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Abstract
We propose to study equivariance in deep neu-
ral networks through parameter symmetries. In
particular, given a group G that acts discretely
on the input and output of a standard neural net-
work layer φW ∶ RM → RN , we show that φW

is equivariant with respect to G-action iff G ex-
plains the symmetries of the network parameters
W. Inspired by this observation, we then pro-
pose two parameter-sharing schemes to induce
the desirable symmetry on W. Our procedure
for tying the parameters achieves G-equivariance
and, under some conditions on the action of G,
it guarantees sensitivity to all other permutation
groups outside G.

Given enough training data, a multi-layer perceptron would
eventually learn the domain invariances in a classification
task. Nevertheless, success of convolutional and recurrent
networks suggests that encoding the domain symmetries
through shared parameters can significantly boost the gen-
eralization of deep neural networks. The same observation
can be made in deep learning for semi-supervised and un-
supervised learning in structured domains. This raises an
important question that is addressed in this paper: What
kind of priors on input/output structure can be encoded
through parameter-sharing?

This work is an attempt at answering this question, when
our priors are in the form discrete domain symmetries. To
formalize this type of prior, a family of transformations of
input and output to a neural layer are expressed as group
“action” on the input and output. The resulting neural net-
work is invariant to this action, if transformations of the in-
put within that particular family, does not change the output
(e.g., rotation-invariance). However, if the output is trans-
formed, in a predictable way, as we transform the input,
the neural layer is equivariant to the action of the group.
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Our goal is to show that parameter-sharing can be used to
achieve equivariance to any discrete group action.

Application of group theory in machine learning has been
the topic of various works in the past (e.g., Kondor, 2008;
Bartók et al., 2010). In particular, many probabilistic in-
ference techniques have been extended to graphical models
with known symmetry groups (Raedt et al., 2016; Kerst-
ing et al., 2009; Bui et al., 2012; Niepert, 2012). Deep and
hierarchical models have used a variety of techniques to
study or obtain representations that isolate transformations
from the “content” (e.g., Hinton et al., 2011; Jayaraman
& Grauman, 2015; Lenc & Vedaldi, 2015; Agrawal et al.,
2015). The simplest method of achieving equivariance is
through data-augmentation (Krizhevsky et al., 2012; Diele-
man et al., 2015). Going beyond augmentation, several
methods directly apply the group-action, in one way or an-
other, by transforming the data or its encodings using group
members (Jaderberg et al., 2015; Anselmi et al., 2013;
Dieleman et al., 2016). An alternative path to invariance via
harmonic analysis. In particular cascade of wavelet trans-
forms is investigated in (Bruna & Mallat, 2013; Oyallon &
Mallat, 2015; Sifre & Mallat, 2013). More recently (Cohen
& Welling, 2016b) study steerable filters (e.g., Freeman
et al., 1991; Hel-Or & Teo, 1998) as a general mean for
achieving equivariance in deep networks. Invariance and
equivariance through parameter-sharing is also discussed
in several prior works (Cohen & Welling, 2016a; Gens &
Domingos, 2014).

The desirability of using parameter-sharing for this purpose
is mainly due to its simplicity and computational efficiency.
However, it also suggests possible directions for discov-
ering domain symmetries through regularization schemes.
Following the previous work on the study of symmetry in
deep networks, we rely on group theory and group-actions
to formulate invariances and equivariances of a function.
Due to discrete nature of parameter-sharing, our treatment
here is limited to permutation groups. Action of a permu-
tation group G can model discrete transformations of a set
of variables, such as translation and 90○ rotation of pixels
around any center in an image. If the output of a function
transforms with a G-action as we transform its input with a
different G-action, the function is equivariant with respect
to action of G. For example, in a convolution layer, as we
translate the input, the feature-maps are also translated. If
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Figure 1. Summary: given a group action on input and output of a neural network layer, define a parameter-sharing for this layer that is
equivariant to these actions.
(left) G = D5 is a Dihedral group, acting on a 4 × 5 input image and an output vector of size 5. N and M denote the index set of input,
and output variables respectively. Here G is represented using its Cayley diagram.
(middle-left) G-action for g ∈ G is shown for an example input. G-action on the input is a combination of circular shifts (blue arrows)
and vertical flips (red arrows) of the 2D image. G acts on the output indices M only through circular shift. A permutation group GN,M

encodes the simultaneous “action” of G on input and output indices.
(middle-right) The structure Ω designed using our procedure, such that its symmetries Aut(Ω) subsumes the permutation group GN,M.
(right) the same structure Ω unfolded to a bipartite form to better show the resulting parameter-sharing in the neural layer. The layer is
equivariant to G-action: shifting the input will shift the output of the resulting neural network function, while flipping the input does not
change the output.

the output does not transform at all, the function is invariant
to the action of G. Therefore, invariance is a special equiv-
ariance. In this example, different translations correspond
to the action of different members of G.

The novelty of this work is its focus on the “model sym-
metry” as a gateway to equivariance. This gives us new
theoretical guarantees for a “strict” notion of equivariance
in neural networks. The core idea is simple: consider a col-
ored bipartite graph Ω representing a neural network layer.
Edges of the same color represent tied parameters. This
neural network layer as a function is equivariant to the ac-
tions of a given group G (and nothing more) iff the action
of G is the symmetry group of Ω – i.e., there is a simple
bijection between parameter symmetries and equivariences
of the corresponding neural network.

The problem then boils down to designing colored bipartite
graphs with given symmetries, which constitutes a major
part of this paper. Fig. 1 demonstrates this idea.1

For the necessary background on group theory see the Ap-
pendix. In the following, Section 1 formalizes equivariance
wrt discrete group action. Section 2 relates the model sym-
metries a neural layer to its equivariance. Section 3 then
builds on this observation to introduce two procedures for
parameter-sharing that achieves a desirable equivariance.

1Throughout this paper, since we deal with finite sets, we use
circular shift and circular convolution instead of shift and convo-
lution. The two can be made identical with zero-padding of the
input.

Here, we also see how group and graph convolution as well
as deep-sets become special instances in our parameter-
sharing procedure, which provides new insight and im-
proved design in the case of group convolution. Where in-
put and output of the layer have a one-to-one mapping, we
see that the design problem reduces a well-known problem
in combinatorics.

