
ORI GIN AL PA PER

Evolving strategy for a probabilistic game of imperfect
information using genetic programming

Wojciech Jaśkowski Æ Krzysztof Krawiec Æ Bartosz Wieloch

Received: 31 December 2007 / Revised: 30 April 2008 / Published online: 10 July 2008

� Springer Science+Business Media, LLC 2008

Abstract We provide the complete record of methodology that let us evolve

BrilliAnt, the winner of the Ant Wars contest. Ant Wars contestants are virtual ants

collecting food on a grid board in the presence of a competing ant. BrilliAnt has

been evolved through a competitive one-population coevolution using genetic

programming and fitnessless selection. In this paper, we detail the evolutionary

setup that lead to BrilliAnt’s emergence, assess its direct and indirect human-

competitiveness, and describe the behavioral patterns observed in its strategy.

1 Introduction

The 2007 edition of Genetic and Evolutionary Computation Conference (GECCO,

London, July 7–12, 2007) included the Ant Wars contest aimed at evolving

a controller for a virtual ant that collects food in a square toroidal grid environment

in the presence of a competing ant. In a sense, this game extends the Artificial Ant

problem [14], a popular genetic programming benchmark, into the framework of

a two-player game.

Ant Wars may be classified as a probabilistic two-person board game with

imperfect information and partial observability. The game starts with 15 pieces of

food randomly distributed over an 11 9 11 toroidal board and two players, called

Ant 1 and Ant 2, placed at predetermined locations, (5, 2) for Ant 1 and (5, 8) for

W. Jaśkowski � K. Krawiec (&) � B. Wieloch

Institute of Computing Science, Poznan University of Technology, Poznan, Poland

e-mail: kkrawiec@cs.put.poznan.pl

W. Jaśkowski

e-mail: wjaskowski@cs.put.poznan.pl

B. Wieloch

e-mail: bwieloch@cs.put.poznan.pl

123

Genet Program Evolvable Mach (2008) 9:281–294

DOI 10.1007/s10710-008-9062-1

Ant 2. No piece of food can be located in the ants’ starting cells. An ant’s field of

view is limited to a square 5 9 5 neighborhood centered at its current location. An

ant receives the complete information about the states (empty, food, enemy) of all

cells within its field of view.

The game lasts for 35 turns per player. In each turn an ant moves into one of the

eight neighboring cells. Ant 1 moves first. Moving into an empty cell has no effect.

If an ant moves into a cell with food, it scores 1 point and the cell is emptied.

Moving into the cell occupied by the opponent kills it: no points are scored, but only

the survivor can go on collecting food until the end of the game. A game is won by

the ant that reaches the higher score. In case of a tie, Ant 1 is the winner.

As the outcome of the game depends on spatial distribution of food pieces, the

proper choice of the better of two players requires grouping multiple games into

matches played on different boards. A match consist of 2 9 k games played on k
random boards generated independently for each match. To provide for fair play, the

contestants play two games on the same board, in the first game taking roles of Ant

1 and Ant 2, and then exchanging these roles. We refer to such a pair of games as

a double-game. To win a 2 9 k-games match, an ant has to win k + 1 or more

games. In the case of tie, the total score determines the match outcome. If there is

still a tie, a randomly selected contestant wins.

The contest rules required an ant’s controller to be encoded as an ANSI-C

function Move(grid, row, column), where grid is a two-dimensional array

representing the board state, and (row, column) represents the ant’s position. The

function indicates the ant’s next move by returning the direction encoded as an

integer from interval [0,7]. The source code of the function was not allowed to

exceed 5 kB in length.

In this paper, we tell the story of BrilliAnt, the Ant Wars winner submitted by our

team. BrilliAnt has been evolved through competitive one-population coevolution

using genetic programming and a fitnessless selection method. We assess

BrilliAnt’s human-competitiveness in both direct terms (playing against a human

opponent) and indirect terms (playing against a human-devised strategy), and

analyze its behavioral patterns.

2 Evolving game strategies

Though games were at the center of AI’s interest since its very beginning, achieving

a human-competitive performance in this area without an intense help of human

expertise and computational power is still beyond our reach. In the 1960s and 1970s

game playing strategies, like the famous Bernstein’s chess and Samuel’s checker

players, were hand-crafted by humans. The most spectacular achievement of

artificial intelligence in the game domain was the grand master Garry Kasparov’s

defeat in a duel with Deep Blue. However, Deep Blue implements a brute force

approach heavily based on human expertise so it does not contribute much to the

understanding of human intelligence. In the domain of the Go game, the $1.4 M Ing

Prize for the first computer to beat a nominated human competitor has never been

282 Genet Program Evolvable Mach (2008) 9:281–294

123

touched,1 presumably because Go has too many states to be approached by brute

force. Hard AI is also often helpless when it comes to the real-time (strategy) games

[3] or multi-agent games where the number of possible states can be even greater

than in Go. Also, things get more complicated also for the hand-designed algorithms

when the game state is only partially-observable or the game is probabilistic by

nature.

