J. Symbolic Computation (1994) 11, 1-000

An Improved General E-Unification Method f

DANIEL J. DOUGHERTY AND PATRICIA JOHANN %

(Received August 19, 1991)

A generalization of Paramodulation is defined and shown to lead to a complete E-
unification method for arbitrary equational theories /5. The method is defined in terms
of transformations on systems, building upon and refining results of Gallier and Snyder.

1. Introduction

Let E be a set of equations. An E-unifier of terms A and B is a substitution # such that
fA and @B are equal under F. This paper considers the problem of F-unification for
arbitrary equational theories F, and presents an inference rule approximating Paramod-
ulation and leading to a complete E-unification procedure which generalizes Narrowing.
This sheds some light on the boundary between arbitrary E-unification situations and
FE-unification under canonical E.

We embrace the point of view that transformations on systems represent a “proof
theory” for E-unification, and can provide a framework for the development of unification
procedures and a setting for proving completeness results. The main argument in Section
3 leads to a short proof of the completeness of a transformation version of Narrowing
when E has a canonical presentation and an outline of a proof of the completeness of an
improvement, Basic Narrowing, due to Hullot (1980).

Our work is a refinement of the general E-unification method of Gallier and Snyder
(1989), and the most convenient way to describe our main result is to compare our
procedure with theirs, in the next few paragraphs.

Given equations F whose left-to-right orientation gives a canonical rewrite system,
Narrowing is a complete method for generating E-unifiers for a pair (A, B) which pro-
ceeds as follows: select from E the left-hand side of an equation L = R and from (A, B)
a non-variable subterm, say, A/u, and treat the pair (A/u, L) as a syntactic unification
problem. If A/u and L have a most general unifier ¢, apply o to A and B, perform the
rewrite step using oL = oR. Continue, composing substitutions at each step, until a
unifiable pair is found.

Gallier and Snyder’s main result shows that for an arbitrary set of equations F, a
complete set of E-unifiers can be found if this method is generalized by allowing L to

t This is a revised and slightly expanded version of a paper presented at the Tenth International
Conference on Automated Deduction, in Kaiserlautern, FRG, July 1990.

! Daniel J. Dougherty: Dept. of Mathematics,Wesleyan University, Middletown, CT 06457 USA
ddougherty@eagle.wesleyan.edu; Patricia Johann: Dept. of Mathematics and Computer Science, Hobart
and William Smith Colleges, Geneva, NY 14456 USA johann@hws.bitnet

0747-7171/90/000000 + 00 $03.00/0 © 1994 Academic Press Limited

2 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

be either side of an equation, relaxing the required relationship between A/u and L (cf.
Definition 2.7 and considering the pair (A/u, L) as an E-unification problem to be solved,
that is, added to the system.

Now suppose we say that two terms top-unify if they have the same symbol at each u
which is a non-variable occurrence in both terms. Our main result is that for any £, a
complete set of E-unifiers can be generated by a procedure that requires, in the notation
above, that A/u and L top-unify and that the corresponding Term Decompositions be
done immediately.

The restriction to top-unifying pairs limits the non-determinism in the method con-
siderably. Perhaps more significantly, the difference between FE-unification for £ with
canonical presentations and for arbitrary £ can now be attributed to the distinction be-
tween unification and top-unification, together with the fact that canonical presentations
orient the equations.

E-unification was introduced by Plotkin (1972). The explicit use of transformations
on systems as an approach to unification is due to Martelli and Montanari (1982), but as
Gallier and Snyder point out, it was implicit in Herbrand’s (1930) dissertation. Kirchner
(1984, 1985, 1986) was apparently the first to investigate the use of transformations in
FE-unification.

1.1. NOTATION

Terms (A, B,C,...) are built from variables (z,y,z,...) using a set of (one-sorted)
first-order function symbols. Subterms are referenced in the usual way by sequences of
positive integers called occurrences (u,v,w,...); we write A/u for the subterm of A at
occurrence u, and write Afu « X] for the result of replacing A/u by X.

Fquations are unordered pairs of terms; we use 25 to denote the one-step equational
inference relation. We use “=” to denote syntactic identity and “=pg” to denote the

equivalence relation generated by Ny

Substitutions (o, d, 0, ...) are endomorphisms of the term algebra leaving all but
finitely many variables fixed; application of a substitution to a term is denoted by jux-
taposition, as is composition of substitutions (so, for example, noz = n(co(z)). When o
is a substitution, the domain Do of ¢ is the set of variables # such that oz Z z; ¢ is
tdempotent if oo = o, or equivalently if the set /o of variables occurring among those oz
with € Do is digjoint from Do. Write o = 7 [V] (respectively, o =g 7 [V]) to indicate
that for all z € V, oz = Tz (respectively, oz =g tz); write o < 7 [V] (respectively,
o <g 7) if there is a substitution 7 such that no = 7 [V] (respectively, no =g 7 [V]).

A relation ~ on terms is stable if A ~ B implies that for all substitutions 8, A ~ 0B;
say that ~ is monotone if A ~ B implies that for all terms 7" and occurrences u in T,
Tlu « Al ~ Tu « B]. If = is any relation, we write = for its relexive transitive
closure.

Definitions and notation not presented here should be found in (Dershowitz and Joun-
naud, 1991).

We always assume that our sets of equations are consistent.

2. Systems and E-unification methods

Transformation-based unification methods attempt to reduce systems representing uni-
fication problems to solved systems, from which solutions may be extracted immediately.

An Improved General E-Unification Method 3

The transformations we consider for E-unification can introduce variables from the
equations in F, but in our answer substitutions we will typically be concerned only with
variables occurring in the original problem. It is important that the new variables be
distinct from variables in the original system, but this requires some attention since the
transformations may also delete variables from a system. To see the problem, suppose
a variable z from the original system were deleted but then introduced later. Confusion
would arise if the eventual answer were to bind z.