1. Group Action and Equivariance
Let x = [x1, . . . , xN ] ∈ XN denote a set of variables and
G = {g} be a finite group. The discrete action of G on x
is in the form of permutation of indices in N = {1, . . . ,N}.
This group is a subgroup of the symmetric group SN; the
group of all N ! permutations of N objects. We use

Ð→
N =

[1, . . . ,N] to denote the ordered counterpart to N and the
G-action on this vector g

Ð→
N ≐ [g1, . . . ,gN] is a simple

permutation. Using xÐ→
N

to denote x, the discrete action of
g ∈ G on x ∈ XN is given by gxÐ→

N
≐ x

g
Ð→
N

.

G-action on N is a permutation group that is not necessar-
ily isomorphic to G itself. GN ≤ G captures the structure
of G when it acts on N. We use gN to denote the image of
g ∈ G in GN. G-action is faithful iff two groups are iso-
morphic G ≅ GN – that is G-action preserves its structure.
In this case, each g ∈ G maps to a distinct permutation
g
Ð→
N ≠ g′

Ð→
N∀g,g′ ∈ G. Given any G-action on N we can

efficiently obtain GN; see Appendix.
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Example 1.1 (Cyclic Group) Consider the cyclic
group G = Z6 and define its action on x ∈ R3 by
defining it on the index set N = {1,2,3} as gn ≐ g + n
mod 3∀g ∈ Z6. This action is not faithful. For
example, the action of g = 1 and g = 4 result in the
same permutations of variables in x; i.e., single-step
of circular shift to the right. With the above action,
the resulting permutation group GN is isomorphic to
Z3 < Z6.

Now consider the same group G = Z6 with a different
action on N: gn ≐ g − n mod 3∀g ∈ Z6, where we
replaced (+) with (−). Let G̃N be the resulting permuta-
tion group. Here again G̃N ≅ Z3. Although isomorphic,
G̃N ≠ GN, as they are different permutation groups of N.

Consider the function φ ∶ XN → YM and let GN and GM

be the action of G on input/output index sets N and M.

Definition 1.1 The joint permutation group GN,M is a sub-
direct product (or pairing) of GN and GM

GN,M = GN ⊙GM ≐ {(gN,gM) ∣ g ∈ G}.

We are now ready to define equivariance and invariance.
φ(⋅) is GN,M-equivariant iff

gNφ(x) = φ(gMx) ∀x ∈ XN , (gN,gM) ∈ GN,M (1)

Moreover, if GM = {e} is trivial, we have

gNφ(x) = φ(x) ∀x ∈ XN ,gN ∈ GN

and φ(⋅) is GN-invariant.

gN and gM can also be represented using permutation ma-
trices GN ∈ {0,1}N×N , and GM ∈ {0,1}M×M . Equivari-
ance relation of (1) then becomes

GMφ(x) = φ(GNx)∀x ∈ XN , (GN,GM) ∈ GN,M (2)

The following observation shows that the subgroup rela-
tionship affects equivariance and invariance.

Observation 1.1 If the function φ ∶ XN → YM is GN,M -
equivariant, then it is also HN,M -equivariant for any per-
mutation group HN,M < G.

Example 1.2 (Reverse Convolution) Consider the
cyclic group G = Z6 and for g ∈ G, define the action
on N = {1,2,3} to be gn ≐ g + n mod 3. Also let its
action on M = {1, . . . ,6} be gm ≐ g − n mod 6. In
other words, G-action on N performs circular shift to
the right and its action on M shifts variables to the left.
Examples of the permutation matrix representation for

two members of GN and GM are

2N = ( 0 1 0
0 0 1
1 0 0

) 2M =
⎛
⎜
⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎞
⎟
⎠

corresponding to right and left shift on vectors of differ-
ent lengths. Now consider the function φ ∶ RN → RM

φW(x) =Wx WT = ( 0 a b 0 a b
a b 0 a b 0
b 0 a b 0 a

) ∀a, b ∈ R

Using permutation matrices one could check the equiv-
ariance condition (2) for this function. We can show that
φ is equivariant to GN,M. Consider 2 ∈ Z6 and its images
2N ∈ GN and 2M ∈ GM. L.h.s. of (2) is

2MφW(x) =
⎛
⎜
⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 a b
a b 0
b 0 a
0 a b
a b 0
b 0 a

⎞
⎟
⎠
x =

⎛
⎜
⎝

b 0 a
0 a b
a b 0
b 0 a
0 a b
a b 0

⎞
⎟
⎠
x

which is equal to its r.h.s.

φW(2Nx) =
⎛
⎜
⎝

0 a b
a b 0
b 0 a
0 a b
a b 0
b 0 a

⎞
⎟
⎠
( 0 1 0
0 0 1
1 0 0

)x =
⎛
⎜
⎝

b 0 a
0 a b
a b 0
b 0 a
0 a b
a b 0

⎞
⎟
⎠
x

for any x. One could verify this equality for all g ∈ Z6.

Now consider the group HN,M < GN,M, where HN = GN

and members of HM = {0,2,4}, perform left circular
shift of length 0,2 and 4. It is easy to see that HN,M ≅
Z3. Moreover since HN,M < GN,M, φ(⋅) above is HN,M-
equivariant as well. However, one prefers to characterize
the equivariance properties of φ using GN,M rather than
HN,M.

The observation above suggests that GN,M-equivariance is
not restrictive enough. As an extreme case, a constant func-
tion φ(x) = 1 is equivariant to any permutation group
GN,M ≤ SN × SM. In this case equivariance of φ with re-
spect to a particular GN,M is not very informative to us. To
remedy this, we define a more strict notion of equivariance.

Definition 1.2 we say a function φ ∶ XN → YM is
uniquely G-equivariant iff it is G-equivariant and it is
“not” H-equivariant for any H > G.

2. Symmetry Groups of a Network
Given a group G, and its discrete action through GN,M, we
are interested in defining parameter-sharing schemes for a
parametric class of functions that guarantees their unique
GN,M-equivariance. We start by looking at a single neural
layer and relate its unique GN,M-equivariance to the sym-
metries of a colored multi-edged bipartite graph that de-
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fines parameter-sharing. We then show that the idea ex-
tends to multiple-layers.

Definition 2.1 A colored multi-edged bipartite graph Ω =
(N,M, α) is a triple, where N and M are its two sets of
nodes, and α ∶ N × M → 2{1,...,C} is the edge function
that assigns multiple edge-colors from the set {1, . . . ,C}
to each edge. Non-existing edges receive no color.