This experience clearly indicates that handcrafting a good game-playing strategy

for a nontrivial game is a serious challenge. The hope for progress in the field are the

methods that automatically construct the game playing programs, like the

coevolution used in our approach.

Coevolution was successfully applied to many two-person games, including

Backgammon [21], Checkers [9], NERO [26], Blackjack [4], Pong [19] and a small

version of Go [15]. Coevolution itself has recently been heavily studied [6–8] to

guarantee monotonic progress towards the selected solution concept.

Within genetic programming (GP, [14]), Koza was the first who used it to

evolve strategies [13] for a simple discrete two-person game. Since then, it has

been demonstrated many times that the symbolic nature of GP is suitable for this

kind of task. Past studies on the topic include both trivial games such as Tic Tac

Toe [1] or Spoof [29], as well as more complicated and computationally-

demanding games, like poker [25]. Core Wars, a game in which two or more

programs compete for the control of the virtual computer, is among a popular

benchmark problem for evolutionary computation and one of the best evolved

players was created using GP [5]. Luke’s work [16] on evolving soccer softball

team for RoboCup97 competition belongs to the most ambitious applications of

GP to game playing since it involved a complicated environment and teamwork.

Recently, Sipper and his coworkers demonstrated [24] human-competitive

GP-based solutions in three areas: backgammon [2], RoboCode [23] (tank-fight

simulator) and chess endgames [10].

3 Strategy encoding

An ant’s field of view (FOV) contains 25 cells and occupies 20.7% of board area,

so, assuming an unbiased random distribution of food pieces, the expected number

of visible food pieces is 3.02 when the game begins. The probability of having

n food pieces within the FOV drops quickly as n increases; for instance, for n = 8

amounts to less than 0.5%. Thus, most of the food to be collected is usually

beyond the FOV. Also, a reasonable strategy should obviously take into account

the rotational invariance and symmetry of FOV; e.g., for two mirrored FOV states,

an ant should behave in a mirrored way. These facts let us conclude that the

number of distinct and likely FOV states is relatively low, and that a strategy

based only on the observed FOV state cannot be competitive in a long run.

It seems reasonable to virtually extend the FOV by keeping track of the past board

1 The Ing Foundation stopped to funding the prize in 2000.

Genet Program Evolvable Mach (2008) 9:281–294 283

123

states. Thus, we equip our ants with memory, implemented by three arrays that are

overlaid over the board:

• Food memory F, which keeps track of food locations observed in the past,

• Belief table B, which describes ant’s belief in the current board state,

• Track table V, which stores the cells already visited by ant.

After each move, we copy food locations from the ant’s FOV into F. Within the

FOV, old states of F are overridden by the new ones, while F cells outside the

current FOV remain intact. As the board state may change subject to opponent’s

actions and make the memory state obsolete, we also simulate a memory decay in

the belief table B. Initially, the belief for all cells is set to 0. Belief for the cells

within the FOV is always 1, while outside the FOV it fades exponentially by 10%

with each move. Table V, initially filled with zeros, stores ant’s ‘pheromone track’

by setting the visited elements to 1.

To represent our ants we used the tree-based strongly typed genetic programming

[20]. A GP tree is expected to evaluate the utility of the move in a particular

direction: the more attractive the move, the greater the tree’s output. To provide for

rotational invariance, we evaluate multiple orientations using the same tree.

However, as the ants are allowed to move both straight and diagonally, we store two
trees in each individual, one for handling the straight directions (N, E, S, W) and

one to handle the diagonal directions (NE, NW, SE, SW).2 Given a particular FOV

state, we present it to the trees by appropriately rotating the FOV, the remaining part

of the board, and the memory, by a multiple of 90�, and querying both trees each

time. Among the eight obtained values, the maximum response indicates the most

desired direction and determines the ant’s next move; ties are resolved by preferring

the earlier maximum.

We define three data types: float (F), boolean (B), and area (A). The area type

represents a rectangle stored as a quadruple of numbers: dimensions and midpoint

coordinates (relative to ant’s current position, modulo board dimensions). To avoid

considering exceedingly large areas, we constrain the sum of area dimensions to six

by an appropriate genotype-to-phenotype mapping. For instance, the dimensions

encoded as (2, 5) in the genotype are effectively mapped to (1, 4) during tree

execution.