Now, when a procedure is implemented, a mechanism is provided to generate new
variables distinct from those occurring in the past. It is tempting, in a formal treatment of
transformations underlying such procedures, to simply declare that variables introduced
may not have occurred in “previous” steps. But this obscures the distinction between
transformations (as reductions of a problem) and procedure-steps (which are situated in
time). An appeal to the computational history of a system compromises the key principle
underlying the investigation of sets of transformations — that they abstract the logical
content of unification procedures from considerations of control and data structures. For
example, the naive approach makes it impossible to argue by induction over computations
as sequences of transformations; note that a tail of such a computation would not properly
be a computation at all, since its choice of variables would be conditioned by properties
of “earlier” systems, not even appearing in the subsequence.

We will therefore construe systems as being explicitly tagged with a set of variables.
When a system is considered as input to an E-unification procedure, the associated set
of variables will be the set of variables occurring among the terms of the system; when
a transformation introduces new variables, those will be added to the associated set.
However, variables will never be deleted from the associated set of a system, even if a
deletion-transformation removes all their occurences from the terms in a system. This
explicit perseverance of variables corresponds to a mechanism in an implementation for
recording the set of variables occurring “in the past”. In particular, an instance of a
procedure may now be faithfully modeled as a sequence of transformations.

Although we do not treat many-sorted logic in this paper, we note in passing that a
proper treatment of many-sorted equational logic similarly requires (for different reasons)
an explicit indication of a set of “relevant” variables; see, for example, (Goguen and
Meseguer 1981, 1985).

DEFINITION 2.1. A pair (A, B) is a two-element multiset of terms. A system is a finite set
8§ of pairs together with a finite set Vars(S) of variables, including at least the variables
occurring among the terms of §. We will usually not need to explicitly indicate the set
Vars(S), and may abuse notation and speak of “the system S”.

A pair (z, A) is solved in 8, and z is a solved variable of S, if there are no occurrences
of z in a term pair other than the one indicated. If each pair in § is solved then § is a
solved system and determines an idempotent substitution in an obvious way, although a
pair consisting of two distinct solved variables requires a choice as to which of them is
to be in the domain of the substitution. We will assume that a uniform method exists
for making such a choice, and so will refer to the substitution determined by a solved
system.

An F-unifier of a system is a simultaneous E-unifier of the pairs in the system; we
identify syntactic unification with unification under the empty set of equations (and in
this case may simply speak of a unifier of a system).

4 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

A most general (syntactic) unifier o of a system S is an idempotent unifier with domain

included in Vars(8) such that for every unifier § of S, o < §[Vars(S)].

As is customary, we write S, (A, B) to abbreviate SU{ (A, B) }. Since this is ambiguous
as a decomposition of the system in question (§ may or may not contain (A, B)), we
introduce the notation S; (A, B) to refer to SU { (A, B) } with the understanding that
(A, B) is not a pair in S.

If & is an idempotent substitution, write [o] for any solved system by which it is
determined.

Martelli and Montanari (1982) defined a set of transformations in order to study syn-
tactic unification. The following variant of Martelli and Montanari’s transformations is

defined by Gallier and Snyder (1989).

DEeFINITION 2.2. The set of transformations for Syntactic Unification consists of the
following. We indicate only the effect on the pairs of a system; each transformation
below is to induce no change in the associated set of variables of a system.

Trwial:
S, (ALA=S
Term Decomposition:
S; (f(A1, ..., An), F(B1,..., Bn))=3S, (A1, B1),...,{An, By)
Variable Elimination:
S; (z,A) = ¢S, (x, A), where ¢ is the substitution {z — A},

provided (z, A) is not solved and z does not occur in A.

Observe the use of “;” on the left-hand sides of transformations, so that the effect of the
transformation is unambiguous, and the use of “” on the right-hand sides, to preclude
repetition of identical pairs.

These transformations naturally define a non-deterministic procedure, which we denote

Syntactic Unification, or simply SU. Write SZXL S if §' is obtained from S in one SU
step.

THEOREM 2.3. (Martelli and Montanari 1982) Fvery SU computation terminates. If S
s unifiable then every SU computation on S terminates in a solved system determining a
most general unifier for S. If S 1s not unifiable then no SU computation on S terminates
n a solved system.

ProOOF. Associate with each system the number of unsolved variable occurrences and
then the sum of the depths of the terms; order these pairs lexicographically and observe
that any transformation decreases the associated pair. This proves termination. The
remaining assertions follow from the facts that each transformation preserves the set of
unifiers of a system, that an irreducible system is unifiable iff it is solved and that if [o]
is a solved system, then o is a most general unifier of [¢]. U

For a non-empty set E of equations, a procedure based on SU certainly cannot yield
all F-unifiers of arbitrary systems, so we seek to add transformations to the set SU.

An Improved General E-Unification Method 5

We cannot hope for a set of transformations for general E-unification which performs as
well as those for syntactic unification. E-unification is undecidable even under stringent
conditions on E, most general F-unifiers do not necessarily exist, and in fact Fages and
Huet (1986) have shown that there are equational theories F and systems & which do
not possess <g-minimal unifiers. Consequently we say that an E-unification procedure is
complete (for E) if for every system S and every substitution § which E-unifies S, there
is a computation on § yielding an E-unifying substitution o with o <g 6 [Vars(S)].

Of course we will expect soundness: an E-unification procedure is sound (for E) if it
never returns substitutions which are not E-unifiers. All of the procedures considered in
this paper are restrictions of those considered by Gallier and Snyder. It follows that the
soundness of these procedures is an immediate consequence of the soundness of Gallier
and Snyder’s method, and need not be discussed further.

The Paramodulation inference rule was introduced by Robinson and Wos (1969) in
the context of first-order theorem proving in the presence of equality axioms. Narrowing
was a refinement proposed by Slagle (1974) and by Lankford (1975) to take advantage
of a canonical term rewriting presentation of the relevant equational theory; Fay (1979)
investigated Narrowing as the basis of an E-unification procedure.