We are interested in the symmetries of this structure. The
set of permutations (πN, πM) ∈ SN × SM of nodes (within
each part of the bipartite graph) that preserve all edge-
colors define the Automorphism Group Aut(Ω) ≤ SN ×
SM – that is ∀(n,m) ∈ N ×M

(πN, πM) ∈Aut(Ω) ⇔ α(n,m) = α((πNn,πMm)) (3)

Alternatively, to facilitate the notation, we define the same
structure (colored multi-edged bipartite graph) as a set
of binary relations between N and M – that is Ω =
(N,M,{∆c}1≤c≤C) where each relation is associated with
one color ∆c = {(n,m) ∣ c ∈ α(n,m)∀(n,m) ∈ N ×M}.
This definition of structure, gives an alternative expression
for Aut(Ω)

(πN, πM) ∈Aut(Ω) ⇔ (4)

((n,m) ∈ ∆c ⇔ (πNn,πMm) ∈ ∆c) ∀c, n,m

The significance of this structure is in that, it defines a
parameter-sharing scheme in a neural layer, where the same
edge-colors correspond to the same parameters. Consider
the function φ ≐ [φ1, . . . , φM ] ∶ RN → RM

φm(x;w,Ω) ≐ σ(∑
n

∑
c∈α(n,m)

wcxn) ∀m (5)

where σ ∶ R → R is a strictly monotonic nonlinearity and
w = [w1, . . .wc, . . . ,wC] is the parameter-vector for this
layer.

The following key theorem relates the equivariances of
φ(⋅;w,Ω) to the symmetries of Ω.

Theorem 2.1 For any w ∈ RC s.t., wc ≠ wc′∀c, c′, the
function φ(⋅;w,Ω) is uniquely Aut(Ω)-equivariant.

Corollary 2.2 For any HN,M ≤ Aut(Ω), the function
φ(⋅;w,Ω) is HN,M-equivariant.

The implication is that to achieve unique equivariance for
a given group-action, we need to define the parameter-
sharing using the structure Ω with symmetry group GN,M.

Example 2.1 (Reverse Convolution) Revisiting
Example 1.2 we can show that the condition of
Theorem 2.1 holds. In this case σ(x) = x and the
parameter-sharing of the matrix W is visualized below,
where we used two different line styles for a, b ∈ R.

In this figure, the circular shift of variables at the output
and input level to the left and right respectively, does not
change the edge-colors. For example in both cases node
1 ’s connection to nodes 3 , 6 using dashed-lines is

preserved.

Six repetitions of this action produces different permuta-
tions corresponding to six members of GN,M. Therefore
GN,M ≤Aut(Ω) and according to Corollary 2.2, φ(⋅) is
GN,M equivariant. Moreover, using Theorem 3.3 of the
next section, we can prove that these six permutations
are the “only” edge-color preserving ones for this struc-
ture, resulting in unique equivariance.

Matrix Form. To write (5) in a matrix form, if there are
multiple edges between two nodes n,m, we need to merge
them. In general, by assigning on distinct color to any set in
the range of α ∶ N ×M → 2{1,...,C} we can w.l.o.g. reduce
multiple edges to a single edge. In other words we can
rewrite φ using W ∈ RM×N

φ(x;w; Ω) = σ(Wx) Wm,n = ∑
c∈α(n,m)

wc (6)

Using this notation, and due to strict monotonicity of the
nonlinearity σ(⋅), Theorem 2.1 simply states that for all
(gN,gM) ∈Aut(Ω), x ∈ RN and W given by (6)

GMWx =WGNx. (7)

Example 2.2 (Permutation-Equivariant Layer)
Consider all permutations of indices N and M = N.

We want to define a neural layer such that all permu-
tations of the input gN ∈ GN = SN result in the same
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permutation of the output gM = gN. Consider the fol-
lowing colored bipartite graph, for a special case where
N = M = 4. It is easy to show that color-preserving
permutations of this structure are Aut(Ω) = SN ⊙ SN =
{(g,g) ∣ g ∈ SN} ≅ SN: On one hand, for (πN, πM) ∈
SN × SM, having πN = πM clearly preserves the colors.
On the other hand, if πN ≠ πM, there exists u ∈ N (also in
M) such that πNu ≠ πMu. Therefore (πN, πM) does not
preserve the relation ∆ = {(n,n) ∣ n ∈ N} correspond-
ing to dashed edges, and therefore (πN, πM) ∉Aut(Ω).
This proves Aut(Ω) = SN ⊙ SN. The function (5) for
this Ω is

φ(x;w = [w1,w2],Ω) = σ(w1Ix +w211
Tx).

Ravanbakhsh et al. (2016); Zaheer et al. (2017) derive
the same permutation equivariant layer, by proving the
commutativity in (7), while here it follows from Corol-
lary 2.2.

Multiple Layers. For deep networks, the equivariance of
the composition φ2 ○ φ1 to G-action follows from that of
individual layer φ1 ∶ XN → YM and φ2 ∶ YM → ZO. As-
suming φ1 is GN,M-equivariant and φ2 is GM,O-equivariant,
where G-action on M is shared between the two layers, it
follows that φ2 ○ φ1 is GN,O-equivariant, where GN,O =
GN ⊙GO. This is because ∀g ∈ G and x ∈ XN

φ2(φ1(gNx)) = φ2(gMφ1(x)) = gOφ2(φ1(x)). (8)

3. Structure Design
Consider the definition of neural layer (5) that employs
parameter-sharing according to Ω. Given G-action on N

and M, we are interested in designing structures Ω such
that Aut(Ω) = GN,M. According to the Theorem 2.1, it
then follows that φ is uniquely GN,M-equivariant. Here,
we give the sufficient conditions and the design recipe to
achieve this.

For this we briefly review some group properties that are
used in later developments.

transitivity We say that G-action on N is transitive iff
∀n1, n2 ∈ N, there exists at least one action g ∈ G

(or gN ∈ GN) such that gn1 = n2.

regularity The group action is free or semi-regular iff
∀n1, n2 ∈ N, there is at most one g ∈ G such at
gn1 = n2, and the action is regular iff it is both tran-
sitive and free – i.e., for any pair n1, n2 ∈ N, there is
uniquely one g ∈ G such that gn1 = n2. Any free ac-
tion is also faithful. We use a similar terminology for
GN. That is we call GN semi-regular iff ∀n1, n2 ∈ N at

most one gN ∈ GN moves n1 to n2 and GN is regular if
this number is exactly one.

orbit The orbit of n ∈ N is all the members to which it
can be moved, Gn = {gn ∣ g ∈ G}. The orbits of
n ∈ N form an equivalence relation2 This equivalence
relation partitions N into orbits N = ⋃1≤p≤P Gnp,
where np is an arbitrary representative of the parti-
tion Gnp ⊆ N. Note that the G-action on N is always
transitive on its orbits – that is for any n,n′ ∈ Gnp,
there is at least one g ∈ G such that n = gn′. There-
fore, for a semi-regular G-action, the action of G on
the orbits Gnp∀1 ≤ p ≤ P is regular.

