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Abstract—HLA-based distributed simulations tend to suffer
from load imbalances and degradation in performance as a result
of running on distributed environment. High-Level Archite cture
(HLA) is a general purpose framework that eases the implemen-
tation of distributed simulations on top of dedicated resources
without worrying about the computing infrastructure. Due t o the
high cost of hardware and other factors, some companies have
ditched the concept of dedicated resources and shifted towards
shared ones which revealed some HLA weaknesses, out of which,
dynamic reaction to load imbalances and managing federateson
the shared resources. Therefore, different efforts have proposed
numerous dynamic load balancing systems to offer a balancing
feature to running distributed simulations. In order to per form
the load balancing task, these proposed systems gather and make
use of a number of simulation and load metrics. Load prediction
is a metric that is computed to provide load projections and
prevent any prospective load imbalances by migrating federates
from an overloaded shared resource to an underloaded shared
resource. This work touches the federate migration decision-
making process, which is the last step of the balancing task.
The proposed federate migration decision-making methods are
to overcome the dependency on predefined thresholds in previous
work and offer dynamic decisions to migrate federates.

Index Terms—High Level Architecture; Load Balancing; Fuzzy
Logic; Impact

I. I NTRODUCTION

Complex distributed simulations, such as largely HLA-
based simulations, is one of the topics that have been the
focus of many researchers as they provide a fast, yet easy,
implementations for solving complicated problems. Because
of the dependency of these kinds of simulations on distributed
and parallel/concurrent systems, their performance can be
easily affected by different factors, such as dynamic changes of
simulation load, heterogeneity of resources, presence of exter-
nal load, and improper distribution of simulation entities. One
way to resolve the improper distribution of simulation entities
is to initially place these entities, based on the heterogeneity of
the resources, in a way to ensure that the distributed simulation
would start with a balanced state. Some load balancing man-
agement systems that implement the previous solution usually
lack the dynamic load redistribution capabilities after the
distributed simulation starts executing. Therefore, a number of
load balancing management systems have been proposed to
dynamically reallocate simulation entities between resources
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once load imbalances are detected by continually monitoring
the load of the resources.

High-Level Architecture (HLA) is a battery-included frame-
work that aims to ease the implementation of distributed
simulations. Reusability and interoperability of simulation
entities are the concepts HLA introduced to enhance, unite,
and simplify designing distributed simulations. HLA allows
the reuse of simulation entities (federates) in other distributed
simulations (federations), while following policies for ex-
changing data to allow interoperability. In order to apply these
two concepts, HLA forces a set ofrules to be complied by
federates and federations. Moreover,Interface Specifications
are defined to unite the communication among federates and
their respective federations andObject Model Templatesto
publish their objects and interactions to others in the dis-
tributed simulation.

The design of HLA was based on usage with dedicated
resources, as a result HLA has shown some weaknesses with
the implementation of distributed simulations on shared re-
sources, such as inability to control the federates and a proper
federate migration protocol to reallocate federates without
stopping the distributed simulation. Furthermore, HLA lacks
load balancing capabilities. Different proposed load balancing
management systems have been proposed to provide solutions
to load imbalances while running distributed simulations on
shared resources. These systems use different metrics to real-
locate federates between resources to balance the simulation
environment, such as migration load [1], communication load
[2], and projections [3].

The work presented here discusses different dynamic feder-
ate migration decision-making approaches . These proposed
approaches aim to remove the dependency of a previous
work [3] on predefined thresholds which resulted in a load
balancing system that is not adaptive to different kind of data
or prediction methods. Instead of using static thresholds,the
proposed approaches make use of a set of features that are
extracted from the current load of the resources to dynamically
adjust themselves at every balancing cycle.

This paper is structured as follows. Section 2 presents
related work. Section 3 deliberates the incorporated system.
Section 4 discusses the proposed federate migration decision-
making approaches. Section 5 compares the performance of
the proposed approaches against the original approach. Section
6 summarizes the outcome and discusses future work.