The GP function set and the terminals are presented in Tables 1 and 2. Note that

some functions calculate their return values not only from the actual state of the

board, but also from the food memory table F and the belief table B. For example,

NFood(A) returns the scalar product of table F (food pieces) and table B (belief),

constrained to area A.

It is worth emphasizing that all GP functions used here are straightforward. Even

the most complex of them boil down to counting matrix elements in designated

rectangular areas. Though one could easily come up with more sophisticated

functions, this would contradict the rules of the contest, which promoted the evolved

rather than the designed intelligence.

2 We considered using a single tree and mapping the diagonal board views into the straight ones;

however, this leads to significant topological distortions which could deteriorate ant’s perception.

284 Genet Program Evolvable Mach (2008) 9:281–294

123

4 The experiment

To limit human intervention, our ants undergo competitive evaluation, i.e., face

each other, rather than an external selection pressure. In such a setup, termed one-

population coevolution [18] or competitive fitness environment [16, 1], the fitness

of an individual depends on the results of the games played with other individuals

from the same population. The most obvious variant of this approach is the round-
robin tournament, which needs n(n - 1)/2 games to be played in each generation,

where n is the population size. Another, computationally less demanding method

is the single-elimination tournament proposed by Angeline and Pollack [1]

(requires only n - 1 games) or k-random opponents [22] (kn games). These

fitness assignment methods were designed to be compatible with the evaluation-

selection-recombination mantra characteristic for the traditional fitness-based

Table 1 The terminals used by evolving strategies

Terminal Interpretation

Const() An ephemeral random constant (ERC) for type F ([-1; 1])

ConstInt() An integer-valued ERC for type F (0..5)

Rect() An ERC for type A

TimeLeft() The number of moves remaining to the end of the game

Points() The number of food pieces collected so far by the ant

PointsLeft() Returns 15-Points()

FoodHope() Returns the maximal number of food pieces that may be reached by the ant

within two moves (assuming the first move is made straight ahead,

and the next one in an arbitrary direction)

Table 2 The non-terminals

Non-terminal Interpretation

IsFood(A) Returns true iff A contains at least one piece of food

IsEnemy(A) Returns true iff A contains the opponent

And(B, B)

Or(B, B)

Not(B)

Logic functions

IsSmaller(F, F)

IsEqual(F, F)

Arithmetic comparators

Add(F, F)

Sub(F, F)

Mul(F, F)

Scalar arithmetics

If(B, F, F) The conditional statement

NFood(A) The number of food pieces in the area A

NEmpty(A) The number of empty cells in the area A

NVisited(A) The number of cells already visited in the area A

Genet Program Evolvable Mach (2008) 9:281–294 285

123

evolutionary computation. Games played in the evaluation phase determine the

individual’s fitness that is subsequently used in the selection phase. After second

thought, this scheme turns out to be redundant. Playing games is selective by

nature, so why not use them directly for selection?

This observation led us to propose the approach of fitnessless coevolution. The

key idea is to combine the typical evaluation and selection phases of evolutionary

algorithm into one step of fitnessless selection [12]. Technically, we skip the

evaluation and proceed directly to selection, which works like a single-elimination

tournament played between k individuals randomly drawn from the population. The

winner of this tournament becomes the result of the selection. The only factor that

determines the winner is the specific sequence of wins and losses, so that no explicit

fitness measure is involved in this process. This makes our approach significantly

different from most of the methods presented in literature. The only related

contribution known to us is [27], where Tettamanzi describes competitive
selection—a form of stochastic binary tournament selection. For k = 2, our

fitnessless selection is identical to competitive selection.

To make the initial decisions about the experimental setup and parameter

settings, we ran some preliminary experiments. Finally we decided to set the run

length to around 1,500 generations and, to effectively utilize the two-core processor,

to employ the island model [28] with two populations, each of approximately 2,000

individuals. In all experiments, we used probabilities of crossover, mutation, and

ERC mutation, equal to 0.8, 0.1, and 0.1, respectively. GP trees were initialized

using ramped half-and-half method and were not allowed to exceed the depth of 8.

The experiment was implemented in the ECJ [17] framework and for the remaining

parameters we used the ECJ’s defaults.

