∗(X , Q�) ≤ 1 and if
Q1 ⊂ Q2 then ρ∗(X , Q1) ≤ ρ∗(X , Q2).

The significance of the above definition becomes clear
in the following lemma.
Lemma 2. Suppose the graph induced by the matrix H
is K-connected and ρ∗(X , Q�) < 1 for some Q� ⊂ Q.
Then for any ρ s.t. ρ∗ ≤ ρ < 1, one the following
statements must hold:
(1) |

�
Q� q(x)dq | ≤ ρ V ol(Q�)

(2) V ol(Q�) < (2K+1)
Nρ V ol(Q)

To build intuition into why the algorithm described in
Section 2 results in reducing the size of the feasible
set note that if at iteration t we have |

�
Qt q(x)dq| =

|V ol(Qt
+) − V ol(Qt

−)| ≤ ρtV ol(Qt) for some ρt < 1,
where Qt

+ is the region where q(x) = 1 and Qt
− for

q(x) = −1. Without loss of generality suppose +1 is
the true label for x. So Qt

− will be eliminated if x is
labeled. Then, Qt+1 = Qt

+. Substituting V ol(Qt
−) =

V ol(Qt)− V ol(Qt
+) we obtain:

|V ol(Qt+1)− (V ol(Qt)− V ol(Qt
+))| ≤ ρtV ol(Qt) (7)

=⇒ V ol(Qt+1) ≤ (1 + ρt)
2

V ol(Qt) (8)

However, it turns out that the Lemma 2 is still insuffi-
cient and we need a regularity (smoothness) condition.

3K-NNG: Nearest Neighbor Graph where only K-
neighborly vertices are connected

Regularity Condition: Suppose Q̃ ⊂ Q such that
V ol(Q̃) ≥ (1−η)V ol(Q) for some fixed constant η > 0,
then for any two data points, x and x� there is an α > 0
such that,

�

Q̃
[q(x) �=q(x�)]dq ≥ α

�

Q
[q(x) �=q(x�)]dq (9)

Basically the regularity condition states that the dis-
agreement volume, Vd(Q) =

�
Q [q(x) �=q(x�)]dq on the

original simplex Q (see Eq. 1) cannot change arbitrar-
ily if a small subset of Q is removed. In other words, if
∆Q = Q \ Q̃ has small volume then the disagreement
volume, Vd(∆Q) has to be small as well. We are now
ready to state our main theorem.
Theorem 2. Consider the algorithm of Section 2
where an unlabeled data point x ∈ U t is picked at stage
t as the minimizer to Equation 2. Further assume that
the graph induced by the matrix H is K-connected and
the assumption given by Equation 9 is satisfied. Then
to reduce the volume of the version space to a fraction
� of its original volume requires n = log �

log λ iterations
where λ = max{ 1+ρ∗

2 , 1
2 (1 + (1− α) 2K+1

N)}.

Dealing with Constant Offsets: Constant offsets
lead to ρ∗ = 1, which implies no reduction in version
space. To see this consider the 1D case in Figure 2
with stump classifiers. Outer stumps h1, h4 (bold red)
are offsets and are problematic because they appear
as columns of either all 1’s or all −1’s in the problem
matrix H. Note that for this situation ρ∗ = 1 since
all the weight can be assigned to q1 or q4. However,
if the stumps h1 and h4 are removed it can be easily
seen that ρ∗ = 0. This example generalizes to stumps
in multiple dimensions. This scenario makes sense:
if the target classifier is the outer stump then in our
search process no query helps in significantly reducing
the version space, and every example has to be labeled.
However, completely removing the outer stumps may
degrade the classification ability of the hypothesis set.
Instead, we assume that the good boosted classifier
does not concentrate all of its weight on the problem-
atic stumps. Let Ip be the problematic set, and the
augmented version space Q� = Q ∩ {q|

�
j∈Ip

qj ≤ η}
for some fraction η. Maximization of q in (6) will be
over the augmented version space Q�, and q will no
longer be able to put all the weight on the outer stumps
resulting in ρ∗ strictly less than zero. This constraint
is equivalent to an assumption that the target classi-
fier will not be trivial and will not exclusively consist
of outer stumps.

3.2 Error Convergence

In this section we will discuss how reduction in version
space Q is related to generalization error. Based on

 748

Active Boosted Learning (ActBoost)

our earlier arguments we impose sparsity and margin
constraints on the target boosted classifier, namely,

∃q ∈ S = {q ∈ Q | �q�0 ≤ p} such that yiq
T h(xi) ≥ θ

for all xi ∈ X and for some θ > 0 and where � · �0
is the so called �0 norm and characterizes the num-
ber of non-zero elements in the vector q. Under the
margin constraints [Schapire et al., 1997] has shown
that the generalization error scales as O(log |X | log p

θ2|X |) 1
2 .