II. RELATED WORK

Load balancing becomes a necessity when the execution
time matters. As a result, many different dynamic load balanc-
ing systems and schemes have been proposed to offer better
performance. Some of these designed schemes migrate feder-
ates from overloaded resources to underloaded resources based
on the communication characteristics and the dependencies
between federates. Other systems make use of computational
aspects of the distributed simulation to reallocate the load.
Other systems make use of prediction models to project the
load of the resources and redistribute the load to prevent load
imbalances.

Communication-baseddynamic load balancing systems
identify simulation entities that degrade the performanceand
execution time of the distributed simulation by analyzing
the simulation look-ahead and communication dependencies.
Look-ahead allows the detection of simulation entities that
delays the simulation by affecting other simulation parts
[4] [5]. On the other hand, monitoring communication rate
enables identifying delays that are triggered by communication
latencies. Evaluating the communication dependencies helps in
reducing the network distance between parts, and this process
has been performed statically [6] [7] and dynamically [5] [8]
[9]. Using Communication-based load balancing system could
be beneficial, however, it lacks the capability to deal with load
imbalances in shared resources.

Computational-basedsystems analyze the computational
load of the federates or the resources in order to migrate
federates from overloaded resources to underloaded resources.
Different load balancing systems have been proposed that aim
to mainly enhance the performance of simulation execution
time by improving the execution time of each federate [10]
[11] [12], while other systems redistribute loads between the
shared resources to ensure even allocation [13] [14] [15]. The
previous systems lack proper load reallocation with the pres-
ence of external background load and dealing with resources
with different configurations. As a result, some enhanced
solutions have been proposed [16] [3] to overcome these
limitations.

Prediction-based systemsuse different forecasting methods
to project the load of the shared resources in a number of future
balancing cycles. These projections are categorized into two
categories, where each category serves the system in a specific
way. The first kind of projection recognizes load imbalances
and reallocates loads to prevent these load imbalances. On
the other hand, the second kind of projections help the load
balancing system to identify any future load imbalances so
the system would react early towards these imbalances and
perform precautional procedures. These systems depend on
the accuracy of the forecasting methods [3] [17].

The approach in [3] [2] uses thresholds to decide if a load
migration is needed. These thresholds are predefined based on
a certain case, which makes this approach not adaptive to new
forecasting methods. Therefore, different adaptive federate
migration decision-making approaches are proposed.

Fig. 1: Prediction-Based Dynamic Load Balancing Architecture

III. PREDICTIVE LOAD BALANCING SCHEME

The proposed federate migration decision-making ap-
proaches are incorporated into a dynamic prediction-based
load balancing management system described by De Grande
and Boukerche [3] and presented in Figure 1. The process
of load balancing in the system goes over two steps: mon-
itoring the shared resources to identify the overloaded and
underloaded resources, and applying certain approaches to
decide whether a migration is needed from an overloaded to
an underloaded resource.

In the incorporated system, resources with similar configu-
rations are grouped into one cluster and managed by a Cluster
Load Balancer (CLB). Each CLB is connected to Local Load
Balancers (LLBs) that reside in the shared resources. These
connections allow CLBs to manage the resources that belong
to it and the federates that run on them. CLBs are connected
to its neighboring CLBs so that they can exchange information
about their own environment. CLBs gather load information
about its resources by communicating with the Monitoring
Interface and then, with the help of the Prediction Interface,
analyze the candidate list of resources to reallocate and evenly
balance their loads.

CLBs access monitoring related data by communicating
with the Monitoring Interface, which extracts load data from
sending inquiries to Monitoring Information Services (MIS).
Once an inquiry is received by MIS, MIS would send only the
load related information of resources under the management
of the inquiring CLB. MIS uses Grid services, through moni-
toring and discovery services, to access such information.Grid
is a management system for shared resources that is used to
coordinate the execution of distributed applications [18].