DEFINITION 2.4. Let (A, B) be a pair in S, let u be a non-variable occurrence of A, and
let L = R be a variant of an equation in £ whose variables do not occur in § such that
o is a most general unifier of A/u and L.

1 The following is an instance of Paramodulation:
S =8;(AB) = o8, [0], o(Alu + R], B).

If V is the set of variables associated with the left-hand system and W is the set
of variables occurring in the equation L = R, then V U W is the set of variables
associated with the right-hand system. We call (A/u, L) the witness pair.

2 If the equations in F are oriented from left to right, a Narrowing step is a Paramod-
ulation step in which the witness pair uses the left-hand side of an equation.

3 Narrowing is the non-deterministic procedure determined by Narrowing steps and
Syntactic Unification steps, with the further restriction that Syntactic Unification
steps are performed only on witness pairs and during a final stage, computing a
solved system from a unifiable one.

We emphasize that the definition of Paramodulation here forbids “paramodulation into
variables”, that is, the A/u subterm above may not be a variable.

The choice of witness pair represents a guess that an equational derivation between
substitution instances of A and B has an initial step using equation L = R at occurrence
u.

THEOREM 2.5. (Fay 1979) Narrowing is sound and complete for sets of equations whose
left-to-right orientation induces a canonical rewrite system.

We outline a proof at the end of Section 3.

Gallier and Snyder prove that Narrowing is complete under the weaker hypothesis
that there exists a reduction ordering > such that the =-oriented ground instances of
the equations form a confluent term rewriting system.

6 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

The following example shows that even a procedure based on Paramodulation cannot
be complete in general.

EXAMPLE 2.6. Let E consist of the two equations f(a,b) = @ and @ = b, and let S be
(f(z,z), z). & is F-unifiable and is not solved, but no Paramodulation or Syntactic
Unification steps apply out of S.

In order to accomodate general E-unification, Gallier and Snyder defined a generaliza-
tion of Paramodulation.

DEFINITION 2.7. Let (A, B) be a pair in S, let u be a non-variable occurrence of A, and
let L = R be a variant of an equation in F whose variables do not occur in § such that
if L is not a variable then L and A/u have the same root function-symbol. Then the
following is an instance of Lazy Paramodulation:

S =85(A,B) = & (A/u,L),(A[u + R], B),

with the additional requirement that when L is not a variable, Term Decomposition is
immediately applied to the pair (A/u, L). If V' is the set of variables associated with the
left-hand system and W is the set of variables occurring in the equation L = R, then
V UW is the set of variables associated with the right-hand system.

Here, the choice of witness pair represents a guess that an equational derivation be-
tween substitution instances of A and B involves a step (not necessarily initial) using
equation L = R at occurrence u.

THEOREM 2.8. (Gallier and Snyder 1989) The non-deterministic E-unification proce-
dure determined by Lazy Paramodulation steps and Syntactic Unification steps is sound
and complete for arbitrary sets E of equations. (Syntactic Unification steps are performed
only on witness pairs and during a final unification stage.)

The requirements that the terms in the witness pair have the same head symbol and
that Term Decomposition be immediately applied may be seen as an attempt to re-
tain some of the discipline of Paramodulation, specifically by restricting the number of
candidate occurrences at which the transformation may be applied.

The completeness proof presented in (Gallier and Snyder 1989) overlooks the justifi-
cation of the “same root symbol” constraint on the witness pair (see in particular the
proof of Lemma 6.7 there). Their argument does, however, show completeness of a ver-
sion of Lazy Paramodulation in which the relationship between terms in the witness
pair is unconstrained. Furthermore, their intuition about the constraint was correct: the
notion of top-unification we present below refines the one they impose, and our main the-
orem will show that we may in fact insist that A/u and L top-unify without sacrificing
completeness.

DEeFINITION 2.9. A and B top-unify if A and B have the same symbol at each u which
is a non-variable occurrence in both terms.

The applications of top-unification in our setting will always concern variable-disjoint

An Improved General E-Unification Method 7

terms A and B. In such a situation, top-unification coincides with unification when the
terms in question are linear (i.e., have no repeated variables).
A useful characterization of top-unification is given in the next Lemma.

LEMMA 2.10. For any terms A and B, the following are equivalent.

1 A and B top-unify.
2 When Term Decomposition is applied as many times as possible starting with the
pair {A, B), each pair in the resulting system has a variable as one of its elements.

ProoF. Immediate from the definition. O

It will be convenient to write dec(A, B) for the system obtained by applying to (A, B)
as many Term Decompositions as possible.
We can now give the refinement of Lazy Paramodulation which is the subject of this

paper.

DEFINITION 2.11. Let (A, B) be a pair in S, let u be a non-variable occurrence of A,

and let L = R be a variant of an equation in F whose variables do not occur in § such
that A/u and L top-unify.

1 The following is an instance of Relared Paramodulation.
§=8"(AB) = &, dec(A/u, L), (Alu < R], B)

If V is the set of variables associated with the left-hand system and W is the set
of variables occurring in the equation L = R, then V U W is the set of variables
associated with the right-hand system.

2 The non-deterministic procedure determined by Relaxed Paramodulation steps and

Syntactic Unification steps is denoted RP. Write S RE §'if §' is obtained from S
in one RP step.

Our main result (Theorem 4.8) is that RP is complete for arbitrary F.

ExXAMPLE 2.12. RP can simulate equational deduction. Specifically, suppose A occurs
in a system and a subterm of A matches one side of an equation L = R, say A/u = 6L.

Then RP can replace A/u by 0R:
S;(A,By 2B 8, dec(A/u,L), (Alu + R], B)
S S, [0] (A[u « OR), B)

where we have used the fact that D# is disjoint from the variables of the original system.
Observe that the solved subsystem corresponding to the matching substitution 6 appears
in the transformed system.