Example 3.1 (Mirror Symmetry) Consider G = Z2 =
{e = 0,1} (1 + 1 = 0) acting on N, where the
only non-trivial action is defined as flipping the input:
1N[1, . . . ,N] = [N,N − 1, . . . ,1].
G is faithful in its action on N, however GN is not tran-
sitive – e.g., N cannot be moved to N − 1. If N is even,
then G-action is semi-regular. This is because otherwise
the element in the middle n = ⌈N

2
⌉ is moved to itself by

two different actions e,1 ∈ G. Furthermore, ifN is even,
G-action has N

2
orbits and G2 acts on these orbits regu-

larly. If N is odd, G-action has ⌈N
2
⌉ orbits. However, its

action on the orbit of the middle element G ⌈N
2
⌉ is not

regular.

In the following, Section 3.1 proposes a procedure for
parameter-sharing in a fully connected layer. Although
simple, this design is dense and does not guarantee
“unique” of equivariance. Section 3.2 proposes an alter-
native design with sparse connections that in some set-
tings ensures unique equivariance. Section 3.3 investigates
the effect of having multiple input and output channels in
the neural layer and Section 3.4 studies a special case of
GN = GM, where input and output indices have a one-to-
one mapping.

3.1. Dense Design

Consider a complete bipartite graph with N and M as its two
parts and edges (n,m) ∈ N ×M. The action of GN,M par-
titions the edges into orbits {GN,M(np,mq)}np,mq , where
(np,mq) is a representative edge from an orbit. Painting
each orbit with a different color gives

Ω = (N,M,{∆p,q = GN,M(np,mq)}). (9)

Therefore two edges (n,m) and (n′,m′) have the same
color iff an action in GN,M moves one edge to the other.

2n ∼ n′⇔ ∃g s.t., n = gn′⇔ n ∈ Gn′⇔ n′ ∈ Gn.
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Proposition 3.1 GN,M ≤ Ω for Ω of (9).

Corollary 3.2 φ(⋅;w,Ω), for structure (9), is equivariant
to GN,M.

Example 3.2 (Nested Subsets and Wreath Product)
The permutation-equivariant layer that we saw in
Example 2.2 is useful for defining neural layers for set
structure. If our data-structure is in the form of nested
subsets, then we require equivariance to permutation
of variables within each set as well as permutation of
subsets. Here, we show how to use our dense design for
this purpose.

We use a special indexing for the input to better
identify the exchangeability of variables. We as-
sume D subsets, each of which has d variables x =
[x1,1, . . . , x1,d, x2,1, . . . , xD,d].
The group of our interest is the wreath product Sd ≀
SD. This type of group product can be used to build
hierarchical and nested structures with different type of
symmetries at each level. Nesting subsets corresponds to
the most basic form of such hierarchical constructions.
We use (n,n′) to index input variables and (m,m′) for
output variables.

The following figure shows the resulting parameter-
sharing for an example with D = 2, d = 3.

How did we arrive at this structure Ω? Recall Our
objective is to define parameter-sharing so that φW ∶
RdD → RdD is equivariant to the action of G =
Sd ≀ SD – i.e., permutations within sets at two lev-
els. This group-action identifies three partitions of
edges (seen in the figure): I) ((n,n′), (n,n′))∀n,n′
connects each variable to its counterpart (dashed or-
ange); II) ((n,n′), (n,m′))∀n,n′ ≠ m′ connects each
variable to other variables within the same subset; III)
((n,n′), (m,m′))∀n ≠ m is the set of edges from one
subset to another. According to the Corollary 3.2 this
parameter-sharing guarantees equivariance.

This fully-connected design is useful when the group GN,M

is large; for example when dealing with SN. However, for

smaller groups it could be very inefficient in practice, as
sometimes we can achieve equivariance through a sparse
structure Ω. As an example, consider the 2D circular con-
volution layer. It is easy to show that according to this de-
sign, the convolution filter will be the same size as the input
image. While this achieves the desirable equivariance, it is
inefficient and does not generalize as well as a convolution
layer with small filters. Moreover, the dense design does
not guarantee “unique” equivariance. We next show under
some conditions on GN,M the sparse design can produce this
stronger guarantee.

3.2. Sparse Design

Our sparse construction uses orbits and symmetric generat-
ing sets:

• Let us denote the orbits of G-action on M and N by
{Gnp ∣ 1 ≤ p ≤ P} and {Gmq ∣ 1 ≤ q ≤ Q} respec-
tively, where P and Q are the total number of orbits
and np,mq are (arbitrary) representative members of
orbits Gnp, Gmq respectively. Note that in contrast to
previous section, here we are considering the orbit of
variables rather than the edges.

• The set A ⊆ G is called the generating set of G (<
A >= G), iff every member of G can be expressed as
a combination of members of A. If the generating set
is closed under inverse a ∈A ⇒ a−1 ∈A we call it a
symmetric generating set.

Define the structure Ω as

Ω = (N,M,{∆p,q,a}1≤p≤P, 1≤q≤Q,a∈A)
∆p,q,a = {(gNanp,gNmq) ∣ (gN,gM) ∈ GN,M}. (10)

In words, we have one color per each combination of or-
bits (p, q) and members of the generating set a ∈ A. The
following theorem relates the symmetry group of this struc-
ture to G.

Theorem 3.3 GN,M ≤ Aut(Ω) for Ω of (10). More-
over if GN and GM are both semi-regular, then GN,M =
Aut(Ω).

Note that this result holds for any choice of a symmetric
generating set A in defining Ω. Therefore, in designing
sparse layers, one seeks a minimal A.