Each resource has an LLB that gathers information about
the load of the simulation entities that run on it and response to
queries and commands sent by its managing CLB. Collecting



Load information is performed upon request from the CLB,
where the receiving LLB forwards the collecting request to
the Federate Balancing Interface. Federate Balancing Interface
then forwards the request to the Local Monitoring Interfaceof
each federate it hosts to retrieve the CPU consumption of the
hosted federates. LLB forwards migration calls from its CLB
to its Migration Manager.

Similarly to [19] [20], the load balancing system performs
federate migrations in two steps: transmitting static dataand
initialization files through Grid Services from the overloaded
resource to the underloaded resource, followed by sending
the execution status and queued incoming messaged through
the Migration Manager. Migrating federates between two
resources that reside in different clusters are conducted through
a Migration Manager.

As each Prediction Model requires different kind of histor-
ical data, Prediction History keeps a copy of previous data
that are needed by the implemented Prediction Model. The
Prediction Engine processes the Prediction Model on the data
it receives from both CLB and Prediction History. In the
incorporated system, asmoothed valueand a trend are kept
in the Prediction History as the system uses an extension of
Exponential Weighted Moving Average, named Holt’s Model.

A. Re-distribution Algorithm

In order to enable the balancing capabilities in an HLA-
based distributed simulation, the incorporated system uses a
redistribution algorithm to balance the load among the shared
resources. The algorithm consists of three different stages:
monitoring, reallocation, migration.

The dynamic load balancing management system continu-
ally monitors the shared resources which enables the respon-
siveness to any sudden load oscillations. The monitoring stage
is periodically executed every∆t, which is constrained by the
monitoring tool’s refresh rate. To ensure accurate projections,
the system first filters the gathered load information to elim-
inate abnormalities. Once filtered, the system normalizes the
data to ensure a fair comparison between the resources. The
system used the set of normalized loads along with the previ-
ous history and the migration status to calculate the projection
of each shared resource in three different future balancing
cycles: short-term, medium-term, and long-term projections.
The values of the projections represent the predicted load of
a resource in a specific future balancing cycle.

The load balancing system applies a pair matching algo-
rithm, which is shown in Algorithm 1, between the resources
in each balancing cycle. The system gives more importance
to the balancing cycles that are closer to the current cycle.
Before applying the pair matching algorithm, the system sorts
the list of resources according to their loads. The system
then starts the pair matching process against the sorted list
by adjusting a list of parameters,min, δ andθ, to be used for
calculating thresholds upon matching each pair of resources.
The first threshold,min × δ, is to ensure that the difference
of the load between the overloaded and the underloaded
resources is large and justifies a federate migration. The second

threshold,min× θ, is larger that the first threshold and it is
only applied when the overloaded resource has one federate
which ensures that the load of the overloaded is abnormal and
transferring a federate can lower its load. Once the thresholds’
values are exceeded, the pair matching algorithm triggers a
migration to reallocate the federate with the lowest load from
the overloaded resource to the underloaded resource.

Based on the success rate of the local migrations, each CLB
starts the process of inter-domain migrations, migrationsto
other clusters. The CLB starts by requesting Cluster Load,
the average load of its shared resources, from its neighboring
CLBs. When the Cluster Load is received by the requesting
CLB, a process starts to recognize local overloaded resources,
when compared against the load of the resources of the other
cluster, by identifying load imbalances between the shared
resources of the involved clusters. This list of local overloaded
resources is sent to the neighboring CLBs for projection
calculations and pair matching. When the neighboring CLBs
conclude the process and finalize the list of possible migrations
between themselves and the other cluster, the list of migrations
are sent to the other cluster to start the inter-domain migra-
tions.