We relied on the default implementation of GP mutation and crossover available

in ECJ, while providing specialized ERC mutation operators for particular ERC

nodes. For Const() we perturb the ERC by a random, normally distributed value

with mean 0.0 and standard deviation 1/3. For ConstInt(), we perturb the ERC by a

random, uniformly distributed integer value from interval [-1; 1]. For Rect(), we

perturb each rectangle coordinate or dimension by a random, uniformly distributed

integer value from interval [-1; 1]. In all cases, we trim the resulting values to

domain intervals.

To speed up the selection process and to meet the contest rules that required the

ant code to be provided in C programming language (ECJ is written in Java), in each

generation we serialize the entire population into one large text file, encoding each

individual as a separate C function. The resulting file is then compiled and linked

with the game engine, also written in C. The resulting executable is subsequently

launched and carries out the selection, returning the identifiers of the selected

individuals to ECJ. The compilation overhead is reasonably small, and it is paid off

by the speedup provided by using C language. This approach allows us also to

monitor the actual size of C code, constrained by the contest rules to 5kB per

individual.

The best ant emerged in an experiment with 2,250 individuals evolving for

1,350 generations, using the fitnessless selection with tournament size k = 5 (thus

4 matches per single-elimination tournament), and with 2 9 6 games played in

286 Genet Program Evolvable Mach (2008) 9:281–294

123

each match. We named it BrilliAnt, submitted to the Ant Wars competition, and

won it. BrilliAnt not only evolved, but was also selected in a completely

autonomous way, by running a round-robin tournament between all 2,250

individuals from the last generation of the evolutionary run. This process was

computationally demanding: having only one double-game per match, the total

number of games needed was more than 5,000,000, an equivalent of about 47

generations of evolution.

We assessed BrilliAnt’s human-competitiveness with respect to two variants of

this notion: direct competitiveness, i.e., the performance of the evolved solution

playing against a human, and indirect competitiveness, meant as the performance of

the evolved solution playing against a program designed by a human. For the former

purpose, we implemented a software simulator that allows humans to play games

against an evolved ant. Using this tool, an experienced human player played 150

games against BrilliAnt, winning only 64 (43%) of them and losing the remaining

86 games (57%). We developed also an online version of this tool that allows

everybody play with BrilliAnt. At the time of writing, the collected statistics

confirm the above result: 335 games won by BrilliAnt vs. 188 won by humans, and

one draw. Even if we assume that inexperienced beginners account for great part of

this statistics, these figures clearly indicate that the strategy elaborated by our

approach is challenging for humans. The reader is encouraged to visit the Web page

[11] and measure swords with BrilliAnt.

To analyze BrilliAnt’s indirect competitiveness, we let it play against human-

designed strategies—humants. We manually implemented several humants of

increasing sophistication (SmartHumant, SuperHumant, and HyperHumant). Hy-

perHumant, the best humant we could develop, memorizes the states of board cells

observed in the past, plans 5 moves ahead, uses a probabilistic memory model, and

implements several end-game rules (e.g., when your score is 7, eat the food piece
even if the opponent is next to it).

Table 3 and Fig. 1 present the results of the round-robin tournament between the

three humants, BrilliAnt, and four other evolved ants (ExpertAnt, EvolAnt1,
EvolAnt2, EvolAnt3). Each pair of strategies played a match of 100,000 double-

games. An arrow leading from a to b means that a turned out to be statistically

better than b; no arrow means no statistical advantage (at 0.01 level3). Note that one

of the evolved individuals, ExpertAnt, won 50.12% of games against HyperHumant.

As BrilliAnt turned out to be worse than HyperHumant (loosing 52.02% of games),

ExpertAnt could be considered a better pick for the Ant Wars contest. However,

ExpertAnt has been selected by explicitly testing all ants from the last generation

against the manually designed HyperHumant. BrilliAnt, on the contrary, evolved

and was selected completely autonomously, so it has been appointed as our

contestant.

3 We estimate the statistical significance of the outcome of a match from the tails of the binomial

distribution assuming the probability of success of .5 (the zero hypothesis is that both players win the

same number of games, i.e., 50,000 games in this context).

Genet Program Evolvable Mach (2008) 9:281–294 287

123

5 BrilliAnt’s strategy

BrilliAnt’s genotype (a pair of GP trees) contains 237 nodes, so its presentation, not

mentioning analysis, would be overly long and is beyond the scope of this paper.