Consequently, our problem boils down to labeling suf-
ficiently many points such that every element in our
version space satisfies the margin constraint.

Our goal is to reduce the sparse version space such that
S ⊃ S1 ⊃ . . . ⊃ St. Note that the set S is made of

�N
p

�

p-sparse disjoint simplices. For notational convenience
we denote {s1, s2, . . . , s(N

p)} = S ⊂ Q

Our modified query strategy is to find an example to
bisect the sparse version space:

x∗ = arg min
x∈Ut

�������

(N
p)�

r=1

�

q∈sr

q(x) dP(q)

�������
(10)

Note that our modified algorithm accounts for sparsity
of the target boosted classifier but does not assume
knowledge of θ. Analogous to the setup for volume
reduction on the entire simplex in Section 3.1 we define
ρ∗ as

ρ∗(X , S�) = minP
i pi=1, pi≥0

sup
q∈S

|

�

xi∈X
q(xi)pi|, for S�

⊂ S.

and λ = max{ 1+ρ∗

2 , 1
2 (1 + (1− α) 2K+1

N)}. Define,

f(θ, p) = inf
q∗∈S

V ol({q ∈ S | �q − q∗�1 ≤ θ/2})

where volume is taken with respect to the lebesgue
measure on the p sparse subspace.
Theorem 3. Consider the strategy where an unlabeled
data point x ∈ U t is picked at stage t as the minimizer
to Equation (10) and suppose the regularity conditions
of Theorem 2 are satisfied for the sparse set S. Let the
number of stages n and hence the number of labeled
samples satisfy

n ≥
log

�N
p

�
+ log 1

f(θ,p)

log 1
λ

.

Then for all q ∈ Sn, it follows that

Prob(q(x) �= y) ≤ O

�
log |X | log p

θ2|X |
+

log(1/δ)
|X |

� 1
2

with probability 1− δ for a δ > 0 and where |X | is the
size of the unlabeled data pool.

10 20 30 40 50

20

40

60

80

100

Training Samples (#)

W
or

st
 C

as
e

Ac
cu

ra
cy

 (%
)

100%
50%
25%
10%

Figure 3: Accuracy of the worst case classifier vs. #
labeled examples. For each curve, only the specified
fraction of hypotheses is allowed in the version space.
The true sparsity of the target classifier is 3%.

Figure 3 illustrates implication of our modified algo-
rithm on Fig. 1(a) for increasing knowledge of sparsity.

Convex Surrogate: To reduce the sparse subset in-
stead of the full version space is combinatorially hard
because the integral in Equation (10) has to be enu-
merated for every p-sparse segment and p is also un-
known. If we convexify this problem, then ActBoost
amounts to reducing the convex hull of the sparse sub-
space at every iteration. To see this let St = {q ∈ Qt |

�q0� = p}. Instead of selecting an example to bisect a
non-convex subspace St, suppose we reduce the con-
vex hull of St: C(St). Note that Q = C(S) and for a
set of labeled examples: Qt ⊃ C(St). At t + 1, if we
select an example to reduce the version space Qt, it
will also reduce C(St+1):

min
x∈Ut

V ol(C(St+1)) ≤ min
x∈Ut

V ol(Qt+1) (11)

While we can reduce the convex hull of St, we cannot
guarantee that the subspace St is also reduced by the
same amount. However, our simulations demonstrate
that reducing the full version space results in general-
ization.

3.3 LP for Bounding Coherence

In Theorem 1 we saw that coherence (see Eq. 6) con-
trols the convergence. In this section we present a
linear programming solution for computing the coher-
ence. First, we have the following result.
Lemma 3. Let ρ∗(Q�,X) be as in (6) and suppose
the set of weak classifiers is balanced, namely, for each
hj(·) ∈ H there is a corresponding element hk(·) =
−hj(·) ∈ H. Then,

(1) ρ∗(Q�,X) < 1 =⇒ ∃λ ≥ 0, λ �= 0, λT H = 0
(2) ∃q ∈ Q�, q ≥ 0, Hq ≥ 0 =⇒ ρ∗(Q�,X) = 1

Note that an example of balanced set of classifiers are
stumps described in the previous section. While the