Algorithm 1 Local Prediction Pair-Match Evaluation Algo-
rithm
Require: srcRsc, dstRsc,min, θ, δ

min, δ, θ ← adjustParameters(srcDirection, dstDirection, type)
if dstLoad < min then

if numberFederates(srcRsc) > 1 then
create migration move(srcRsc, dstRsc)

else
if numberFederates(srcRsc) ≥ 1&srcLoad > (min × θ) then

create migration move(srcRsc, dstRsc)
end if

end if
else

if (srcLoad− dstLoad) > (min× δ) then
if numberFederate(srcRsc) > 1 then

create migration move(srcRsc, dstRsc)
else

if numberFederate(srcRsc) > 1&srcLoad > (min× θ) then
create migration move(srcRsc, dstRsc)

end if
end if

end if
end if

B. Forecasting Load Status

The load balancing computes three load forecasting pre-
diction model independent projections: short, medium and
long term. Each of these projection serves a certain goal
towards balancing the load of the shared resources. The short-
term projection (SP) helps the system react to current load
imbalances. On the other hand, medium-term and long-term
projection, MP and LP, identify future load imbalances which
are used to help the balancing system to be proactive and
prevent any future load imbalances. The projections represent
the predicted load of a resource at a certain balancing cycle
in the future. Short, medium, and long term projections are
defined as 1, 3, and 5 balancing cycles, respectively.



C. Prediction Models

The computational load of each shared resource is collected
in a list in time fixed intervals. This list represents the load
behavior of each resource in time. Thus, time series prediction
methods are used in order to forecast loads of the shared
resources.

The system uses a time series forecasting model, namely
Holt’s model, to calculate the projections as the collectedload
information represents the behavior of the resources in time.
Holt’s model is an extension to the well-known double Expo-
nential Weighted Moving Average (EWMA). EWMA builds
a relationship between the internal elements of the provided
data in three different aspects [21]. Single smoothed EWMA
computes a smoothed value of the predicted term based on an
exponentially averaging technique. Double EWMA uses the
trend of the data to compute the projection. Triple EWMA
divides the data into seasons, and uses this knowledge along
with the trend to compute the projection. Through experi-
ments, the data has shown a trend but has not shown any
sign of seasonality.

As Holt’s model is the model implemented in the Prediction
Model, the Prediction Engine computes the forecasting value,
Fm+i at a future cyclei from point m, as represented in
Equations 1, 2, and 3. Using the monitoring related data,
provided by the Monitoring Interface through CLB, along with
the historical data, which is stored in the Prediction History,
the Prediction Engine starts by computing the smoothed value,
sumi based on the current actual load of a resource,elemi,
the previous smoothed value,sumi−1, and the previous trend,
ti−1. Computing the trend,ti enables the extrapolating of the
average of the smoothed value and is based on the tendency,
sumi − sumi−1, and the previous trend,ti−1,. The sign of
the tendency represents the direction of the load, increasing
or decreasing, while the value of the tendency shows how
steep the trend is. Once the smoothed value and the trend are
computed, the Prediction Engine calculated the three different
projections: SP, MP, and LP, as shown in Equation 4.

sumi = α×elemi+(1−α)×(sumi−1+ti−1), 0 ≤ α ≤ 1 (1)

ti = β × (sumi − sumi−1) + (1− β)× ti−1, 0 ≤ β ≤ 1 (2)

Fi+m = sumi +m× ti,m ∈ {1, 3, 5} (3)

SP = Fi+1,MP = Fi+3, LP = Fi+5 (4)

At the initial stage, the Prediction History sets all previous
smoothed value to0 and the first smoothed value toelem0.
This is to ensure that the projection calculations will not
crash when previous history are not presented. Similarly, the
Prediction History assigns the value of0 to the first trend,t0,
as it has no idea of the tendency of the load.

IV. FEDERATE M IGRATION DECISION-MAKING

Two different thresholds were discussed that the system uses
in order to decide if there is a need to perform a load migration.
These thresholds are considered dynamic but not adaptive,

as their values are changed to predefined values based on
the current type of projection and the tendency of both
the overloaded and underloaded resources. These predefined
values are set after running a set of experiments and the best
set of thresholds had been chosen. As a result, any new change
or new improvement to the system would require running a set
of experiments to produce a new set of thresholds. This process
would be time consuming and inefficient. Therefore, the next
section proposes different federate migration decision-making
approaches that are both dynamic and adaptive.