However, we are still able to analyze its phenotype, meant as its behavior in the course

of game playing. BrilliAnt exhibits a surprisingly rich repertoire of behavioral

patterns, ranging from obvious to quite sophisticated ones. Faced with the FOV with

two corner areas occupied by food, BrilliAnt always selects the direction that gives

chance for more food pieces. It reasonably handles the trade-off between food amount

and food proximity, measured using the chessboard (Chebyshev) distance (the

minimal number of moves required to reach a cell). For instance, given a group of two

pieces of food at distance 2 ((2, 2) for short), and a group of two pieces of food at

distance 1, i.e., (2, 1), BrilliAnt chooses the latter option, i.e., ð2; 2Þ � ð2; 1Þ using a

shorthand notation. Similarly, ð1; 1Þ � ð2; 2Þ; ð3; 2Þ � ð2; 1Þ; ð3; 2Þ � ð3; 1Þ, and

Table 3 The results of a round-robin tournament between the evolved ants (in bold) and humants (plain

font). Maximum possible score is 21,000,000

Player Matches won Games won Total score

ExpertAnt 6 760,669 10,598,317

HyperHumant 6 754,303 10,390,659

BrilliAnt 6 753,212 10,714,050

EvolAnt3 3 736,862 10,621,773

SuperHumant 3 725,269 10,130,664

EvolAnt2 3 721,856 10,433,165

EvolAnt1 1 699,320 10,355,044

SmartHumant 0 448,509 9,198,296

SuperHumant

EvolAnt2

BrilliAnt

EvolAnt3

ExpertAnt

Hyper Humant
Fig. 1 Graph showing relations
between players. If player a is
statistically better than player b
(p = 0.01), an arrow leads from
a to b . If none of them is better,
no arrow is drawn. EvolAnt1
and SmartHumant were not
showed to improve graph’s
readability

288 Genet Program Evolvable Mach (2008) 9:281–294

123

ð2; 2Þ � ð3; 2Þ. If both food groups contain the same number of food pieces but one of

them is accompanied by the opponent, BrilliAnt chooses the other group.

Food pieces sometimes happen to arrange into ‘trails’, similar to those found in

the Artificial Ant benchmarks [14]. BrilliAnt perfectly follows such paths as long as

the gaps between trail fragments are no longer than two cells (see Fig. 2a for an

example). However, when faced with a large isolated group of food pieces, it does

not always consume them in an optimal order, i.e., in a minimum number of moves.

If the FOV does not contain any food, BrilliAnt proceeds in the NW direction.

However, as the board is toroidal, keeping moving in the same direction makes

sense only to a certain point, because it brings the player back to the starting point

after 11 moves, with a significant part of the board still unexplored. Apparently,

evolution discovered this fact: after seven steps in the NW direction (i.e., when FOV

starts to intersect with the initial FOV), BrilliAnt changes its direction to SW,

pursuing the following sequence: 7NW, 1SW, 1NW, 1SW, 6NW, 1SW, 1NW. A

simple analysis reveals that these 18 moves, shown in Fig. 2b, provide the complete

coverage of the board. This behavior seems quite efficient, as the minimal number

of moves that scan the entire board is 15. Note also that this contains only diagonal

moves. In absence of any other incentives, this is a locally optimal choice, as a

diagonal move uncovers nine board cells, while a non-diagonal one uncovers only

five of them.

Evolving this full-board scan is quite an achievement, as it manifests in absence

of food, a situation that is close to impossible in Ant Wars, except for the highly

unlikely scenario of the opponent consuming all the food earlier. BrilliAnt exhibits

variants of this behavioral pattern also after some food pieces have been eaten and

its FOV is empty.

BrilliAnt also makes reasonable use of its memory. When confronted with

multiple groups of food pieces, it chooses one of them and, after consuming it,

(a) (b)

Fig. 2 BrilliAnt’s behaviors when following a trail of food pieces (a), and in absence of food (b). Gray
cell and large rectangle mark BrilliAnt’s starting position and initial FOV, respectively

Genet Program Evolvable Mach (2008) 9:281–294 289

123

returns to the other group(s), unless it has spotted some other food in the meantime.

This behavior is demonstrated in Fig. 3a where BrilliAnt, faced with the initial

board state with four food pieces visible in the corners of FOV, follows an almost

optimal trajectory. Note that as soon as it makes the first NW move, three food

pieces disappear from the FOV, so memory is indispensable here. After completing

this task, BrilliAnt proceeds to the unexplored parts of the board.