Later (in Lemma 4.5) we will see that Relaxed Paramodulations can simulate the
construction of critical pairs.

EXAMPLE 2.13. Let £ and S be as in Example 2.6. The E-unifier { — a} of S can be
generated by RP:

8 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

(Flx,2),z) 2B dec(f(x,), f(a,b)), (a,)

s (z,a),(a,b)
25 (2,a),
where the third line is derived by simulating the equational step replacing a by & and

eliminating the resulting trivial pair.

ExXAMPLE 2.14. RP can show the failure of E-unifiability of a system. Let E consist
of the two equations f(h(a)) = a and a = b, and let S be (f(g(z)),). Then § is not
solved, and no RP step applies out of §. Anticipating the completeness theorem, we can
conclude that & has no E-unifiers.

ExAMPLE 2.15. Let E be the usual presentation of group theory:
0+z=2=2

(~y) +y=0

(u+v)+w=u+(v+w).

We can verify the theorem (—0) + 2 = z using RP. In the sequence below, the first
step uses the third group axiom, the second step uses the first axiom and the second
pair of the system, the third step uses Variable Eliminations, and the final two RP steps
perform equational steps as described in Example 2.12.

((=0) + z, z) TS (=0, u), (z, v+ w), ((u+v) + w,z)
EE (u,=0), (v,0), (w, 2), (2, 2), {(u+v) + w, z)
o (u,-0),(v,0), (w,z), (2, 2), (((~0) + 0) + 2, z)
ZL (u,-0), (v,0), (w, z), (z,), (4,0),(0+ 2, z)
EB (u,—0), (v,0), (w, z),{z,2), (y,0), (', z).

The last system is solved, yielding a substitution o with ¢ Do . This gives the identity
substitution as an E-unifier of the original system.

The next two sections prove the completeness of RP.

3. Completeness in a special case

In this section we give a proof of the completeness of RP when the equational the-
ory satisfies a certain closure property. In the next section we show how to lift this
proof to obtain completeness for an arbitrary set of equations. This two-step strategy, of
first assuming a kind of completeness for the underlying equations and then lifting that
restriction, is the same as that used by Gallier and Snyder.

Gallier and Snyder observe that completeness of an E-unification procedure is implied
by completeness with respect to ground substitutions; the justification involves replacing
variables by Skolem-constants and showing that an answer substitution can be recovered

An Improved General E-Unification Method 9

from its Skolemized version. Their first step, then, is to show completeness for ground
substitutions when the equation-instances orientable with respect to a certain reduc-
tion order form a system which is ground confluent with respect to this ordering. The
construction of these systems is essentially an unfailing completion procedure similar to
those described in (Bachmair, Dershowitz, and Hsiang 1986), (Bachmair, Dershowitz,
and Plaisted 1987), and (Bachmair 1987).

Gallier and Snyder’s first step might be roughly summarized as: replace variables by
new constants, work in the more congenial ground setting, then translate back to vari-
ables. It seems to us that the success of such a transfer to ground systems relies on the
observation that although Narrowing requires a (canonical) rewrite relation capturing
the given equational theory, the fact that the rewrite relation is preserved under substi-
tution plays no role. This suggests eliminating the explicit passage to ground terms and
simply treating variables as though they were constants. It seems worthwhile to pursue
this more naive approach, if only as another point of view on the Skolemization trick.
This 1s content of the current section.

The second step in Gallier and Snyder’s proof is to show how to simulate a unification
computation using the completed set of equations by a computation using the original
set. As observed there, the former computation 1s essentially a Narrowing computation;
in particular, the witness pairs at each step are syntactically unifiable. By doing a more
delicate simulation — in the next section — we are able to retain part of that relationship,
by arranging that the witness pairs top-unify.

Gallier and Snyder introduce a novel formalization of equational proofs, as certain sets
of trees. We use ordinary equational derivations.

The following notion is an abstraction of the notion of canonical rewrite system.

DeriNiTION 3.1. Fix a binary relation > on terms.

For a set C of equations, let > denote (> N PACEN), and say that C'is closed with respect
to > (or simply closed) if > is monotone, noetherian, confluent, and has symmetric

closure equal to &
A term M is minimal with respect to > (or simply minimal) if there does not exist an
N such that M >¢ N; a substitution # is minimal if for all z in D@, fz is minimal.

Canonical rewrite systems provide the paradigm for closed sets: for any F, if the
equations in £ can be oriented so that the resulting rewrite system R is canonical, then

FE is easily seen to be closed by taking > to be i), and the minimal terms are precisely
the R-normal forms.
Similarly, for any E, if > is a monotone noetherian relation whose symmetric closure

contains < , then >% will inherit these properties (and its symmetric closure will equal

&). Tt is easy to construct such relations >; the difficulty in building a closed set will
be in enforcing confluence. We will see in the next section that whenever E contains all
of 1ts critical equations there exist relations with respect to which E is closed.

When C is closed the relation >¢ behaves in many ways like a canonical rewrite
system, although it is not necessarily stable, and minimal terms correspond to normal
forms. The next few paragraphs defend this analogy.

10 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

Since >¢C <i>, whenever 7' >¢ U then this fact is witnessed by a deduction step:
T=Tu+ L)« Tu+ SR =U

for some I = R from C'. Say that such a step is minimal if the substitution § is minimal
on the variables of L and R.

We also note that if L = R is an equation in C and dL >% R, then L is not a
variable. If it were, that variable would be a subterm of R (recall that we are assuming
consistency of our equations), so that § would be a proper subterm of § R. But in light
of the monotonicity of >¢ this contradicts the fact that >¢ is noetherian.

It follows that variables are minimal.

Since >€ and << generate the same equivalence relation and >¢ is confluent, every
term T is convertible under C' with a unique minimal term.

We next define the objects corresponding to rewrite proofs in our setting.