A. Restricted Approach

The Restricted Approach (RA) replaces the dependency on
the predefined thresholds with a rule-based Expert system.
RA uses the load and direction of the source and destination
resources, the mean of all resources in the current balancing
cycle, and a computed tolerance. The tolerance is a value
proposed in the original approach that defines a range that once
used along the mean, the dynamic load balancing system can
define abalancedarea where resources with loads that reside
in that area are considered balanced. RA uses the concept of
tolerance to compute a region around the quantitative value
of the resource’s load to define aresource area, as shown in
Figure 2.

source load + tolerance

source load - tolerance

mean + tolerance

mean - tolerance

mean

destination load - tolerance

destination load + tolerance

Fig. 2: RA Areas

As RA is an expert system, a set of rules are defined based
on the observation of when the migrations should be triggered.
The rules are based on whether there exists an intersection
between thebalanced areaand theresource area. The existing
of such intersection raises abalanced flagas the resource is
near the balanced region and there is no justification to have
it involved in a federate migration. A resource is considered
unsafeand marked for possible migration when its resource
area does not intersect with the balanced area.

RA can be considered as a loose approach as it triggers a
load migration almost all the time except when both resources
are not safe, the destination has an increasing load tendency,
and the source has either a decreasing or stable load tendency.
In simple words, both resources are heading towards the



balanced area. Thus, issuing a federate migration from the
overloaded source to the underloaded destination would end
up in the possibility of changing the destination’s status from
underloaded to overloaded in the few next balancing cycles.
Additionally, the previous rule prevents issuing migration calls
in the future when overloaded resources become underloaded
resources.

B. Direction Ratio Approach

RA uses a loose set of rules that can cause inconsistency
in the federate migration process. Thus, a more restricted
approach was needed. The restrictions to be applied in the
new approach must limit the number of migrations to only
those that would eventually lead to a balanced environment.
In order to do that, Direction Ratio (DR) addsRatio to the list
of metrics used by RA. The ratio represents the percentage of
source’s load tendency to the destination’s load tendency.

In addition to RA rules, DR applies more limitations to the
number of triggered migrations by analyzing the direction of
the candidates’ loads. Examining the different possibilities of
the directions gives an insight on whether a migration has the
possibility of affecting the load and status of both candidates.
The ratio is used as a metric to calculate the effect factor.
The ratio is then compared to a fixed value, and based on the
comparison, DR either triggers or ignores the migration. Once
DR hits one of the following rules, it triggers a migration.
Each rule is represented by set of conditions that are colon
separated. The first and third fields represent whether the
Source/Destination are safe (S) or not (N). The second and
fourth fields signify the tendency, increasing (ր), decreasing
(ց), or not used (−), for the source and destination, respec-
tively.

• S:−:S:−
• S:ր:N:ց
• S:ր:N:ր, Ratio> 0.5
• S:ր:N:ց, Ratio< 0.5
• N:ց:S:ց, Ratio< 0.5
• N:ր:S:ց
• N:ր:S:ր, Ratio> 0.5

C. Fuzzy Approach

A different idea was desired to increase the balancing
convergence speed of the shared resources. This led to start
investing a new approach that identifies different kinds of loads
and reacts differently for each type of load. The idea is based
on categorizing the loads into sets that represent the levelof
load the resource is under. Instead of a federate migration
decision-making approach that depends on comparing different
metrics, the desired approach would make use of the resources’
categories to trigger a number of federates to insure a quick
convergence speed. Fuzzy Logic is an approach that works by
categorizing inputs and provides an output based on predefined
rules. Fuzzy Approach (FA) assigns each load to a set, then
goes over a number of predefined rules to see which one is
applied to the current situation and then perform the rule’s
actions.

The approach has 6 predefined sets, where a pair of 3
sets are dedicated to cover each status, overloaded and un-
derloaded. The 3 sets per status covers different ranges of the
loads:extreme, normal, andlow. The combination of the status
with their ranges of loads results in the following fuzzy sets:
extremely overloaded, overloaded, slightly overloaded, slightly
underloaded, underloaded, extremely underloaded.