 749

Kirill Trapeznikov, Venkatesh Saligrama, David Castañón

above lemma characterizes when ρ∗ < 1, it does not
directly help in finding a bound. To this end we con-
sider the following LP and its corresponding dual.

max
v,q

v, s.t. Hq ≥ v, 1T q = 1, q ≥ 0⇔

min
π,λ

π, s.t. λT H ≤ π, 1T λ = 1, λ ≥ 0

If the value of the primal or dual is less than zero then
ρ∗(X , Q�) is less than one. The dual variable λ is the
probability distribution on the examples. Notice that
the constraint 1T λ = 1 imposes sparsity. Only the
examples with a corresponding non-zero λi are active
constraints in the primal. The examples with zero λi

can be removed and the solution of the problem will
not change. In the expression (6), we can put equal
weights pi only on the examples with non-zero λi. Sup-
pose the cardinality of the support of λ is l, then a
bound on ρ∗ follows:

ρ∗ ≤ max
q∈Q

|
�

i|λi>0

q(xi)
1
l
| =⇒ ρ∗ ≤ | l − 1

l
− 1

l
| = 1− 2

l

where we have used the fact that ρ∗ < 1. This implies
that q(x) cannot have the same sign for all x ∈ X .
Note that as the sparsity of λ increases, ρ∗ decreases.

3.4 Undersampling vs. Oversampling

The convergence rate in Theorem 1 depends on how
large a K is necessary to ensure K-connectedness.
To build intuition, consider a 1D stump example
with three stumps h1, h2, h3 and four training sam-
ples x1, x2, x3, x4. Each row h(xi) in the matrix in
Figure 4(a) captures how each example is classified.
Note that K = 1 is sufficient to ensure connectedness.

Suppose we oversample our weak hypotheses by adding
three more stumps in bold red (Figure 4(b)). Now per-
forming the same graph construction and reduction,
then we need K = 3 to ensure connectedness. Since
the value K increases this directly leads to a reduction
of aggregate convergence rate λ. This implies that if
we demand too much resolution in our target classifier
and do not have an appropriately dense training set
then the number of iterations increases exponentially
with the disagreement factor K. Notice that the op-
posite case of oversampled training set does not hurt
as it increases the set of possible queries. Note that
increase in K here is a direct outcome of redundant
weak learners. Consequently, these weak learners can
be removed in simple cases but for more complicated
cases this reduction may be non-trivial.

4 Experiments

Set Up: We compare three algorithms random query
strategy (RANDOM), QBB from [Abe & Mamitsuka,

x1 x2 x3

h2h1

x4

h3

h1 h2 h3

x1 - - -
x2 + - -
x3 + + -
x4 + + +

x1

x2 x3

x43

1 1

1

2

2

x1

x2 x3

x4

1 1

1

(a) Undersampled

x1

x2 x3

x46

1 2

3

4

5

x1

x2 x3

x4

1 2

3

x1 x2 x3

h2 h4h3 h5h1

x4

h6

h1 h2 h3 h4 h5 h6

x1 - - - - - -
x2 + - - - - -
x3 + + + + - -
x4 + + + + + +

(b) Oversampled

Figure 4: The parameter K required for maintaining

graph connectedness in the case of undersampled and over-

sampled weak learners. For each case shown: 1D dataset

with stumps, the problem matrix H and the neighborly

graph reduction. Oversampling weak learners results in

increase in K

1998] and ActBoost. RANDOM uniformly samples
a random x∗random from the unlabeled pool U t at
time t. QBB relies on the Adaboost solution qt

a =
adaboost(Lt), computed on the current labeled set Lt:
x∗QBB = arg minx∈Ut |h(x)T qt

a|. All three algorithms
are then trained using Adaboost on their respective
labeled sets. Note ActBoost operates on the full ver-
sion space in the simulation without knowledge of the
sparsity.

The ActBoost algorithm has several parameters: num-
ber of samples D drawn by the Hit and Run algorithm,
the number of iterations to generate one sample for
the Hit and Run algorithm, initial size of the labeled
set L0 (necessary for comparison with QBB). Figure
5(a) demonstrates performance vs D. As expected,
more samples result in better performance as the query
comes closer to bisecting the version space. Changing
the number of iterations for the Hit and Run algorithm
does not have much affect on performance confirming
that the sampling has a quick mixing time.