Corollary 3.4 The function φ(⋅,w,Ω), using the structure
(10) is GN,M-equivariant. If GN and GM are semi-regular,
this function is “uniquely” GN,M-equivariant.
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Now, assuming G-action is semi-regular on both N and M,
using (arbitrarily chosen) representatives {np}1≤p≤P and
{mq}1≤q≤Q for orbits in N and M, we can rewrite the ex-
pression (5) of the structured neural layer for the structure
above. Here, components of φ = [φ1, . . . , φM ] are enu-
merated for 1 ≤ q ≤ Q,gM ∈ GM:

φgMmq(x;w) = σ( ∑
1≤p≤P

∑
a∈A

wq,p,axgNanp) (11)

where w ∈ RP×Q×∣A∣ is the set of unique parameters,
and each element φgMmq depends on subset of parame-
ters {wq,p,a}p,a identified by q and a subset of inputs
{xa,gNnp}p,a identified by gN.

Example 3.3 (Dihedral Group of Fig. 1) In the exam-
ple of Fig. 1, the number of orbits of G-action on N is
P = 2 and for M this is Q = 1. The symmetric gener-
ating set is the generating set that is used in the Cayley
diagram, with the addition of inverse shift (inverse of the
blue arrow). We then used (10) to build the structure of
Fig. 1 (right).

Example 3.4 (Reverse Convolution) The parameter-
sharing structure of reverse convolution in Examples 1.2
and 2.1 is produced using our sparse design. In these
examples, both GN and GM are regular. Therefore
the proposed parameter-sharing provides unique
equivariance.

3.3. Multiple Channels

In this section, we extend our results to multiple input and
output channels. Up to this point, we considered a neural
network layer φ ∶ RN → RM . Here, we want to see how
to achieve GN,M-equivariance for φ ∶ RN×K → RM×K′

,
where K and K ′ are the number of input and output chan-
nels.

First, we extend the action of G on N and M to NK =
[N, . . . ,N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ktimes

] as well as MK′

, to accommodate multiple chan-

nels. For this, simply repeat the G-action on each compo-
nent. G-action on multiple input channels is equivalent to
sub-direct product GN ⊙ . . .⊙GN

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ktimes

≅ GN. The same applies

to GM.

This repetition, multiplies the orbits of GN, one for each
channel, so that instead of having P and Q orbits on the
input N and output M sets, we have K × P and K ′ × Q
orbits on the input NK and output MK′

. This increases the
number of parameters by a factor of K ×K ′.

The important implication is that, orbits and multiple
channels are treated identically by both dense and
sparse designs.

Example 3.5 (Group Convolution) The idea of group-
convolution is studied by Cohen & Welling (2016a); see
also (Olah, 2014). The following claim relates the func-
tion of this type of layer to our sparse design.

Claim 3.5 Under the following conditions the neural
layer (5) using our sparse design (10) performs group
convolution: I) there is a bijection between the output
and G (i.e., M = G) and; II) GN is transitive.

This also identifies the limitations of group-convolution
even in the setting where M = G: When GN is semi-
regular and not transitive (P > 1), group convolution
is not guaranteed to be uniquely equivariant while the
sparse parameter-sharing of (10) provides this guaran-
tee.

For demonstration consider the following example in
equivariance to mirror symmetry.

This figure shows the bipartite structure for G = Z2 =
{0,1} and A = {1}. G-action is horizontal flip of the
input and the output. On the right, M = G while on the
left GM-action has two orbits. Orbits are identified by
line-style and color of the circles. In a neural layer with
this parameter-sharing, when we flip the input variables
(around the mirror line) the output is also flipped.

The representatives in each orbit on N and M is iden-
tified with a star. Note that each combination of orbits
p and q has a parameter of its own, identified with dif-
ferent edge-styles. While this construction guarantees
“unique” G-equivariance, if instead we use the same
parameters across orbits (as suggested by the original
group convolution) we get the parameter-sharing of the
figure below middle.
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In this case, the resulting neural layer has the desired
equivariance (right). However, it is equivariant to the
action of a larger group GN,M ≅ Z2 ×Z2 > Z2, in which
1 in the second Z2 group exchanges variables across the
orbits on N (left in figure above).

3.4. GN = GM

In semi-supervised and un-supervised applications, we of-
ten need to produce a single output yn for each input
xn∀n ∈ N – that is N = M. We can ensure this by hav-
ing a relation ∆c∗ = {(n,n) ∣ n ∈ N} in Ω that guaran-
tees any (πN, πM) ∈Aut(Ω) applies the same permutation
to N and M = N – i.e., πN = πM. The resulting structure
Ω = (N,N,{∆c}1≤c≤C ∪ {∆c∗}} can be also interpreted as
a colored multi-edged directed graph (digraph). This is be-
cause we can collapse the two parts by identifying n ∈ N

with n ∈M.

Therefore, the symmetry-group of the original bipartite
structure, is isomorphic to symmetry group of a col-
ored multi-edged digraph on N. Achieving unique G-
equivariance then reduces to answering the following ques-
tion: when could we express a permutation group G ≤ SN

as the symmetry group Aut(Ω) of a colored multi-edged
digraph with N nodes?

This problem is well-studied under the class of concrete
representation problems (Babai, 1994). Permutation
groups G that can be expressed in this way are called 2-
closed groups (Wielandt, 1969). The recipe for achieving
GN ≤ Aut(Ω) is similar to our dense construction of Sec-
tion 3.13 The 2-closure ḠN of a group GN is then, the great-
est permutation group ḠN ≤ SN with the same orbit on N×N
as GN. It is known that for example semi-regular permuta-
tion groups are 2-closed ḠN = GN. This result also follows
a corollary of our Theorem 3.3 for sparse design of (10).

Example 3.6 (Equivariance to ×90○ Rotations)
Figure below compares the digraph representation of Ω
produced using (left) our sparse design, and (right) our
dense design.

3In a fully connected digraph, the edges that belong to the
same orbit by G-action on N ×N, receive the same color.

Multiples of ±90○ rotation is produced as the action of
cyclic group Z4 on eight input output variables – that is
N = M = {1, . . . ,8}. Z4-action is semi-regular with two
orbits; these orbits the two inner and outer set of four
nodes. The representatives of each orbit in our sparse de-
sign is indicated using filled circles. The generating set
consists of A = {1,3}, rotation by 90○ and its inverse,
rotation by 270○. Each edge in each of these figures, has
a corresponding edge in the opposite direction, within a
different relation. To avoid over-crowding the figure, we
have dropped this edge from the drawing above, unless
both edges belong to the same relation.

Example 3.7 (Graph Convolution) Consider the set-
ting where we use the (normalized) adjacency matrix
B ∈ {0,1}N×N (or Laplacian) of a graph Λ, to identify
parameter-sharing in a neural network layer. For a sin-
gle input/output channel, this is often in the form of Ax,
where x ∈ RN and A = w1B+w2I has different param-
eters for diagonal and off-diagonal values (e.g., Kipf &
Welling, 2016; Bruna et al., 2013; Henaff et al., 2015);
for multiple channels see Section 3.3. The following
corollary of Theorem 2.1 identifies the equivariance of
Ax.