DEFINITION 3.2. A >%-proof between terms A and B is a pair of sequences of > -steps:
A% X and B> X

for some term X. The length of such a proof is the sum of the number of >“-steps in
the two sequences.
Say that a >%-proof is minimal if each of its steps is minimal.

We see that minimal proofs are analogous to innermost rewrite proofs. The key fact
for us is that terms can be >¢-reduced to their minimal forms by minimal proofs.

LEMMA 3.3. Let C be closed with respect to >%. If A =¢ B then there is a minimal
> _proof between A and B.

Proo¥. Since A and B have the same minimal form, the lemma will be established if
we show that any term 7" admits a minimal >%-proof between it and its minimal form.
The proof of this fact is by noetherian induction over >¢; it suffices to show that if T is
not minimal then there exists some minimal >%-step out of 7.

If T'is not minimal, choose u so that 7'/u is not minimal but every proper subterm of
T'/u is minimal. Tt follows that there is an equation I = R from C' and a substitution
§ such that T'/u is of the form §L and §L >¢ §R. L is not a variable, so for each
z € Vars(L), dz is a proper subterm of T'/u, hence minimal.

Now, in contrast to rewrite systems, even though § >¢ R there may be variables of
R not occurring in L. In this case, define ¢’z to be (i) dz, when z is a variable of L, and
(i) the minimal form of dz, when z is in Vars(R) — Vars(L), (iil) z, when 2 does not
occur in L or R. Then ¢’ is a minimal substitution, §’Z >¢ §’R, and

T=Tu+ L)+ Tlu « &R
is a minimal >¢-step. O
DEFINITION 3.4. Fix a relation > and a set C of equations closed with respect to >€.
If A =¢ B, the degree of (A, B) with respect to > (or simply the degree of (A, B))

is the length of a shortest minimal >-proof between A and B. The degree of S is the
sum of the degrees of the pairs in §, provided these degrees are all defined. When 6 is a

An Improved General E-Unification Method 11

substitution it will be convenient to refer to the degree of the pair (# A, §B) (respectively,
of the system 68) as the “O-degree” of (A, B) (respectively, of S).

The next lemma corresponds to the lifting lemma used in the standard proof of the
completeness of Narrowing.

LEMMA 3.5. Let C be closed. If 6 is a minimal C-unifier of system S and the 0-degree
of § 1is positive, then there i1s a C-unifier 81 of S and a Relared Paramodulation trans-

formation S 2E 81 such that

1 6, =6 [Vars(S)],

2 61 s minumal,

3 the witness pair for this step syntactically unifies, and
4 the 61-degree of 81 1s less than the 6-degree of S.

ProOF. We may assume without loss of generality that D(#) C Vars(S). Choose (A, B)
from S with positive #-degree, and consider a shortest minimal >¢-proof between A
and #B. At least one of A and B is not a variable since € is minimal; we may assume
that there is a >%-step out of #A. Write this step as

0A = (0A)[u « 5L) > (0A)[u + JR]

in which ¢ is minimal and, with a suitable choice of equation variant, Dé N Vars(S) = 0.
Since 6 1s minimal, u is a non-variable occurrence in A.

Take 6, to be § UJ. The first assertion is clear. The substitution #; is minimal by the
minimality of § and by hypothesis on 6.

&1 is determined by the following transformation:

S=8(A,B) ZE & dec(AJu, L), (Alu< R],B)=S;.
The third assertion of the lemma holds since #; unifies A/u and L.
The final claim follows from the observations that the ;-degree of (A/u, L) is 0 (and
hence so is the degree of dec{A/u, L)), and the f;-degree of (A[u « R], B) is less than
the 6;-degree of (A, B), while #; agrees with # on (A, B) and on §&'. O

Of course, the proof of Lemma 3.5 shows that any minimal >%-step can be lifted to a
Relaxed Paramodulation.

THEOREM 3.6. RP s complete for closed C.

Proo¥. Let f be a C-unifier of §. We wish to show that there is a computation on
S yielding a substitution ¢ with o <¢ 6 [Vars(S)]. We may assume without loss of
generality that 6 is minimal.

The proof is by induction on the -degree of S.

If the #-degree of § is 0 then 6 is a unifier of §, and a sequence of SU transformations
can return a most general unifier o.

Otherwise, by Lemma 3.5 there is a Relaxed Paramodulation transformation out of &
yielding 81 and a minimal C-unifier ; of 81 such that #; = 0 [Vars(S)] and such that the
f1-degree of Sy is less than the #-degree of S. By induction, there is a RP computation
out of 81 computing a C-unifier o of §; with o <¢ 61 [Vars(S1)]. By soundness of the

12 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

transformations, ¢ is a C-unifier of S. Since Vars(S) C Vars(S1), o <c¢ 61 [Vars(S)].
But since 0; = 0 [Vars(S)], ¢ <c¢ 0 [Vars(S)] as desired. U

We have pointed out that if the equations of some £ can be oriented to form a canonical

term rewriting system R, then FE is closed with respect to the rewrite relation RNy
The argument above almost provides a proof of the completeness of Narrowing in this
situation, but not quite. The reason is that a Relaxed Paramodulation step is not a
Narrowing step even when the witness pair unifies — in Narrowing one must actually
unify the witness pair as part of the transformation, and this has the effect (via the
associated Variable Eliminations) of applying the unifying substitution to the entire
system. But it is easy to see that Lemma 3.5 holds with Narrowing steps in place of
Relaxed Paramodulation steps: it suffices to observe that when &1 undergoes any SU
step (during the process of computing the unifier of the witness pair) its 6;-degree is
unchanged. The only non-trivial case is Variable Elimination: suppose such a step uses
(x, A) as a redex pair, and write ¢ for the substitution {z — A}. Note that the fact
that 6,z = 6; A immediately implies that #; = 6,¢, and therefore that the #;-degree of
each pair will be undisturbed after application of . The argument in Theorem 3.6 then
applies without change.