 750

Active Boosted Learning (ActBoost)

For each simulation an unlabeled training pool X of
200 is sampled uniformly from a dataset. Each simula-
tion is averaged over 100 trials. For all simulations, the
number of sampled classifiers is fixed at D = 8.4 We
chose to use Adaboost to train a classifier on the la-
beled set at every iteration. We then compared the
performance of QBB, ActBoost and Random. Ob-
serve that the goal of active learning is to achieve
performance of an entire training set while labeling
and learning on only a fraction of examples. Following
this philosophy, at each iteration, we compute the er-
ror against the entire training pool X . Similar perfor-
mance evaluation on ’query data’ for QBB is employed
in [Abe & Mamitsuka, 1998]. Since the labeled set of
points is relatively small compared with the amount of
unlabeled data, this also serves as a characterization
of the generalization performance.

We use stumps for weak hypotheses as defined pre-
viously. For a given dataset of size B in RDx , there
are 2(B + 1)Dx possible weak hypotheses. However,
if the data examples are categorical or integers then
the number of stumps can be significantly reduced by
eliminating redundancies. ActBoost is tested on sev-
eral datasets from the UC Irvine Machine Learning
Repository (except for synthetic).

Unbiased Initialization: The initial set L0 is re-
sampled at every trial to avoid any initialization bias
(which is addressed next). BOX and BANANA are
two dimensional datasets (see suppl.), MUSHROOM
is a 22 dimensional dataset. On the 2D datasets, we
illustrate the advantage of learning in sparse version
space (Fig 5(c) 5(b)). Instead of the entire space, Act-
Boost(sp) operates only on the 10% of the weak hy-
potheses. This subset also contains the true sparse
support which is determined by training with an en-
tire pool labeled. As our theoretical results suggest,
ActBoost(sp) achieves better performance than Act-
Boost. The experiments in Fig 5 only show marginal
advantage of ActBoost since the initialization bias is
removed by averaging. The simulations also support
the negative result of Theorem 1: a reduction of ver-
sion space of the full ensemble does not guarantee a
decrease in generalization error.

Biased Initialization: We further illustrate the ro-
bustness of ActBoost to initialization bias (see Section
2.1). We transform a multi-class dataset into a binary
dataset consisting of three clusters. IRIS is a four di-
mensional dataset of three classes. Classes 1 and 3
are combined into one class to form a binary dataset
consisting of three clusters. DERMATOLOGY has 34
dimensions and 5 classes. Similarly, we designate the
first three classes as clusters and combine the first and

4D = 16 shows small improvement, but D = 8 is used
to speed up computation

10 20 30 40 50

80

85

90

Training Samples (#)

Ac
cu

ra
cy

 (%
)

D=2
D=8
D=16

(a) Samples D

20 40 60 80 100

60

65

70

75

80

Training Samples (#)

Ac
cu

ra
cy

 (%
)

Random
ActBoost
ActBoost(sp)
QBB

(b) Banana

20 40 60 80 100
70

75

80

85

90

95

Training Samples (#)

Ac
cu

ra
cy

 (%
)

Random
ActBoost
ActBoost(sp)
QBB

(c) Box

20 40 60 80 100
70

75

80

85

90

95

Training Samples (#)

Ac
cu

ra
cy

 (%
)

Random
ActBoost
QBB

(d) Mushroom

Figure 5: Accuracy vs. # labeled examples. As a func-
tion of ActBoost classifier samples D (5(a)): more samples
provide a better approximation of the GBS metric integral,
resulting in better performance. 2D datasets: BANANA
(5(b)) and BOX (5(c)). ActBoost(sp) learns in the sparse
version space and performs better than ActBoost which
operates on the full version space. Multivariate Dataset:
MUSHROOM (5(d)). ActBoost does not show significant
performance improvement over QBB.

third to form two classes. SOY has 35 dimensions and
19 classes. We use classes 4, 8, 14 as clusters to form
a binary dataset. Gaussian Clusters is a synthetic two
dimensional dataset consisting of three clusters. (see
suppl.) For each experiment (Fig 6), we force the ini-
tial set L0 to be sampled from only the first two clus-
ters. This approach simulates the worst case initializa-
tion bias. For all datasets, ActBoost remains robust
while QBB does not locate the third cluster until the
first two are exhausted.

20 40 60 80 100
50
60
70
80
90

100

Training Samples (#)

Ac
cu

ra
cy

 (%
)

ActBoost
QBB

(a) Gauss Clusters

20 40 60 80 100

70

80

90

100

Training Samples (#)

Ac
cu

ra
cy

 (%
)

ActBoost
QBB

(b) Dermatology

20 40 60 80

70

80

90

100

Training Samples (#)

Ac
cu

ra
cy

 (%
)

ActBoost
QBB

(c) Soy

20 40 60 80 100 120 140
70

80

90

Training Samples (#)

Ac
cu

ra
cy

 (%
)

ActBoost
QBB

(d) Iris

Figure 6: Robustness to Initialization Bias: binary
datasets consisting of three clusters are formed from multi-
class datasets (except for gauss clusters). Both algorithms
are initialized only from the first two clusters; ActBoost is
not affected.