Extremely overloaded

Overloaded

Slightly overloaded

Slightly underloaded

Underloaded

Extremely underloaded

mean

max load

min load

Fig. 3: Fuzzy Approach: Dividing Sets

Based on these sets, FA goes through the rules that define
the number of migrations to perform from the overloaded to
the underloaded resource. In this case, FA migrates 2 federates
when the source is extremely overloaded and the destination
is extremely underloaded. However, it does not trigger any
migrations when it feels that issuing a migraion call would
cause load imbalances between resources, as when the source
and the destination match any of these sets, respectively,
(extremely overloaded, underloaded), (overloaded, extremely
underloaded), and (slightly overloaded, slightly underloaded).
In the other cases, FA triggers only one migration.

At each balancing cycle, FA creates 3 equal sets for each
status that ranges from the min/max to the balanced region, as
shown in Figure 3. A loop starts by selecting candidates and
assigns each of the candidates to their respective category. FA
then evaluates the appropriate rule. Once a rule is evaluated,
the system will transfer the proposed number of federates by
FA from the source to the destination.

D. Impact Approach

All of the proposed approaches, including the approach that
is used in the original approach, remove the the candidates
from the candidate list once a migration is triggered. When the
resources are removed from the candidate list, the balancing
system would not consider analyzing any possible load mi-
grations in the current balancing cycle or the next one for the
removed candidates. Because of this behavior, the balancing
system does not take into account any other possible scenarios,
that involve the removed resources, which could be more
beneficial to the shared resources. Thus, Impact Approach (IA)
is designed to propose analyzing possible migrations and issue
the most beneficial ones.



(a) SP migrations (b) MP migrations (c) LP migrations

Fig. 4: IA migrations

Impact Approach (IA) takes into account all possible scenar-
ios any resource is involved in and triggers the most valuable
migrations. In order to do so, IA computes animpact factor
for each possible load migration, represented by

Impact =
srcLoad−mean

dstLoad
(5)

The mean is subtracted from the the load of the source
to bring the source’s load closer to the destination’s load.
The impact factor’s value represents the impact degree of the
migration to the shared environment. The higher the value is,
the more important it is to trigger this migration.

For this approach to work, it goes first over all the possi-
ble migrations for the short term projections. The possible
migrations are presented to the system as a unidirectional
graph, from an overloaded source node to an underloaded
destination node, and the impact factor as the weight of the
edge, as shown in Figure 4. Then, the same candidate list is
sent to be processed for medium term projections. The possible
list of migrations is added to the unidirectional graph. When
IA finishes analyzing the possible load migrations for the
medium term projections, the candidate list is sent untouched
to be evaluated for long term projections. Similarly, the list of
migrations are added to the unidirectional graph.

Once all possible migrations are computed, IA goes over
through the graph and first perform the migration with the
highest impact factor. Once it issues a high impact migration,
IA removes the candidates of the involved migration and their
respective edges from the graph, eliminating any migration
from or to the candidates in the current balancing cycle.
The process continues until no more edges in the graph. The
remaining resources are nominated as candidates for the next
balancing cycle.

V. EXPERIMENTAL RESULTS

The proposed federate migration decision-making ap-
proaches are compared to the original decision-making ap-
proach [3]. The evaluation process was conducted in two
different stages. The first stage analyzes thebehaviorof the
proposed approaches on data samples, while the second stage
compares the performance of the proposed approaches against
the original approach.

1) First Stage: : The behavior to be examined is the
distribution of the migrations triggered per each projection in
a single balancing cycle. Figure 5 shows the behavior for such

output per each of the proposed federate migration decision-
making approach.

By looking into the total amount of migrations, the ap-
proaches have the same behavior. However, FL exceeds the
other approaches. The reason of the high number of migrations
lays in how FL categorizes the candidates. When FL cate-
gorizes the overloaded resource as anextremely overloaded
and the underloaded resource as anextremely underloaded, FL
transfers two federates from the overloaded to the underloaded
instead on one. The previous rule does play an important rule
towards increasing the convergence speed to have a balanced
environment. However, its drawback is that it triggers more
migrations.

