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ABSTRACT
We introduce fitnessless coevolution (FC), a novel method
of comparative one-population coevolution. FC plays games
between individuals to settle tournaments in the selection
phase and skips the typical phase of evaluation. The selec-
tion operator applies a single-elimination tournament to a
randomly drawn group of individuals, and the winner of the
final round becomes the result of selection. Therefore, FC
does not involve explicit fitness measure. We prove that,
under a condition of transitivity of the payoff matrix, the
dynamics of FC is identical to that of the traditional evolu-
tionary algorithm. The experimental results, obtained on a
diversified group of problems, demonstrate that FC is able
to produce solutions that are equally good or better than
solutions obtained using fitness-based one-population coevo-
lution with different selection methods.

Categories and Subject Descriptors: I.2.8 [Problem
Solving, Control Methods, and Search]: Heuristic methods

General Terms: Algorithms

Keywords: One-population Coevolution, Selection Meth-
ods, Games

1. INTRODUCTION
Coevolutionary algorithms are variants of evolutionary

computation where an individual’s fitness depends on other
individuals. An individual’s evaluation takes place in the
context of at least one other individual, and may be of co-
operative or competitive nature. In the former case, individ-
uals share benefits of the fitness they have jointly elaborated,
whereas in the latter one, a gain for one individual means a
loss for the other. Past research has shown that this scheme
may be beneficial for some types of tasks, allowing, for in-
stance, task decomposition (in the cooperative variant) or
solving tasks for which the objective fitness function is not
known or unnatural (e.g., some types of games [1, 2]).

In biology, coevolution typically refers to an interaction of
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two or more species. By analogy, in evolutionary computa-
tion coevolution usually implies using multiple populations.
Another reason for having more than one population is the
inherent asymmetry of many problems. Popular competi-
tive examples of such models include coevolving solutions
with tests and parasites with hosts. In the cooperative case,
individuals usually encode components of the complete so-
lution. In either case, there are different roles to be played
by particular individuals, so they (usually) should not be
recombined, hence separate populations. However, there
are environments for which the mutual relations between
individuals are symmetric; therefore, there is no need for
multiple populations1. Artificial life simulations and game
playing are prominent application areas that meet this set-
ting in its competitive variant.

The idea of evolving individuals in a single population
and making them compete directly with each other with-
out an external objective fitness measure has been termed
one-population coevolution ([10]) or competitive fitness en-
vironment [1, 7]. As this approach has been exploited most
intensely in the context of games, in the following we refer
to the nomenclature of the game theory. Let us emphasize,
however, that the actual interpretation of such terms like
‘game’ or ‘win’ depends on the context of particular appli-
cation and may be distant from the intuitive meanings of
these words.

In one-population coevolution, playing games between in-
dividuals substitutes for the objective external fitness mea-
sure, and for some evaluation methods the individuals in the
current population are the only data available to enforce the
selection pressure on the evolutionary process. One exam-
ple is the round-robin tournament that involves all the re-
maining individuals from the population and defines fitness
as the average payoff of the played games. A round-robin
tournament requires n(n− 1)/2 games to be played in each
generation; therefore, it is computationally infeasible even
for a moderately sized population. As a remedy, Angeline
and Pollack [1] proposed the single-elimination tournament
that requires only n − 1 games. Starting from the entire
population, the players/individuals are paired, play a game,
and the winners pass to the next round. The last round pro-
duces the final winner of the tournament, and the fitness of
each individual is the number of games won. Finally, the k-
random opponents method [11] lets an individual play with
k opponents drawn at random from the current population
and defines fitness as the average payoff of games played,

1It has been argued [3] that in some cases the evolution may
nevertheless benefit from using multiple populations.



requiring kn games to be played per generation. This evalu-
ation scheme was also applied by Fogel to evolve neural nets
that play checkers [4].

All the aforementioned methods follow the evaluation-
selection-recombination mantra. Games played in the eval-
uation phase determine individuals’ fitnesses that are subse-
quently used in the selection phase. Obvious as it seems, this
scheme is essentially redundant. Playing games is selective
by nature, so why not use them directly for selection?