Corollary 3.6 Given the digraph Λ and its binary ad-
jacency matrix B ∈ {0,1}N×N , then (w1B + w2I)x is
uniquely equivariant to the symmetry-group of Λ.

Since two graphs on N nodes can have identical sym-
metries, one implication of this corollary is that graph-
convolution has identical equivariances for graphs with
the same symmetry groups.

4. Conclusion
This work is a step towards designing neural network layers
with a given equivariance and invariance properties. Our
approach was to relate the equivariance properties of the
neural layer to the symmetries of the parameter-matrix.

We then proposed two parameter-sharing scheme that
achieves equivariance wrt any discrete group-action. More-
over under some conditions, we guarantee sensitivity wrt
other group actions. This is important because even a triv-
ial constant function is invariant to all transformations. It
is therefore essential to be able to draw the line between
equivariance/invariance and sensitivity in a function. To
our knowledge, our work presents the first results of its
kind on guarantees regarding both variance and equivari-
ance with respect to group actions.
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translation scattering for object classification. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2865–2873, 2015.

Raedt, Luc De, Kersting, Kristian, Natarajan, Sriraam, and
Poole, David. Statistical relational artificial intelligence:
Logic, probability, and computation. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 10(2):
1–189, 2016.

Ravanbakhsh, Siamak, Schneider, Jeff, and Poczos, Barn-
abas. Deep learning with sets and point clouds. arXiv
preprint arXiv:1611.04500, 2016.

Sifre, Laurent and Mallat, Stéphane. Rotation, scaling and
deformation invariant scattering for texture discrimina-
tion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1233–1240,
2013.

Wielandt, H. Permutation groups through invariant rela-
tions and invariant functions. Dept. of Mathematics,
Ohio State University, 1969.

Zaheer, Manzil, Kottur, Satwik, Ravanbakhsh, Siamak,
Poczos, Barnabas, Salakhutdinov, Ruslan, and Smola,
Alexander J. Deep sets. CoRR, abs/1703.06114, 2017.
URL http://arxiv.org/abs/1703.06114.

http://arxiv.org/abs/1703.06114


Equivariance Through Parameter-Sharing

A. Proofs
Proof of Observation 1.1

gMφ(x) = φ(gNx)∀g ∈ G⇒ gMφ(x) = φ(gMx)∀g ∈H ⊂ G.

Proof of Theorem 2.1
For unique Aut(Ω)-equivariance we need proofs in two
directions. First we show that

(πN, πM) ∈Aut(Ω)⇒ φ(x;w,Ω) = π−1M φ(πNx;w,Ω)
(12)

which in turn shows that πMφ(x;w,Ω) = φ(πNx;w,Ω).
Starting from π−1M φ(πNx;w,Ω) on the r.h.s. of (12) and
considering an index m in φ = [φ1, . . . , φM ] we have

φπ−1
M
m(πNx;w,Ω) = σ( ∑

n∈N,c∈α(n,π−1
M
m)

wcxπNn)

= σ( ∑
n∈πNN,c∈α(π

−1
N
n,π−1

N
m)

wcxn)

= σ( ∑
n∈N,c∈α(n,m)

wcxn) = φm(x;w,Ω)

(13)

where in arriving at (13) we used the fact that (πN, πM) ∈
Aut(Ω) ⇒ α(n,m) = α((π−1N n,π−1M m)).

In the opposite direction we need to show that
φ(x;w,Ω) = πMφ(π−1N x;w,Ω) ∀x ∈ RN ,w ∈ RC only if
(πN, πM) ∈Aut(Ω).

φ(x;w,Ω) = πMφ(π−1N x;w,Ω) ∀x ∈ RN ,w ∈ RC ⇒

(14)

φm(x;w,Ω) = φπMm(π−1N x;w,Ω) ∀m,x ∈ RN ,w ∈ RC ⇒
(15)

∀m,x ∈ RN ,w ∈ RC (16)

∑
n∈N,c∈α(n,m)

wcxn = ∑
n∈N,c∈α(n,πMm)

wcxπ−1
N
n ⇒ (17)

∑
n∈N,c∈α(n,m)

wcxn = ∑
n∈N,c∈α(πNn,πMm)

wcxn (18)

where (17) follows from monotonicity of σ ∶ R → R. We
need to show that this final equality ∀m,x ∈ RN ,w ∈ RC
implies that α(πNn,πMm) = α(n,m), which in turn, ac-
cording to (3) means (πN, πM) ∈Aut(Ω).

We prove α(ππNn,ππMm) = α(n,m) by contradiction:
assume α(ππNn∗, ππMm∗) ≠ α(n∗,m∗) for some n∗,m∗.

Since α(πNn∗, πMm∗) ≠ α(n∗,m∗), we can w.l.o.g. as-
sume ∃c∗ ∈ α(n∗,m∗) s.t. c∗ ∉ α(πn∗, πm∗) (the
reverse direction, where c∗ ∈ α(πNn∗, πMm∗) ∧ c∗ ∉

α(n∗,m∗) is similar). We show that an assignment
of x ∈ RN and w ∈ RC contradicts (18). For this,
define x such that xn = δ(n,n∗), is non-zero only
at index n∗. Moreover, assigning wc = δ(c, c∗) the
r.h.s. of (18) is ∑n∈N,c∈α(πNn,πMm∗)

wcxn = 0 while the
l.h.s. is ∑n∈N,c∈α(m,n)wcxn = wc∗xn∗ ≠ 0. Therefore
α(πNn,πMm) = α(n,m) ∀n,m, which by definition of
Aut(Ω) means (πN, πM) ∈Aut(Ω). ∎

Proof of Proposition 3.1
To prove GM,N ≤ Aut(Ω) we simply show that all
(gN,gM) ∈ GN,M preserve the relations in Aut(Ω). From
(4),

gN,M = (gN,gM) ∈Aut(Ω)⇐

((n,m) ∈ ∆p,q ⇔ (gNn,gMm) ∈ ∆p,q) ∀(p, q), n,m

The r.h.s holds for all (gN,gM) ∈ GN,M because in construct-
ing relations ∆p,q in the dense design, we used edge-orbits:

(n,m) ∈ ∆p,q⇔ (gNn,gMm) ∈ ∆p,q ∀(p, q), n,m.