 751

Kirill Trapeznikov, Venkatesh Saligrama, David Castañón

References

[Abe & Mamitsuka, 1998] Abe, N. & Mamitsuka, H.
(1998). Query learning strategies using boosting and
bagging. In Proceedings of the 15th International

Conference on Machine Learning (pp. 1–9).

[Boyd & Vandenberghe, 2004] Boyd, S. & Vanden-
berghe, L. (2004). Convex Optimization. Cambridge
University Press.

[Campbell et al., 2000] Campbell, C., Cristianini, N.,
& Smola, A. (2000). Query learning with large
margin classifiers. In Proceedings 17th International

Conference on Machine Learning (pp. 111–118).

[Cohn et al., 1994] Cohn, D., Ladner, R., & Waibel,
A. (1994). Improving generalization with active
learning. In Machine Learning (pp. 201–221).

[Dasgupta & Hsu, 2008] Dasgupta, S. & Hsu, D.
(2008). Hierarchical sampling for active learning.
In Proceedings of the 25th International Conference

on Machine Learning (pp. 208–215).

[Freund & Schapire, 1996] Freund, Y. & Schapire,
R. E. (1996). Experiments with a new boosting al-
gorithm. In Proceedings of the 13th International

Conference on Machine Learning (pp. 148–156).

[Freund et al., 1997] Freund, Y., Seung, H. S.,
Shamir, E., & Tishby, N. (1997). Selective sam-
pling using the query by committee algorithm. In
Machine Learning.

[Gilad-Bachrach et al., 2005] Gilad-Bachrach, R.,
Navot, A., & Tishby, N. (2005). Query by commit-
tee made real. In Advances in Neural Information

Processing Systems.

[Guo & Greiner, 2007] Guo, Y. & Greiner, R. (2007).
Optimistic active learning using mutual informa-
tion. In Proceedings of the 20th international joint

conference on Artifical intelligence (pp. 823–829).

[Kannan & Narayanan, 2009] Kannan, R. &
Narayanan, H. (2009). Random walks on polytopes
and an affine interior point method for linear
programming. In Proceedings of the 41st annual

ACM symposium on Theory of computing (pp.
561–570).

[Koltchinskii & Panchenko, 2005] Koltchinskii, V. &
Panchenko, D. (2005). Complexities of convex com-
binations and bounding the generalization error in
classification. The Annals of Statistics, 33(4), pp.
1455–1496.

[Lovász & Vempala, 2004] Lovász, L. & Vempala, S.
(2004). Hit-and-run from a corner. In Proceedings

of the 36th annual ACM Symposium on Theory of

Computing (pp. 310–314).

[Nguyen & Smeulders, 2004] Nguyen, H. T. & Smeul-
ders, A. (2004). Active learning using pre-clustering.
In Proceedings of the 21st international conference

on Machine learning (pp.7̃9).

[Nowak, 2009] Nowak, R. D. (2009). The geometry of
generalized binary search. In Advances in Neural

Information Processing Systems.

[Schapire et al., 1997] Schapire, R. E., Freund, Y.,
Bartlett, P., & Lee, W. S. (1997). Boosting the
margin: A new explanation for the effectiveness of
voting methods.

[Settles, 2010] Settles, B. (2010). Active Learning

Literature Survey. Technical report, University of
Wisconsin–Madison.

[Seung et al., 1992] Seung, H. S., Opper, M., & Som-
polinsky, H. (1992). Query by committee. In
Proceedings of the 5th Workshop on Computational

Learning Theory (pp. 287–294).

[Taylor et al., 2010] Taylor, Y., Zhen, X., Xiang, J.,
Ramadge, P. J., & Schapire, R. E. (2010). Speed
and sparsity of regularized boosting. AISTATS2009.

[Tong & Koller, 2001] Tong, S. & Koller, D. (2001).
Support vector machine active learning with appli-
cations to text classification. Journal of Machine

Learning Research, (pp. 45–66).

[Tur et al., 2003] Tur, G., Schapire, R., & Hakkani-
Tur, D. (2003). Active learning for spoken language
understanding. In Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal

Processing.