This observation led us to propose the approach termed
one-population fitnessless coevolution (FC). FC uses games
to settle tournaments in the selection phase, skipping there-
fore the evaluation. Technically, our selection operator ap-
plies the single-elimination tournament to a randomly drawn
group of individuals, and the winner of the last (final) round
becomes immediately the result of selection. Therefore, FC
does not involve explicit fitness measure and is significantly
different from most of the contributions presented in liter-
ature. A related research direction, proposed in [12], has
been discontinued to our knowledge.

In the experimental part of this paper, we demonstrate
that, despite being conceptually simpler than standard fitness-
based coevolution, FC is able to produce excellent players
without an externally provided yardstick, like a human-
made strategy. We present also a theoretical result: pro-
vided the payoff matrix of the game induces the same linear
order of individuals as the fitness function, the dynamics of
the fitnessless coevolution is identical to that of a traditional
evolutionary algorithm. This makes it possible to study FC
using the same research apparatus as for the standard evo-
lutionary methods.

2. FITNESSLESS COEVOLUTION AND ITS
EQUIVALENCE TO EA

In the traditional evolutionary algorithm, all individuals
are tested in the environment and receive an objective fit-
ness value during the evaluation phase. Afterwards, the
fitness values are used in the selection phase in order to
breed the new generation. In the single-population coevo-
lutionary algorithm, there is no objective fitness function,
and individuals have to be compared (pairwise or in larger
groups) to state which one is better. Despite this fact, the
scheme of a coevolutionary algorithm is similar to the evo-
lutionary one. Typically, an individual receives a numerical
fitness value that is based on the results of games played
with some other individuals. Then, the selection procedure
follows, most commonly a tournament selection that takes
into account only the ordering of individuals’ fitnesses, not
their specific values. Thus, the outcomes of the games (re-
lations per se) are converted into numerical fitness values
which in turn determine the relations between individuals
in the selection process. In this light, assigning fitness val-
ues to individuals seems redundant, because, in the end,
only relations between them matter. Nonetheless, this is
the common proceeding used in past work [1, 11, 4], except
for the preliminary considerations in [12].

The redundancy of the explicit numerical fitness in one-
population coevolution inspired us to get rid of it in an ap-
proach termed fitnessless coevolution (FC), which this paper
is devoted to. In FC, there is no explicit evaluation phase,
and the selection pressure is implemented in the fitnessless
selection. Fitnessless selection may be considered a variant

of a single-elimination tournament applied to a randomly
drawn set S of individuals of size t, which is the only pa-
rameter of the method. The selection process advances in
rounds. In each round, individuals from S are paired, play a
game, and the winners pass to the next round (compare de-
scription of the single-elimination tournament in Section 1).
For odd-sized tournaments, the odd individual plays a game
with one of the winners of the round. In case of a game
ending with a draw, the game winner is selected at ran-
dom. This process continues until the last round produces
the final winner of the tournament, which becomes also the
result of selection. In particular, for t = 2, the winner of
the only game is selected. The fitnessless selection operator
is applied n times to produce the new population of size n,
so the total number of games per generation amounts to a
reasonable (t− 1)n.

It should be emphasized that the term ‘fitnessless’ is not
meant to suggest the absence of selection pressure in FC.
The selection pressure emerges as a side-effect of interactions
between individuals, but is not expressed by explicit fitness
function.

Fitnessless coevolution, as any type of coevolution, makes
investigation of the dynamics of the evolutionary process
difficult. Without an objective fitness, individuals stand on
each others shoulders rather than climb a single ‘Mount Im-
probable’. In particular, it is easy to note that if the game
is intransitive (beating a player P does not imply the ability
of beating all those beaten by P ), the winner of fitnessless
selection does not have to be superior to all tournament
participants. To cope with problems like that, Luke and
Wiegand [10] defined conditions the single-population co-
evolutionary algorithm must fulfill to be dynamically equiv-
alent to an evolutionary algorithm, i.e., to produce the same
run, including the same contents of all generations. In the
following, we first shortly summarize their work, then we
determine when our FC approach is dynamically equivalent
to evolutionary algorithm and comment on how our result
compare with Luke’s and Wiegand’s.