This rule is particularly applied the most in these results due
to the way FL is implemented. FLalwayscreates theextremely
overloadedand extremely underloadedthat are based on the
current loads instead of theoverall load of the system. In a
nutshell, FL creates the extremely overloaded set even when
the load is not considered extremely overloaded for the shared
resources as a whole, however, it represents an extremely
overloaded load for the list of loads in the current balancing
cycle.

To better understand the behavior of the proposed ap-
proaches, the number of migrations triggered for SP, MP and
LP was analyzed. By comparing the results of the approaches
with the results of the original approach (System), RA pro-
duces more SP migrations. This is justified by the loose rules
we have defined in RA. The more loose the rules are, the more
migrations are to be triggered. Because of the high number of
migrations initiated in SP phase, the less candidates are sent to
be processed in MP phase. The effect of having low number
of candidates is seen in the MP migrations of RA compared
to the original where the number of migrations in RA is
less than the original system. However, running simulations
with more federates results in more inconsistencies, wherethe
looseness is taken advantage from and RA starts producing
more migrations than the original system. After this stage,RA
has consumed most of its candidates results in low migrations
initiated in LP.

However, DR applies more restrictions and this resulted in
reducing the number of migrations in SP. This allows for more
candidates to be sent for MP phase. At this stage, DR has
provided MP phase with the highest number of candidates,
therefore, more MP migrations than the original system and
RA. Eventually, sending more candidates to LP.

IA shows the lowest number of migration triggered in SP.
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(b) SP migrations
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(c) MP migrations
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Fig. 5: Migrations per approach

In a previous study [17], we can see that the SP has the
lowest projections among the rest (MP and LP). As a result,
The impact factor computed for SP is smallest and LP is the
highest. From how the IA works, IA gives more importance to
migrations with the highest impact factor first. Therefore,the
number of migrations triggered in LP is the highest, followed
by MP, and then SP. This shows that the migrations are issued
in a manner where LP migrations are given more importance
than MP, which is higher than SP.

Because of the implementation of the rule where two
federates are transferred, FL produces the highest number of
migrations in SP. It is true that the number of candidates sent
for MP processing is low at this stage, however, the rule once
again is applied, at least once, which results in a high number
of migrations in MP. At LP stage and because most of the
rules initiate a migration, the number of candidates is lower
than the rest. The two-migration rule again plays an important
role here as it increases the number of initiated migrations.

2) Second Stage:: The goal of the second stage is to
analyze the gained performance of the proposed approaches.
Moreover, this analysis would help identifying the suitable use
cases for the different combinations.

To properly evaluate the approaches, a heterogeneous
testbed was used that consisted of two clusters of computing
servers: DELL and IBM. The DELL cluster contains 15
computing servers interconnected through a Myrinet optical
network that allows for data transmission up to 2 gigabits
per second; also each computing server contains a Quadcore
2.40GHz Intel Xeon CPU and 8GB of DIMM DDR RAM.
The IBM cluster was composed of 23 computing servers
interconnected by a gigabit Ethernet network; each server

contains a Core 2 Duo 3.4 GHz Intel Xeon CPU and 2GB of
DIMM DDR RAM. The management nodes of the two clusters
are interconnected with a Fast-Ethernet link. Both clusters run
on Linux and use Globus Toolkit 4.2.1 and HLA platform with
RTI version 1.3 to support the load balancing systems and
coordinate the experimental results. The results below arethe
average of 6 runs. Tables I and II shows the rounded average
number of migrations and the execution time of each approach,
compared with the original approach, with confidence rate at
95%.

From Table I, there are three approaches that give the
best results, but in different federates configurations. With
low federate configurations, 100 to 300 federates, the original
approach triggers the least number of migrations. In such
configurations, the load of the shared resources, in general,
is low, thus the differences between the overloaded and the
underloaded resources are low and do not always reach to
the the predefined thresholds in SP. Therefore, losing some
migrations would yield to a low number of migrations.