Hullot (1980) defined Basic Narrowing to embody the insight that one can forbid Nar-
rowing at any of the occurrences created by the substitution being computed. The reader
familiar with the terminology of that paper will find it easy to check that the sequence
constructed in our completeness proof is automatically based on the set of non-variable
occurrences in the original system. Thus the formalism here allows us to separately ana-
lyze applications of Paramodulation (in the theorem proper) and applications of partial
answer substitutions (in the discussion of the previous paragraph), leading to a simple
indication of the completeness of Basic Narrowing.

4. Completeness of Relaxed Paramodulation

The previous section showed how to compute E-unifiers using Relaxed Paramodulation
relative to a closed set of equations. In this section we give a naive completion procedure
to yield a closed set C*(F) from an arbitrary set F, and — almost — lift the original
construction from C*(F) to E. The lifting is not perfect, since (i) we cannot orient the
equations and (ii) unification of witness pairs will not be preserved by the simulation.
Top-unification is preserved, however.

To obtain a closed set from an arbitrary set of equations, it will suffice to saturate the
set with its critical equations.

DEFINITION 4.1. For any set F of equations, a critical equation of F is an equation
oR = oL[v « oU], where L = R and T' = U are equations in F, v is a nonvariable
occurrence of L, and L/v and T are unifiable with most general unifier o.

Let C(E) be FE together with its critical equations. Then define C°(E) = E, C**1(E) =
C(C*(E)), and C*(E) = |JC*(E).

To motivate the next lemma, observe that it is easy to construct total orderings on
terms which are monotone and noetherian. For example, define any total noetherian
relation > on the variables together with the function sysmbols, extend > to terms by

An Improved General E-Unification Method 13

comparing the size of terms, breaking ties by comparing head symbols, and, if necessary,
comparing immediate subterms from left to right.

LEMMA 4.2. Let > be any monotone noetherian total order on terms. Then for any F,
C*(E) is closed with respect to >¢"(F),

PRrROOF. Let us write C' for C*(E).
It is clear that >© i.e., (> ﬁ&)), is monotone and noetherian, and has symmet-

ric closure equal to <5 Tn order to show confluence of >C it suffices to show local
confluence.

Suppose M >¢ N and M >¢ P.If the redexes of the derivation steps witnessing the
>C_reductions are either disjoint or overlap below a variable occurrence of the larger, the
monotonicity of > ensures the existence of a common >¢-reduct. Otherwise, the facts
that C contains all of its critical equations and that > is total ensure that either N >¢ P
or P>¢ N.DO

Now let F be any set of equations. If a system § is F-unifiable by a substitution
#, then by Theorem 3.6 and Lemma 4.2 there is a RP computation using equations
from C*(FE) yielding an E-unifier o, with ¢ <c+ (g 0[Vars(S)]. Since E and C*(E) are
equivalent theories, o <g 0[Vars(S)]. We need to show how to lift such a computation
to a computation involving only E-equations. The key result is the Simulation Lemma
below, which will imply that the critical equations added to build C*(E) can be removed
in favor RP steps over F.

Some notation will be useful. If A and B top-unify, write A ~ B. Write O(A) for the
set of occurrences in A, and use the convention that if v is not an occurrence in a term
A, Alv «+ X] = A. When v € O(A), let L, (A) be the set of occurrences in A of minimal
length among those incomparable with v (two sequences are incomparable if neither is a
subsequence of the other).

The following easy lemma collects the facts about top-unification that we will need.

LEMMA 4.3. 1 0A ~ 6B implies A ~ B.
2 When v € O(A)NO(B), A~ B implies AJv~ B/v.
3 If A~ B then Alv + X] ~ Blv « X] (whether v is an occurrence in these terms
or not).
4 Ifvg O(A) then A~ o(L[v « U]) implies A ~ L.
5 Suppose v € O(A). If o is a most general unifier of L/v and T, and
A~o(Llv < U)), then AJv~U and Ajlv «T) ~ L.

PrOOF. The first three assertions are clear from Lemma 2.10. To prove (4), note that
by (1), A ~ L[v « U]; then use (3).

The first part of (5) follows from (1) and (2). For the second part, note that
Alv « T ~o(Lv « T]) = o(L)[v « oT] = oL; then apply (1). U

LEMMA 4.4. Suppose A~ B and v € O(A) N O(B).

14 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

2 By a sequence of Term Decompositions,
(A, B) = (Afv, B/v) {(A/w, B/uw) | weL, (4)}
PrRooOF. An easy induction on terms. O

In the remainder of the paper we will often have occasion to refer to systems of the
form 8, [o], where S is known from the context. In such a situation we always intend
that the associated set of variables of S, [o] is the set Vars(S) U Do U Io.

LEMMA 4.5. (SIMULATION LEMMA) Suppose

So 25 S,
relative to C(E), and let W be a co-infinite set of variables. Then there exists a substi-
tution o with Do N W = () such that
So 2581, 0]

relative to E.

Proor. Ifthe given transformation is a standard unification transformation or a Relaxed
Paramodulation relative to F itself there is nothing to prove (we may take o to be the

identity). So suppose Sg RE 81 by a Relaxed Paramodulation step involving the critical
equation R = o(L[v « U]) from E, where ¢ is a most general unifier of L/v and T.
Since o is idempotent its domain is disjoint from the variables it introduces, and since
W has infinite complement we may, without altering the critical equation, vary L and T'
so that DeNW = 0.

Having done so, we take this to be the desired o.

In justifying that o works, we observe that there are two possible forms for the trans-

formation Sp 2= S :

1.So=8"5(A BYEE S dec(AJu,oR), (Alu + o(L[v + U))], B) = Sy,
and

1. 8o = 83 (A, BY 2R 8 dec(A/u, o(L[v « U))), (A[u + oR], By = 8.

Considering each case separately, we mimic the critical-equation-dependent derivations
by the following derivations which use equations only from E. Each Relaxed Paramodu-
lation step in the simulations will be justified by Lemma 4.3.