Following [10], we define the payoff matrix and the utility.

Definition 1. A = [aij ] is a payoff matrix, in which
aij specifies the score awarded to strategy #i when play-
ing against strategy #j.

Definition 2. Assuming an infinite population size and
complete mixing (i.e., each individual is paired with every
other individual in the population including itself), aggre-
gate subjective values for genotypes (their utility) can be
obtained as follows:

−→u = A−→x ,

where ~x represents proportions of genotypes in an infinite
population.

Definition 3. Given a linear transformation, aij = αfi +
βfj + γ, the internal subjective utility u is linearly related
to an objective function f , u ∼L f , if the transitive payoff
matrix A is produced using this transformation.

Luke and Wiegand proved the following theorem, which says
when a single-population coevolutionary algorithm exhibits
evolutionary dynamics.



Theorem 1. A single-population coevolutionary algorithm
under complete mixing and the assumption that population
sizes are infinite employing a non-parametric selection method
using the internal subjective utility −→u = A−→x is dynamically
equivalent to an evolutionary algorithm with the same selec-
tion method, using the objective function f , if u ∼L f as
long as α > 0 [10].

In order to guarantee this dynamic equivalence, Luke and
Wiegand had to make several assumptions about the evo-
lutionary algorithm and the payoff matrix A: infinite pop-
ulations, complete mixing, and u ∼L f . In the following,
we prove that FC is equivalent to an evolutionary algorithm
employing tournament selection under the only condition
that f has to induce the same linear order of individuals as
the payoff matrix A.

Theorem 2. A single-population coevolutionary algorithm
employing fitnessless selection (i.e., fitnessless coevolution)
is dynamically equivalent to an evolutionary algorithm with
tournament selection using the objective function f , if

∀i,jfi > fj ⇐⇒ aij > aji. (1)

Proof. We need to show that, given (1), for any set of
individuals S, each act of selection out of S based on f in
the evolutionary algorithm produces the same individual as
the fitnessless selection applied to the same set S. Let us as-
sume, without loss of generality, that f is being maximized.
As for an arithmetic objective function f ,

fi ≥ fj ∧ fj ≥ fk ⇒ fi ≥ fk,

it is easy to show that, under (1), a similar expression
must be true for A:

aij ≥ aji ∧ ajk ≥ akj ⇒ aik ≥ aki.

In the fitnessless coevolution, the outcome of selection is
the winner of the last game of a single-elimination tourna-
ment; let w be the index of that individual. The winner’s
important property is that it won or drew all games it played
in the tournament; since the payoff matrix A is transitive,
the winner is in fact superior to all individuals in S. There-
fore, ∀i∈S awi ≥ aiw, and this, together with (1), implies
that ∀i∈S fw ≥ fi. Thus, the winner of fitnessless selection
has the maximal objective fitness among the individuals in
S and would also win the tournament selection in the tradi-
tional evolutionary algorithm. In result, under (1), both se-
lection methods produce the same individual, and the course
of both algorithms is identical.

The consequence of the above condition is following. If the
payoff matrix A is transitive, there always exists an objec-
tive function f , so that the evolutionary algorithm using f
as a fitness function is dynamically equivalent to fitnessless
coevolution using A. Thus, we refer to condition (1) as to
transitivity condition.

Note that fitnessless coevolution does not need to know
f explicitly. To make it behave as a standard evolutionary
algorithm, it is enough to know that such objective f exists.
One can argue that if there exists such a function f that the
transitivity condition holds, it would be better to construct
it explicitly, and run a traditional evolutionary algorithm

using f as a fitness function, instead of running the fitness-
less coevolution. One could even avoid the explicit function
f and sort the entire population using the game outcomes
as a sorting criterion (comparator), and then apply a non-
parametric selection (like tournament selection) using that
order. In both cases, however, fulfilling condition (1) is the
necessary prerequisite. As we will show in the following ex-
periment, FC performs well even if it does not hold.