BrilliAnt usually avoids the opponent, unless it comes together with food and no

other food pieces are in view. In such a case, it approaches the food, maintaining at

least distance 2 from the opponent. For an isolated food piece, this often ends in a

deadlock: the players hesitatingly walk in the direct neighborhood of the food piece,

keeping safe distance from each other. None of them can eat the piece, as the

opponent immediately kills such a daredevil. This behavior is shown in Fig. 3b,

where BrilliAnt is the ant with starting position marked by the gray cell, and the

numbers reflect ants’ positions in consecutive turns (BrilliAnt moves first). After

making the first move, BrilliAnt spots the opponent on the other ‘side’ of food, so it

does not eat the piece but walks along it (moves 2 and 3). In the meantime, the

opponent behaves analogously. In absence of any other incentives, this behavior

could last till the end of game. However, as soon as BrilliAnt spots another piece of

food (after making move #3 in Fig. 3b), it changes its mind and starts heading

towards it, leaving the disputed food piece to the opponent.

BrilliAnt also learned how to resolve such deadlocks. When the end of game

comes close and the likelihood of finding more food becomes low, it may pay off to

sacrifice one’s life in exchange for food—there will be not much time left for the

opponent to gather more food. This in particular applies to the scenario when both

players scored 7 and the food piece of argument is the only one left. This ‘kamikaze’

behavior emerged also in other evolutionary runs. Figure 4b illustrates this behavior

in terms of the death rate statistic for one of the experiments. The ants from the

several initial generations play poorly and are likely to be killed by the opponent.

With time, they learn how to avoid the enemy and, usually at 200–300th generation,

(a) (b)

Fig. 3 (a) BrilliAnt’s memory at work. (b) The deadlock situation and its resolution

290 Genet Program Evolvable Mach (2008) 9:281–294

123

the best ants become perfect at escaping that threat (see Fig. 4b). Then, around 400–

500th generation, the ants discover the benefit of the ‘kamikaze’ strategy, which

results in a notable increase of death rate, but pays off in terms of the winning

frequency.

BrilliAnt is also able to correctly estimate its chances of reaching a piece of food

before the (visible) opponent, while taking into account the risk of being eaten (see

Fig. 5; in all scenarios shown here BrilliAnt, located at the center, moves first). In

Fig. 5a, BrilliAnt decides to approach the food because its first move effectively

repels the opponent. In Fig. 5b, on the contrary, BrilliAnt walks away as it has no

chance of reaching the food piece before the opponent (the shortest path traverses

the cell controlled by the opponent). The situation depicted in Fig. 5c gives equal

chances to both players to reach the food piece, so BrilliAnt approaches it,

maintaining a safe distance from the opponent. If the opponent moves analogously

to the north, this may end up in a deadlock described earlier. However, on the way

to the food piece BrilliAnt or the opponent may spot another food piece and walk

away, so this behavior seems reasonable. If there is a choice between an uncertain

food piece and food piece that may be reached at full safety, BrilliAnt chooses the

latter option, as shown in Fig. 5d.

0%

10%

20%

30%

40%

50%

60%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ki
lle

d
pe

r
ga

m
e

generation

 Percent of deaths per game

0%

10%

20%

30%

40%

50%

60%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f w
in

s

generation

 Winning frequency

(b)(a)

Fig. 4 The dynamics of a typical evolutionary run. Each point corresponds to the best-of-generation ant
chosen on the basis of 2 9 250 games against HyperHumant

(a) (b) (c) (d)

Fig. 5 BrilliAnt’s behavior when faced with food and an opponent

Genet Program Evolvable Mach (2008) 9:281–294 291

123

6 Conclusions

We described evolution of game strategies that uses relatively little domain

knowledge, where both the evolution and the selection of the best-of-run individual

are completely autonomous and do not involve any external (e.g., human-made)

strategies. The evolved players are human-competitive in both direct and indirect

sense and make reasonable choices based on the visible part of the board as well as on

the memory state. In particular, BrilliAnt’s traits include close-to-optimal board

scanning in search of food, collecting of previously seen and memorized food pieces,

the ability to cancel the previous plans after discovering new food pieces, and rational

estimation of chances of reaching the food before the opponent. Also, BrilliAnt’s

strategy is dynamic, i.e., changing with the stage of the game, as demonstrated by its

ability of sacrifice in exchange of food.

The mechanism of fitnessless selection lets the individuals play games against

each other and propagates the winner to the next generation, making the existence of

the objective fitness unnecessary. Though unusual from the viewpoint of the core

EC research, selection without fitness has some rationale. The traditional fitness

function is essentially a mere technical means to impose the selective pressure on

the evolving population. It is often the case that, for a particular problem, the

definition of fitness does not strictly conform its biological counterpart, i.e., the

a posteriori probability of the genotype survival. By eliminating the need for an

arbitrary numeric fitness, we avoid the subjectivity that its definition is prone to.