When the transformation is as in I,

So S'; (A, B)

S’ dec(A/u, Ry, (Alu «+ L], B)

S’ dec(A/u, Ry, ,dec(L/v, T), (Alu + L[v < U]], B)
S, o(dec(A/u, R)),[0], (Alu < o(L[v < U])], B)

S’ dec(A/u, oR),[o], (Alu + o(L[v + U])], B)
S1,[o].

i ﬂ% ﬂ‘é 12 12w

An Improved General E-Unification Method 15

Notice that in passing from the third to the fourth line above we use SU to compute
o. We also use the fact — extending the “dec” notation to systems in the obvious way
— that dee(o (A, B)) = dec(o(dec (A, B))).

In case the transformation is as in I, we have two subcases, according to whether v is
a non-variable occurrence in A/u or not. The difference lies in the form of the subsystem
of 81 represented by dec(A/u,o(L[v + U))).

When v is a non-variable occurrence of A/u then dec(A/u,o(L[v « U])) is

dec{Afuv,ocU), {dec{AJuw,cL/w)lw L, (L)}.
Then, using E,

So = S’ (A, B)
25 S’ dec(AJuv,U), (Aluv « T, B)
2E &, dec(Afuv,U), dec{Aluv + T)/u, L), {((Aluv < T))[u < R], B)
= 8 dec(AJuv,U),dec{A/u[v + T), L), (Alu + R], B)
= S’ dec(Afuv,U)Y,dec(T, L/v),
{dec{A/ulv « T)/w, L/w) | weLl, (L)}, (Alu < R], B)
EL S’ dec(AJuv,cU), (Alu + o R], BY,

{dec{A/ulv < oT]/w, cL/w) | weLl, (L)},[o],
= S’ dec(A/uv,oU), (Alu + o R], BY,
{dec{A/uv, oL/w) | wel, (L)},[o],
= 81,0
When v is not a non-variable occurrence in A/u, there is a prefix v’ of v such that v’

is a variable occurrence in A/u. Let ¢ be such that v = v't. Then dec(A/u, o(L[v + U]))
is

(Afuv’ ;o (L/V'[t + U))), {dec{A/uw,ocL/w)|lw €L, (L)},
so that
81 = S (Alu+ oR],B), (AJuv',a(L/V'[t « U))),
{dec{AJuw,oL/w)|lw €Ly (L)}.

We can then write

So = S’ (A, B)
ER & dec(AJu, L), (A[u < R], B)
= 8 (A/w, L/v'), {dec(A/uw, L/w) | weLl, (L)}, (Alu < R], B)
22 S’ dec(L/v't, Ty, ((L/V)[t < U], A/uv')
{dec{Ajuw, L/w) | w €L, (L)}, (Alu « R], B)
e S [0], (o(L/V'[t « U)), Afur'),

{{AJuw, oLjw) | w €L,y (L)}, (Alu «+ oR], B)
= Sl,[O'].

16 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

With each RP computation relative to C*(F) we can associate a multiset of natural
numbers, with an occurrence of k in the multiset whenever an equation from C*(E) is
used 1in a Relaxed Paramodulation step. The order on the natural numbers induces a
well-founded order on this multiset, and our completeness theorem will induct over this
order.

The Simulation Lemma introduces a residual solved system corresponding to the sub-
stitution involved in a critical pair construction — the next two lemmas verify that this
causes no difficulties in the simulated computation.

Say that a substitution is disjoint from a system § if the domain of the substitution
is disjoint from Vars(S).

LEMMA 4.6. Suppose
NEC

and let o be disjoint from T. Then there is a substitution o' with Do’ = Do and
8,057, [,

Furthermore, the multisets associated with these two computations are the same.

Proo¥F. Observe that in fact o is disjoint from each system occurring in this computa-
tion, so it suffices to consider the case in which S RE_T consists of a single step.

If T is obtained by Trivial, Term Decomposition, or Relaxed Paramodulation we can
apply the same transformation to S, [o] and take o’ to be .

Suppose S = &'; (x, A) and that 7 is obtained by Variable Elimination on x out of the
pair (z, A); write ¢ for the substitution {z — A}. Write o as {y; — M;|i € I'}. Then the
following is an instance of Variable Elimination:

S, o] = &, (2, A) {yi M;li eI}
sy .
= o8, (z,A), {yi— oM;li € I}.

Since Do N Vars(S) = 0, each of the y; is different from z and does not occur in 4, so

we may take ¢’ to be the substitution {y; — ¢ M;li € T}. O

LEMMA 4.7. Suppose
SZE 9]

and let o be disjoint from [8]. Then for some substitution §' such that §'

)

§ [Vars([d])],

3, 10125 [51].

Furthermore, the multisets associated with the two computations are the same.

ProoF. The previous lemma yields a sequence

8, [0)%5- 18], o',
with the same multiset and with D¢’ = Do
Since Do’ N D§ = (b, applying Variable Elimination out of each of those pairs in
[6] which are not solved in [d],[¢'] yields the system determined by the pairs in [d]

An Improved General E-Unification Method 17

together with each of the pairs (z,d(c’z)) for z in Do’. This latter system is solved since
Do’ N Vars([§]) = @, and we may take it to be [§'].

The last assertion of the lemma holds since standard unification transformations do
not contribute to the multiset associated with a computation. O

THEOREM 4.8. (COMPLETENESS THEOREM) RP is a complete E-unification method
for arbitrary sets of equations E.

Proo¥. Let § be an E-unifier of §. By Theorem 3.6 there is an RP computation using
equations from C*(F) yielding a § with § <g 6 [Vars(S)]. Tt suffices, therefore, to

show the following: Whenever S RE, [0] using equations in C*(FE) then for some 6* with

d* =6 [Vars(S)], sZ& [0*] using equations in E. We prove this by induction over the
multiset associated with the sequence from & to [4]. In the base case, when there are no
strictly positive members of the multiset, there is nothing to prove.