We also claim that, where possible, one should get rid of
numerical fitness because of Occam’s razor principle: if it
is superfluous, why use it? Note also that numerical fit-
ness may be accidentally over-interpreted by attributing to
it more meaning than it actually has. For instance, one
could evaluate individuals using single-elimination tourna-
ment, which produces fitness defined on an ordinal scale, and
then apply a fitness-proportional selection. As the fitness-
proportional selection assumes that the fitness is defined on
the metric scale, its outcomes would be flawed.

3. EXPERIMENTS
In order to assess the effectiveness of our fitnessless co-

evolution with fitnessless selection (FLS), we compared it
to the fitness-based coevolution with two selection methods:
single-elimination tournament (SET) and k-random oppo-
nents (kRO). In total, we considered twelve setups (FLS,
SET, and kRO for k = 1, ..., 10), called architectures in the
following. We apply each architecture to two games: the
Tic Tac Toe (a.k.a. Noughts and Crosses) and a variant of
the Nim game. As demonstrated in the following, both of
them are intransitive so no objective fitness function exists
that linearly orders their strategies.

Following [11], we also apply the architectures to stan-
dard optimization benchmarks of minimizing Rosenbrock
and Rastrigin functions, by casting them into a competi-
tive form of a two-player game. Of course, for this kind of
task the objective fitness exists by definition (it is the func-
tion value itself) and the game is transitive. Normally, this
kind of task is solved using an ordinary fitness-based evolu-
tionary algorithm, but casting this problem into the game
domain serves here the purpose of exploring the dynamics
of the fitnessless one-population coevolution. Otherwise, as
shown below for Tic Tac Toe and Nim, no such problem
casting is needed to apply the fitnessless coevolution to any
two-player game.

Instead of designing our own genetic encoding, we fol-
lowed the experimental setups from [1] (Tic Tac Toe) and
[11] (the rest). All three reference architectures used tour-
nament selection of size 2. Note that we did not limit the
number of generations; rather than that, each evolutionary
run stops after reaching the total of 100,000 of games played.
It is a fair approach, as some selection methods need more
games per generation than the others, and simulation of the
game is the core component of computational cost. We per-
formed 50 independent runs for each architecture to obtain
statistically significant results.

We implemented our experiments with ECJ [8].

3.1 Tic Tac Toe
In this game, two players take turns to mark the fields in

a 3x3 grid with two markers. The player who succeeds in
placing three marks in line wins the game.

Tic Tac Toe does not fulfill the transitivity condition (1),
which is easy to demonstrate by an example. Let us consider
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Figure 1: Three simple Tic Tac Toe strategies that
violate condition (1).

a triple of trivial strategies A, B, C, shown in Fig. 1. Each
of them consists in placing the marks in locations and in an
order shown by the numbers when the grid cell is free, or
placing the mark in the asterisk cell if the numbered cell is
already occupied by the opponent. Clearly, no matter who
makes the first move, strategy A beats B, as already its first
move prevents B from having three marks in the leftmost
column. By the same principle, B wins with C. According
to transitivity condition, these two facts require the exis-
tence of fA, fB , fC such that fA > fB and fB > fC . This,
in turn, implies fA > fC . However, Fig. 1 clearly shows
that C beats A, which contradicts fA > fC . There is a cy-
cle: none of these strategies outperforms the two remaining
ones and their utilities cannot be mapped onto an ordinal
(or numerical, in particular) scale.

Each individual-player in this experiment has the form
of a single genetic programming (GP, [6]) tree, built using
a function set of nine terminals and seven functions. The
terminals represent the nine positions on the board (pos00,
pos01, ..., pos22). All functions process and return board
positions or a special value NIL. The binary function And
returns the second argument if neither of them are NIL,
and NIL otherwise. Or returns the first not-NIL argument
or NIL value if both are NIL. If returns the value returned
by the second argument if the first (conditional) argument
is not NIL, otherwise the third argument. The Mine, Yours
and Open operators test the state of a given field. They
take a board position as an argument and return it if it
has an appropriate state, otherwise they return NIL. The
one-argument operator Play-at places player’s mark on the
position given by the argument if the field is empty and,
importantly, stops the processing of the GP tree. If the field
is busy, Play-at returns its argument and the processing
continues.