Looking at the low federate configurations, IA scores the
second in the lowest number of migrations as it performs
the most beneficial migrations and ignores the ones that does
not help balancing the environment. Both RA and DR have
loose rules, which at this point does not reduce nor limit
the triggered migrations as the system does not face serious
load imbalances. However, when we apply one of the medium
federate configurations, federates from 400 to 600, we notice
that the load differences between the overloaded and under-
loaded resources become larger. In the original approach, this
larger difference would go closer to, or beyond, the predefined
thresholds and as a result, the original approach would issue



TABLE I: Number of migrations per approach

Feds Org RA DR FA IA
100 114(17) 164(12) 156(16) 229(24) 152(13)
200 176(29) 278(13) 257(9) 389(11) 249(5)
300 306(10) 373(9) 364(9) 552(17) 342(11)
400 423(11) 451(14) 436(25) 695(9) 414(17)
500 493(31) 537(20) 510(10) 815(17) 489(6)
600 589(36) 629(9) 586(13) 945(21) 561(18)
700 679(38) 707(14) 643(23) 1078(26) 658(18)
800 745(26) 781(31) 685(21) 1181(26) 743(22)
900 833(50) 873(25) 784(34) 1339(14) 845(55)

more migrations. At this point, the rules of DR become more
strict as the system starts facing more load imbalances. In high
configurations, from 700 to 900 federates, HLA produces high
projections for MP and LP, which is explained in [17]. As DR
covers, in its design, more load scenarios than the rest of the
approaches, it rejects unnecessary migrations that are triggered
by other approaches, resulting in less overall migrations.DR’s
strict rules, along with the dependency on the Ratio, play an
important rule in selecting the most suitable migrations.

For the execution time, as shown in Table II, the original
approach is the fastest among the approaches. Throughout an-
alyzing the number of migrations performed at each stage, we
found that the number of inter-domain migrations was larger
in the original approach. Thresholds in the original approach
limit the number of local migrations, however, it is more
loose when it comes to inter-domain migrations. Inter-domain
migrations help the system to reallocate loads from low end
clusters to high end clusters, which would help processing
the simulation faster. On the other hand, as the proposed
approaches adapt themselves to data at each balancing cycle,
they give more importance to local migrations, thus losing the
benefit of utilizing the powerful clusters.

VI. CONCLUSION AND FUTURE WORK

In this paper, a number of federate migration decision-
making approaches are proposed for a load reallocation on
a Large-scale HLA-Based distributed simulations. The ap-
proaches are the result of finding a solution to a limitation
of a current load balancing management system. RA and DR
introduce rules that are independent to any fixed value. Both
approaches cover different set of rules and present different
flexibilities. FA assigns resources to sets and compares the

TABLE II: Execution time, in seconds, per approach

Feds Org RA DR FA IA
100 523(54) 609(40) 599(30) 604(43) 579(31)
200 816(19) 1011(34) 972(32) 999(46) 952(44)
300 1212(47) 1363(19) 1355(14) 1355(40) 1312(52)
400 1512(55) 1653(47) 1658(63) 1694(13) 1577(132)
500 1808(63) 1993(42) 1958(41) 1990(52) 1954(22)
600 2139(108) 2315(35) 2298(34) 2312(46) 2149(123)
700 2509(63) 2627(35) 2611(62) 2653(29) 2586(47)
800 2792(27) 2920(55) 2907(68) 2958(64) 2914(69)
900 3192(57) 3270(29) 3262(98) 3346(67) 3314(96)

combination against predefined rules to trigger the required
number of migrations for the system to converge faster. IA
shows a flexible approach to analyze all possible migrations
and trigger the most important ones first through the use of
impact factor.

For future work, the results concluded in this work would
be compared against SSRT [17] to identify the suitable use
case of each combination, an in depth analysis on the com-
plexity of each federate migration decision-making approach
is performed to find the hotspots in their algorithms, a dynamic
fuzzy logic set generator is designed to built sets based on the
overall and historical loads instead of the current load.
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