Otherwise we have

SEE. 5, 2 5, 25 []

with the step from Sy to S; using an equation from C*(E), k > 0. By the Simulation
Lemma,

So 2581, [0]

using equations from C*~1(E), for some o which is disjoint from [4].
Applying the previous lemma to the sequence from &y to [6], we obtain

SEE 5,25 8 [0 25 5]
with &' = ¢ [Vars([d])]. Since Vars(S) C Vars([d]) we have §' = ¢ [Vars(S)]. Furthermore,

this latter computation submits to the induction hypothesis, since the Simulation Lemma
traded the use of equations from C*(E) for equations from C*~!(E), and the previous

lemma left the associated multiset unchanged.
Therefore

SEE 5]
using equations in F, for some d* with §* = ¢’ [Vars(S)]. But then §* = § [Vars(S)] and
the proof is complete. O

The question naturally arises whether SU steps can be safely applied at any time
during an arbitrary R’P computation. It is not hard to see that the answer is, in general,
no, since application of Term Decomposition can prevent the lifting of root-rewrite steps.
(For example, consider unifying z + @ and y + b when + is assumed commutative.)

Less straightforward is the issue of applying (via Variable Elimination) the partial
substitutions which arise during a computation. This is the Eager Variable Elimination
problem. The advantage of applying a partial answer substitution during the computa-
tion of an entire answer (as is done in Narrowing) is that filling out the term pairs to
be E-unified can block some future Relaxed Paramodulation guesses by preventing the
potential witness pair from top-unifying — this prunes the search space (especially in light
of the discipline imposed by Basic Narrowing).

It is not hard to see that Variable Elimination does not change the set of E-unifiers
of a system, but the strategy of Eager Variable Elimination for the transformations

18 DANIEL J. DOUGHERTY AND PATRICIA JOHANN

appropriate to arbitrary sets of equations is not known to be complete (for a discussion
in the context of Lazy Paramodulation, see (Gallier and Snyder 1989)). The technical
problem is that, in contrast to Narrowing, the witness pairs of a Relaxed Paramodulation
step need not have f-degree equal to 0 (here, # is the E-unifying substitution which the
computation is trying to constuct). This forestalls a naive argument such as that given
at the end of Section 3.

4.1. ACKNOWLEDGEMENT

The authors are indebted to Wayne Snyder for his enthusiasm and encouragement,
and specifically for several instructive discussions.

References

BACHMAIR, L. (1987), Proof Methods for Equational Theories, dissertation, U. of Illinois, Urbana-
Champaign.

BACHMAIR, L., DERsHOWITZ, N., AND HsIianG, J. (1986), Orderings for equational proofs, Proc. Symp.
on Logic in Computer Science, 346-357.

BACHMAIR, L., DERSHOWITZ, N., AND PLAISTED, D. (1987), Completion without failure, Proceedings of
CREAS.

DERrsHOWITZ, N., AND JOUNNAUD, J.-P., (1991) Term Rewriting Systems, in Handbook of Theoretical
Computer Science, 243-320, North-Holland, Amsterdam.

DOUGHERTY, D., AND JoHANN, P. (1990), An improved general E-unification method, Proc. Tenth
International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 449
(ed. M. E. Stickel), 261-275, Springer-Verlag, New York.

Fay, M. (1979), First-order unification in an equational theory, Proc. Fourth Workshop on Automated
Deduction.

FaGes, F., AND HUET, G. (1986), Complete sets of unifiers and matchers in equational theories, Theo-
retical Computer Science 43, 189-200.

GALLIER, J. H., AND SNYDER, W. (1989), Complete sets of transformations for general E-unification,
Theoretical Computer Science 67, 203-260.

GOGUEN, J. A., AND MESEGUER, J. (1981), Completeness of many-sorted equational logic, ACM SIG-
PLAN Notices.

GOGUEN, J. A., AND MESEGUER, J. (1985), Completeness of many-sorted equational logic, Houston
Journal of Mathematics, 307-334.

HERBRAND, J. (1930), Sur la Theorie de la Demonstration, dissertation; in Logical Writings (ed. W.
Goldfarb), Cambridge, 1971.

Hurrot, J.-M. (1980), Canonical forms and unification, Proc. Fifth International Conference on Auto-
mated Deduction, Lecture Notes in Computer Science 87, 318-334, Springer-Verlag, New York.

KIRCHNER, C. (1984), A new equational unification method: a generalization of Martelli-Montanari’s
algorithm, Proc. Seventh International Conference on Automated Deduction.

KIRCHNER, C. (1985), Méthodes et Outils de Conception Systematique d’Algorithmes d'Unification dans
les Theories Equationnelles, Thése d’Etat, Université de Nancy 1.

KIRCHNER, C. (1986), Computing unification algorithms, Proc. Symp. on Logic in Computer Science,
206-216.

LANKFORD, D. (1975), Canonical Inference, Tech. Rep. # ATP-32, Dept. of Mathematics and Computer
Science, U. Texas at Austin.

MARTELLI, A. AND MONTANARI, U. (1982), An efficient unification algorithm, ACM Transactions on
Programming Languages and Systems 4, 258—282.

MARTELLL, A., Moiso, C., aND Rossl, G. F. (1986), An algorithm for unification in equational theories,
Proc. Third Conference on Logic Programming.

PLOTKIN, G. (1972), Building in equational theories, Machine Intelligence 7 (ed. B. Meltzer and R.
Michie), 73-90, Edinburgh University Press, Edinburgh.

RoBINsSON G., aAND Wos, L. (1969), Paramodulation and theorem-proving in first order theories with
equality, Machine Intelligence 4 (ed. B. Meltzer and R. Michie), 135-150, Edinburgh University
Press, Edinburgh.

SLaGgLE J. R. (1974), Automated theorem proving for theories with simplifers, commutativity, and
associativity, Journal of the ACM 12, 23-41.