As this function set does not guarantee making any move,
we promote players which make some moves. Player’s final
score is, therefore, the number of moves made plus an ad-
ditional 5 points bonus for a draw or 20 points for winning.
The player with more points wins. As the player that makes
the first move is more likely to win (there exist a strategy
that guarantees draw), we let the players play double-games.
A double-game consists in a pair of games, each starting
with a different player. The player that wins both games in
the double-game is declared the winner, otherwise there is
a draw.

This experiment used maximal tree depth of 15, popula-
tion size 256, crossover probability of 0.9, and replication
probability of 0.1.

Following [11], we determined the best-of-run solution by
running the SET on all best-of-generation2 individuals. Af-
ter carrying out 50 independent runs, we got 50 represen-
tative individuals from each architecture. To compare our
twelve architectures, we let all 12 × 50 = 600 representa-

2In fitnessless approach appointing the best-of-generation
individual is not obvious, so we simply choose it randomly.

Figure 2: Three games played between three play-
ers A, B, and C demonstrate Nim’s intransitivity.
The bitstrings encode the strategies of the players.
The dotted line shows the advancement of the game
when the upper player makes the first move. The
solid line shows the advancement of the game when
the lower player makes the first move. The upper
players win in all three cases, no matter who makes
the first move, so none of the strategies is better
that the remaining two.

tive individuals play a round-robin tournament. The final
evaluation of each individual was the average score against
the other individuals in the tournament. The mean of these
evaluations was the final architecture’s score presented in
the following graphs.

3.2 Nim Game
In general, the game of Nim involves several piles of stones.

Following [11], we used only one pile of 200 stones. Players
take in turn one, two, or three stones. The player who takes
the last stone wins.

The Nim game individual is encoded as a linear genome
of 199 bits (the 200th bit is not needed because 200 stones
is the initial state). The ith gene (bit) says whether i stones
in the pile is a desirable game state for the player (value 1)
or not (value 0). A player can take one, two, or three stones
in its turn. It takes three stones if it leads to a desirable
game state (i.e., if the corresponding bit is 1). Then, it tests
in the same way taking two and one stone. If all considered
states are not desirable, the player takes three stones.

The outcome of the Nim game may depend on who moves
first. For instance, let us consider a simplified Nim starting
with just 7 stones and two strategies encoded in the way
discussed above: A=001000 (meaning three stones is a de-
sirable state, while 1, 2, 4, 5, and 6 stones are not) and
B=001001 (only 3 and 6 stones are desirable). If A moves
first, it takes 3 stones (as all three considered genes are 0),
then B takes 1 stone (according to the third bit in its strat-
egy), and finally A takes the last three stones and wins.
However, if B moves first, it takes only one stone (due to
the rightmost ‘1’ in its genotype), A takes three stones, thus
B is left with three stones to be taken and wins. Due to this
property of Nim, we make our individuals face each other in
a double-game, similarly to Tic Tac Toe.

Despite its simplicity, Nim is intransitive too. Let us con-
sider three 9-stone Nim strategies A=00010010, B=00001000,
and C=00000001 (as it turns out, nine stones is the mini-
mum number required to demonstrate intransitivity). The
double-game between A and B results in A’s win (see Fig.
2). Thus, according to Condition (1), A should have bet-
ter fitness than B: fA > fB . As B beats C, also fB > fC

should hold. However, C wins against A, requiring fC > fA.
No numerical (or even ordinal) fitness can model the mutual
relationships between A, B, and C.

Our experiments involved population size of 128, a 1-point
crossover with probability 0.97, and mutation with proba-
bility 0.03. The architectures were compared in the same
way as in Tic Tac Toe.



3.3 Rosenbrock
The Rosenbrock function has the following form for the

N -dimensional case:

Rosenbrock(X) =

N−1∑
i=1

[
(1− xi)

2 + 100
(
xi+1 − x2

i

)2
]
.

We converted the problem of minimizing this function to a
competitive counterpart by defining

Reward(A, B) =
Rosenbrock(B)−Rosenbrock(A)

max(Rosenbrock)−min(Rosenbrock)
,

where max(Rosenbrock) and min(Rosenbrock) are the max-
imum and minimum values of Rosenbrock function in the
considered domain; Reward(A, B) determines the score (in
the range [−1, 1]) of player A playing against the opponent
B. Of course, Reward(A, B) = −Reward(B, A).