This approach may be directly applied to any two-player game, and seems to be

especially appealing for game-related applications of evolutionary computation. In

[12] we provide an in-depth analysis of fitnessless selection and show that it is

dynamically equivalent to regular fitness-based evolution provided the fitness

function fulfills a simple condition.

We find this results encouraging as the Ant Wars game is not trivial, mainly due

to the partial observability of board state and imperfect information about

opponent’s behavior. There is no better way to appreciate the effectiveness of the

simulated evolution than through a personal experience. Check at [11] if you can

beat BrilliAnt.

Acknowledgments The authors wish to thank the anonymous reviewers for valuable feedback and

discussion on this work. This research has been supported by the Ministry of Science and Higher

Education grant # N N519 3505 33.

References

1. P.J. Angeline, J.B. Pollack, Competitive environments evolve better solutions for complex tasks, in

Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93, University of

Illinois at Urbana-Champaign, 17–21 July 1993, ed. by S. Forrest (Morgan Kaufmann, 1993),

pp. 264–270

2. Y. Azaria, M. Sipper, GP-gammon: genetically programming backgammon players. Genet. Prog.

Evol. Mach. 6(3), 283–300 (2005)

3. M. Buro, Real-time strategy games: a new AI research challenge, in IJCIA, ed. by G. Gottlob, T.

Walsh (Morgan Kaufmann, San Francisco, 2003), pp. 1534–1535

292 Genet Program Evolvable Mach (2008) 9:281–294

123

4. J.B. Caverlee, A genetic algorithm approach to discovering an optimal blackjack strategy, in Genetic
Algorithms and Genetic Programming at Stanford 2000, Stanford Bookstore, Stanford, CA, 94305-

3079 USA, June 2000, ed. by J.R. Koza, pp. 70–79

5. F. Corno, E. Sanchez, G. Squillero, On the evolution of corewar warriors, in Proceedings of the 2004
IEEE Congress on Evolutionary Computation, Portland, OR, 20–23 June 2004 (IEEE Press, 2004),

pp. 133–138

6. E. de Jong, The maxsolve algorithm for coevolution, in GECCO 2005: Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, Washington DC, USA, 25–29 June 2005, ed.

by H.-G. Beyer, U.-M. O’Reilly, D.V. Arnold, W. Banzhaf, C. Blum, E.W. Bonabeau, E. Cantu-Paz,

D. Dasgupta, K. Deb, J.A. Foster, E.D. de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G.R.

Raidl, T. Soule, A.M. Tyrrell, J.-P. Watson, E. Zitzler, vol. 1 (ACM Press, 2005), pp. 483–489

7. E.D. de Jong, A monotonic archive for pareto-coevolution. Evol. Comput. 15(1), 61–93 (2007)

8. S. Ficici, J. Pollack, A game-theoretic memory mechanism for coevolution, in Genetic and Evolu-
tionary Computation, Chicago, July 2003, ed. by E. Cantú-Paz, J. Foster, K. Deb, D. Davis, R. Roy,

U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D.

Dasgupta, M. Potter, A.C. Schultz, K. Dowsland, N. Jonoska, J. Miller. Lecture Notes in Computer

Science, vol. 2723 (Springer, 2003), pp. 286–297

9. D.B. Fogel, Blondie24: Playing at the Edge of AI (Morgan Kaufmann Publishers Inc., San Francisco,

CA, 2002)

10. A. Hauptman, M. Sipper, Evolution of an efficient search algorithm for the mate-in-N problem in

chess, in Proceedings of the 10th European Conference on Genetic Programming, vol. 4445 of

Lecture Notes in Computer Science, Valencia, Spain, 11–13 Apr. 2007, ed. by M. Ebner, M. O’Neill,

A. Ekárt, L. Vanneschi, A.I. Esparcia-Alcázar (Springer, 2007), pp. 78–89

11. W. Jaśkowski, K. Krawiec, B. Wieloch, AntWars Applet, 2007, http://www.cs.put.poznan.pl/

kkrawiec/antwars/

12. W. Jaśkowski, K. Krawiec, B. Wieloch, Fitnessless coevolution, in GECCO ’08: Proceedings of the
10th Annual Conference on Genetic and Evolutionary Computation, 2008

13. J.R. Koza, Genetic evolution and co-evolution of game strategies, in The International Conference on
Game Theory and Its Applications, Stony Brook, New York, 15 July, 1992

14. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection
(MIT Press, Cambridge, MA, USA, 1992)

15. A. Lubberts, R. Miikkulainen, Co-evolving a go-playing neural network, in Coevolution: Turning
Adaptive Algorithms upon Themselves, San Francisco, CA, USA, 7 July 2001, ed. by R.K. Belew, H.