Therefore gN,M ∈ GM,N ⇒ gN,M ∈Aut(Ω). ∎

Proof of Theorem 3.3
We first show that any permutation (gN,gM) ∈ GN,M is
also in Aut(Ω). The major part of the proof is to show
that when GN and GM are semi-regular, then ∣Aut(Ω)∣ ≤
∣GN,M∣. Combination of these two proves Aut(Ω) = GN,M.

I) to prove that (hN,hM) ∈ GN,M ⇒ (hN,hM) ∈ Aut(Ω),
we simply apply (hN,hM) to an arbitrary edge (m,n) in a
relation of Ω. According to (10)

∆p,q,a = {(gNanp,gMmq) ∣ (gN,gM) ∈ GN,M}.

Application of (hN,hM) to (gNanp,gMmq) gives
(hgNanp,hgMmq) = (g′Nanp,g′Mmq) ∈ ∆p,q,a . From (4),
it follows that GN,M ≤Aut(Ω).

II) For this part, we use the orbit-stabilizer theorem. The
orbit of each pair (n,m) ∈ ∆p,q,a wrt HN,M is defined as
HN,M(n,m) = {(hNn,hMm) ∣ hN,M ∈ HN,M}. The sta-
bilizer H

(n,m)
N,M of (n,m) ∈ ∆p,q,a is H

(n,m)
N,M = {hN,M ∈

HN,M ∣ hN,M(n,m) = (n,m)}, the group of all actions
that fix (n,m). The orbit-stabilizer theorem states that
∣HN,M∣ = ∣H(n,m)N,M ∣× ∣HN,M(n,m)∣. In our argument, we ap-
ply this theorem to bound ∣Aut(Ω)∣ using ∣Aut(Ω)(n,m)∣
and ∣Aut(Ω)(n,m)∣.
The orbit-size, ∣Aut(Ω)(n,m)∣, for a pair (n,m) is
bounded by the size of its relation ∣∆p,q,a ∣, for some p, q,a.
This is because, according to (3),

π ∈Aut(Ω)⇒ ((n,m) ∈ ∆p,q,a ⇒ π(n,m) ∈ ∆p,q,a).
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From (10), ∣∆p,q,a∣ = ∣GN,M∣, and therefore
∣Aut(Ω)(n,m)∣ < ∣GN,M∣.
Now, it only remains to show that if GN and GM are
regular orbits (or semi-regular), the stabilizer is trivial
Aut(Ω)(n,m) = {e}. Because in this case the size of
Aut(Ω) is bounded by the size of orbit ∣Aut(Ω)∣ =
∣Aut(Ω)(n,m)∣ ≤ ∣GN,M∣, which combined with the result
of part (I) gives GN,M =Aut(Ω).

Since, according to our assumption, GN acts regularly
on GNnp ∀p, going back to definition of ∆p,q,a =
{(gNanp,gMmq) ∣ gN,M ∈ GN,M}, this (see definition of
regularity) implies that for each n ∈ GNnp, a ∈ A and
mq , we can identify a single g′N ∈ GN such that for some
(n,m) = (ag′Nnp,g′Mmq) ∈ ∆p,q,a . This means that the
edges (or pairs) adjacent to each node n ∈ GNnp all have
distinct colors. The same argument using regularity of GM-
action on GMmq ∀q shows that edges (or pairs) adjacent to
m ∈ GMmq all have distinct colors.

Therefore if we fix a pair (m,n), all their neighboring
edges (adjacent on n or m) are unambiguously fixed. The
same goes for the neighbors of the newly fixed nodes and
so on. If we can show that the bipartite graph representing
Ω is connected then fixing a pair guarantees that all pairs in
all relations of Ω are fixed and therefore (n,m) has a trivial
stabilizer.

Two properties guarantee the connectedness of Ω:

• Since A = A−1 is a generating set of G, the bipar-
tite subset consisting of subset of nodes GNnp and
GMmq are connected. To show this, it is enough to
show that we can reach any node nz starting from
an arbitrary representative np and zigzagging through
the bipartite structure. Since nz, np ∈ GNnp ⇒
∃gz ∈ GN s.t. nz = gznp. Since < A >= GN,M,
we can write gz = a1 . . .aL. The path that starts
from np and takes the connections corresponding
to ∆p,q,aL

,∆p,q,a−1
L−1
,∆p,q,aL−2

, . . . ,∆p,q,a−11
takes us

through a zigzag path from np to nz .

• Since we have a relation ∆p,q,a for all pairs p, q, all
the induced bipartite subgraphs on GNnp-GMmq are
connected.

This proves that the whole bipartite graph is connected and
unambiguously fixed if we fix any pair (n,m). There-
fore, (n,m) has a trivial stabilizer, proving that Aut(Ω) =
GN,M. ∎

Proof of Corollary 3.4 Follows directly from Theo-
rems 2.1 and 3.3. ∎

Proof of Claim 3.5
To see this, note that GM acts on M = G regularly, with

the natural (group) action gh. Set the representative from
the resulting single orbit as mq = e. Then (11) becomes
φ = [φg]g∈G with components

φg(x;w) = σ( ∑
1≤p≤P

∑
a∈A

wa,pxgNanp) (19)

If we further tie the parameters across the orbits so that
wa,p = wa,p′∀p, p′, the (19) above is equivalent to formula-
tion of (Cohen & Welling, 2016a) for a single input/output
channels (see Section 3.3 for multiple channels). ∎

Proof of Corollary 3.6
First we show this assuming a single channel K = 1. For
multiple channels see Section 3.3.