In this experiment, we used genomes of N = 100 real
values between -5.12 and 5.12 (function domain), population
size of 32, a 1-point crossover, and mutation of a single gene
with probability 0.005.

In the Rosenbrock problem, unlike in Tic Tac Toe and Nim
games, there exists an objective and external (i.e., not used
during the evolution) individual’s fitness—the Rosenbrock
function itself. Therefore, as the best-of-run we chose the
individual that maximizes the external fitness value, defined
as:

1− Rosenbrock(X)−min(Rosenbrock)

max(Rosenbrock)−min(Rosenbrock)
(2)

For the same reason, in the Rosenbrock problem, to com-
pare the architectures we also used this external fitness. It
should be emphasized, however, that the fitnessless run has
no access to the external fitness function, which is used only
for the purpose of the best-of-run selection and comparison
of best-of-runs between particular runs.

3.4 Rastrigin
As the last problem, we considered minimizing the Rast-

rigin function, defined as:

Rastrigin(X) = A ·N +

N∑
i=1

[
x2

i −A · cos(2πxi)
]
,

where A = 10 and N = 100. The Rastrigin minimization
problem was converted to a competitive problem in the same
way as the Rosenbrock function. Also, the setup of the ex-
periment and comparison between architectures was identi-
cal to Rosenbrock’s.

4. RESULTS
Figures 3 to 14 compare the architectures of FLS, SET

and kRO for k ranging from 1 to 10. These charts present
the average external fitness of the best-of-run individuals
from each architecture.

As we can see in Fig. 3, FLS was hardly better than the
other architectures at playing Tic Tac Toe and slightly worse
than SET at evolving the Nim player (Fig. 6). On the
other hand, in problems that fulfill the transitivity condi-
tion (Fig. 9 and 12), the FLS architecture was clearly better
than SET and kRO, which is especially visible in case of
Rastrigin function. More precisely, FLS is statistically bet-
ter than kRO for all values of k on Nim, Rosenbrock, and

Rastrigin; for Tic Tac Toe, it beats kRO for 8 out of 10 val-
ues of k (t-Student, p = .01 ). When compared to SET, FLS
is significantly better than it on Rosenbrock and Rastrigin
and worse on Nim; for Tic Tac Toe, the test is inconclusive.
Table 1 summarizes the outcomes of the statistical compar-
ison of FLS to kRO and SET.

Following [9], we tested also how the noisy data influences
evolution. We introduced noise by reversing the game out-
come (thus swapping players’ rewards) with a given proba-
bility. For instance, adding 100% noise would aim at evolv-
ing the worst possible player. Figures and Table 1 show the
effect of adding 30% and 40% noise. Note that the presence
of noise renders all four problems intransitive.

It seems that FLS is less affected by noise than SET. In
the hierarchical process of SET, each distorted game im-
pacts the subsequent rounds. Even the (objectively) best-of-
generation individual may be dropped behind due to noise.
FLS turns out to be more resistant to noise, as the random
reversal of game outcome influences only one selection act.
Therefore, SET slightly outperforms FLS, though insignifi-
cantly, only in case of high noise in the Nim game (Fig. 8).

In the overall picture, kRO shows the ability to attain the
best resistance to noise among all the considered architec-
tures: it performs at least as good or better than FLS and
SET for some values of k, especially for the highest noise
level considered (40%). However, the optimal value of k
varies across the noise levels and problems and is difficult to
tell in advance. In general, higher values of k compensate
for the presence of noise, but also shorten the evolutionary
run by increasing the required number of games in each gen-
eration. FLS almost always offers a statistically equivalent
or better performance and thus may be considered as an
attractive option.

5. CONCLUSIONS
In this paper we proposed a fitnessless selection scheme

dedicated to one-population coevolution. We also proved
that an evolutionary process employing that scheme is equiv-
alent to the fitness-based coevolution provided the fulfill-
ment of transitivity condition (1).