Juillè, pp. 14–19

16. S. Luke, Genetic programming produced competitive soccer softbot teams for robocup97, in Genetic
Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madi-

son, WI, USA, 22–25 July 1998, ed. by J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,

D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R. Riolo (Morgan Kaufmann, 1998), pp. 214–222

17. S. Luke, ECJ Evolutionary Computation System, 2002, http://cs.gmu.edu/eclab/projects/ecj/

18. S. Luke, R.P. Wiegand, When coevolutionary algorithms exhibit evolutionary dynamics, in Work-
shop on Understanding Coevolution: Theory and Analysis of Coevolutionary Algorithms (at GECCO
2002), ed. by A. Barry (AAAI Press, New York, 2002), pp. 236–241

19. G.A. Monroy, K.O. Stanley, R. Miikkulainen. Coevolution of neural networks using a layered pareto

archive, in GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, Seattle, WA, USA, 8–12 July 2006, ed. by M. Keijzer, M. Cattolico, D. Arnold, V.

Babovic, C. Blum, P. Bosman, M.V. Butz, C. Coello Coello, D. Dasgupta, S.G. Ficici, J. Foster, A.

Hernandez-Aguirre, G. Hornby, H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan, D.

Thierens, vol. 1 (ACM Press, 2006), pp. 329–336

20. D.J. Montana, Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)

21. J.B. Pollack, A.D. Blair, Co-evolution in the successful learning of backgammon strategy. Mach.

Learn. 32(3), 225–240 (1998)

22. C. Reynolds, Competition, coevolution and the game of tag, in Artificial Life IV, Proceedings
of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, ed. by

R.A. Brooks, P. Maes (MIT Press, 1994), pp. 59–69

23. Y. Shichel, E. Ziserman, M. Sipper, GP-robocode: using genetic programming to evolve robocode

players, in Proceedings of the 8th European Conference on Genetic Programming, Lausanne,

Switzerland, 30 Mar.–1 Apr. 2005, ed. by M. Keijzer, A. Tettamanzi, P. Collet, J.I. van Hemert, M.

Tomassini. Lecture Notes in Computer Science, vol. 3447 (Springer, 2005), pp. 143–154

Genet Program Evolvable Mach (2008) 9:281–294 293

123

http://www.cs.put.poznan.pl/kkrawiec/antwars/
http://www.cs.put.poznan.pl/kkrawiec/antwars/
http://cs.gmu.edu/eclab/projects/ecj/

24. M. Sipper, Attaining human-competitive game playing with genetic programming, in Proceedings of
the 7th International Conference on Cellular Automata, for Research and Industry, ACRI, Perpignan,

France, Sept. 20–23 2006, ed. by S.E. Yacoubi, B. Chopard, S. Bandini. Lecture Notes in Computer

Science, vol. 4173 (Springer, Invited Lectures), p. 13

25. K.C. Smilak, Finding the ultimate video poker player using genetic programming, in Genetic
Algorithms and Genetic Programming at Stanford 1999, Stanford Bookstore, Stanford, CA, 94305-

3079 USA, 15 Mar. 1999, ed. by J.R. Koza, pp. 209–217

26. K. Stanley, B. Bryant, R. Miikkulainen, Real-time neuroevolution in the NERO video game. IEEE

Trans. Evolut. Comput. 9(6), 653–668 (2005)

27. A.G.B. Tettamanzi, Genetic programming without fitness, in Late Breaking Papers at the Genetic
Programming 1996 Conference Stanford University July 28–31, 1996, Stanford University, CA,

USA, 28–31 July 1996, ed. by J.R. Koza (Stanford Bookstore, 1996), pp. 193–195

28. D. Whitley, S. Rana, R. Heckendorn, The island model genetic algorithm: on separability, population

size and convergence. J. Comput. Inform. Technol. 7(1), 33–47 (1999)

29. M. Wittkamp, L. Barone, Evolving adaptive play for the game of spoof using genetic programming,

in Proceedings of the 2006 IEEE Symposium on Computational Intelligence and Games (CIG06),
University of Nevada, Reno, campus in Reno/Lake Tahoe, USA, 22–24 May 2006, ed. by S.J. Louis,

G. Kendall (IEEE Press, 2006), pp. 164–172

294 Genet Program Evolvable Mach (2008) 9:281–294

123

	Evolving strategy for a probabilistic game of imperfect information using genetic programming
	Abstract
	Introduction
	Evolving game strategies
	Strategy encoding
	The experiment
	BrilliAnt’s strategy
	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