Consider the bipartite structure constructed from Λ: Ω =
(N,N,{{(n,n) ∣ n ∈ N},{(n,n′) ∣ (n,n′) ∈ E(Λ)}}).
Applying the result of Theorem 2.1 using σ(x) = x tells
us that the function Ax is uniquely Aut(Ω)-equivariant –
that is π(Bx⋅,k) = B(πx⋅,k)∀π ∈Aut(Ω). Because of the
relation ∆c∗ = {{(n,n) ∣ n ∈ N} in Ω, the same bipartite
structure Ω, can be interpreted as a digraph; here with a
single color, since Ω has only one relation in addition to
∆c∗ . Since this relation defines Λ, Aut(Ω) = Aut(Λ),
which means Bx is uniquely Aut(Λ)-equivariant. ∎

B. Background on Permutation Groups
Let x = [x1, . . . , xN ] ∈ XN be a vector of N variables
taking value in the same domain X. A group G is a
set, equipped with a binary operation, with the follow-
ing properties: I) G is closed under its binary operation;
II) the group operation is associative –i.e., (g1g2)g3 =
g1(g2g3)∀g1,g2,g3 ∈ G; III) there exists an identity e ∈ G
such that ge = eg = g and ; IV) every element g ∈ G has
an inverse g−1 ∈ G, such that gg−1 = g−1g = e. A subset
H ⊆ G is a subgroup of G (G ≤ H) iff H equipped with
the binary operation of G forms a group. Moreover, if H is
a proper subset of G, H is a proper subgroup of G, H < G.
Two groups are isomorphic G ≅ H if there exists a bijec-
tion β ∶ G → H, such that g1g2 = g3 ⇔ β(g1)β(g2) =
β(g3)∀g1,g2,g3. If this last relation holds for a surjective
mapping (not necessarily one-to-one) then β is a homomor-
phic mapping and H is isomorphic to a subgroup of G.

Cayley Diagram. The set A ⊆ G is called the generat-
ing set of G (< A >= G), iff every member of G can be
expressed as a combination of members of A. If the gener-
ating set is closed under inverse a ∈A ⇒ a−1 ∈A we call
it a symmetric generating set. A is the minimal generating
set if it has the least number of members among the gener-
ating sets of G. Note that the minimal generating sets are
generally not unique. The size of the minimal generating
set of a group G becomes important because, the number
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of parameters in our parameter-sharing scheme grows lin-
early with ∣A∣. A group G is often visualized by its Cayley
diagram; a colored digraph in which the node-set is G and
directed edge (g,ag)∀g ∈ G,a ∈ A is colored by a ∈ A.
Fig. 1(lower-left) shows the Cayley diagram of G =D5.

B.1. Discrete Group Action

We are interested on the way a group “acts” on the input
and output of a deep network. Function γ ∶ G ×X → X is
the left action of group G on x iff I) γ(e,x) = x and; II)
γ(g1, γ(g2,x)) = γ(g1g2,x).4

For our purpose we limit this action to actions on the in-
dices N = {1, . . . ,N} of x = [xn] – i.e., function γ ∶
G × N → N satisfies γ(e, n) = n and γ(g1, γ(g2, n)) =
γ(g1g2, n). We often use gn as a shorthand for γ(g, n),
and also use gN to denote {gn ∣ n ∈ N}. The action of
g on a vector/sequence

Ð→
N = [1, . . . ,N] is defined simi-

larly g
Ð→
N ≐ [g1, . . . ,gN]. Considering this, the G-action

on x = [x1, . . . , xN ] is gx ≐ [xg1, . . . xgN ].
From the properties of group and its action it follows
that γ(g, ⋅) ∶ N → N is a bijection with γ−1(g, n) =
γ(g−1, n)∀n ∈ N,g ∈ G. Since N is a finite set, this bi-
jection for each g ∈ G is a permutation of

Ð→
N – i.e., g

Ð→
N ≐

[γ(g,1), . . . , γ(g,N)] is a permutation of
Ð→
N . Let GN =

{γ(g, ⋅) ∣ g ∈ G} with (function composition as the binary
group operation) denote the group of permutations of

Ð→
N

induced by g ∈ G. This group is a subgroup of the symmet-
ric group SN; the group of all N ! permutations of

Ð→
N . GN

captures the structure of G when it acts on the set N and it
is indeed a homomorphic image of G. We use gN to denote
γ(g, ⋅), the the image of g ∈ G in GN.

B.1.1. PROPERTIES OF GROUP ACTION

G-action is faithful iff two groups are isomorphic G ≅ GN.
In this case all actions of g ∈ G are distinct permutations –
that is g

Ð→
N ≠ g′

Ð→
N∀g,g′ ∈ G. Given any G-action on N we

can obtain its faithful subgroup that is isomorphic to GN.
The importance of faithfulness of G-action is because it
preserves the structure of G, and if an action is not faithful,
we might as well focus on GN-action.

Given any unfaithful G-action γ ∶ G × N → N, let Kγ be
the normal subgroup of G that corresponds to identity per-
mutation –i.e., Kγ = {g ∈ G ∣ γ(g, n) = n∀n ∈ N}.
One obtains the group GN that acts faithfully on N as the
quotient group GN = G/Kγ .

We now define some group properties that are important
in guaranteeing the “strict” equivariance with respect to G-

4All the following definitions and results may be extended to
the “right” group action by substituting g↔ g−1∀g ∈ G.

action. G-action on N is transitive iff ∀n1, n2 ∈ N, there
exists at least one action g ∈ G such that gn1 = n2. The
group action is free or semi-regular iff ∀n1, n2 ∈ N, there
is at most one g ∈ G such at gn1 = n2, and the action is
regular iff it is both transitive and free – i.e., for any pair
n1, n2 ∈ N, there is uniquely one g ∈ G such that gn1 = n2.
Any free action is also faithful.

B.1.2. ORBITS

Given G-action on N, the orbit of n ∈ N is all the members
to which it can be moved, Gn = {gn ∣ n ∈ N}. The orbits
of n ∈ N form an equivalence relation, where n ∼ n′ ⇔
∃g s.t., n = gn′ ⇔ n ∈ Gn′ ⇔ n′ ∈ Gn. This equivalence
relation partitions N into orbits N = ⋃1≤p≤P Gnp, where
np is an arbitrary representative of the partition Gnp ⊆ N.
Note that the G-action on N is always transitive on its orbits
– that is for any n,n′ ∈ Gnp, there is at least one g ∈ G

such that n = gn′. Therefore, for a semi-regular G-action,
the action of G on the orbits Gnp∀1 ≤ p ≤ P is regular. As
we see the number of distinct parameters in our parameter-
sharing scheme grows with the number of orbits.

Cycle Notation. To explicitly show the action of g ∈ G on
the set N, we sometimes use the cycle notation of a permu-
tation. Any permutation π ∈ SN is decomposable to product
of disjoint cycles. A cycle of length d, (b1, . . . , bd) sends
bi → bi+1 mod d. Here bi ∈ {1, . . . ,N} and a cycle acts
on a subset of N. For example, the action of (1,3,2) on
[1, . . . ,6] is [3,1,2,4,5,6]. We can write the permutation
g where g[1, . . . ,6] = [3,1,2,5,4,6] as the product of dis-
joint cycles {(1,3,2), (6), (4,5)} = {(1,3,2), (4,5)}.