The presented experimental results demonstrate that fit-
nessless coevolution is competitive to single-elimination tour-
nament and the k-random opponents method, especially
when the task fulfills the transitivity condition. Though
this constraint may be difficult to meet globally in the en-
tire domain of the problem, we hypothesize that effectiveness
of FLS increases with the extent of transitivity (meant as,
e.g., the probability that transitivity holds for a pair of indi-
viduals randomly drawn from a population). However, this
phenomena may be more complex and depend, e.g., on the
structure of transitivity as well, so this supposition requires
verification in a separate study.

The mechanism of FLS is elegant and simple in at least
two ways: in getting rid of the numerical fitness and in com-
bining the evaluation and selection phase. Despite this sim-
plicity, it produces effective solutions and is immune to noise
to an extent that is comparable to kRO (assuming the opti-
mal value of the k parameter for kRO is known in advance).
In a separate study [5], we demonstrated its ability to evolve
human-competitive players in a complex game with partially
observable states. The downside of the method is the extra
effort required to appoint the best-of-run individual.

One could argue that, no matter whether the objective
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Figure 3: Tic Tac Toe with 0% noise
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Figure 4: Tic Tac Toe with 30% noise
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Figure 5: Tic Tac Toe with 40% noise
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Figure 6: Nim with 0% noise
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Figure 7: Nim with 30% noise
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Figure 8: Nim with 40% noise



F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000
E

xt
er

na
l f

itn
es

s

Figure 9: Rosenbrock with 0% noise
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Figure 10: Rosenbrock with 30% noise
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Figure 11: Rosenbrock with 40% noise
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Figure 12: Rastrigin with 0% noise
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Figure 13: Rastrigin with 30% noise
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Figure 14: Rastrigin with 40% noise



Table 1: The outcomes of pairwise statistical comparison of FLS vs. kRO and SET (significance level 0.01).
Symbols ¡, =, and ¿ denote respectively FLS being worse, equally good, and better than the other method.
For kRO, figures tell how many times FLS was in particular relation to kRO.

Tic Tac Toe Nim Rosenbrock Rastrigin
FLS vs. kRO SET kRO SET kRO SET kRO SET
Noise < = > < = > < = > < = >
0% 2 8 = 10 < 10 > 10 >
30% 10 = 2 5 3 = 10 > 4 6 >
40% 4 6 > 3 6 1 = 6 4 > 6 1 3 >
Total 4 18 8 5 11 14 6 24 6 5 19

function exist, does not exist, or is difficult to define, there
is always some way of estimating the numerical fitness, so
there is no need of such fitnessless approach. Indeed, SET
and kRO are examples of such ways. Note however how
arbitrary they are. Fitnessless selection, on the contrary, is
conceptually simpler and requires little assumptions.

Another attractive property of fitnessless coevolution is its
locality with respect to the population. SET requires simul-
taneous access to all individuals in the population. FLS,
on the contrary, works on the same, usually small, subset
of individuals when performing both evaluation and selec-
tion. This may have positive impact on the performance in
case of using a parallel implementation, and may be nicely
combined with other evolutionary techniques that involve
locality, like the island model or spatially distributed popu-
lations.

Fitnessless coevolution has also the virtue of being more
natural. Similarly to biological evolution, the success of
an individual depends here directly on its competition with
other individuals. Also, the fitness function used in stan-
dard evolutionary algorithm is essentially a mere technical
means to impose selective pressure on the evolving popula-
tion, whereas its biological counterpart (fitness) is defined
a posteriori as probability of survival. By eliminating the
numerical fitness, we avoid subjectivity that its definition is
prone to.
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Falco, A. D. Cioppa, and E. Tarantino, editors,
Genetic Programming, volume 4971 of LNCS, pages
13–24. Springer, 2008. LNCS49710013.

[6] J. R. Koza, M. A. Keane, M. J. Streeter,
W. Mydlowec, J. Yu, and G. Lanza. Genetic
Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers,
2003.

[7] S. Luke. Genetic programming produced competitive
soccer softbot teams for robocup97. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B.
Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and
R. Riolo, editors, Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages
214–222, University of Wisconsin, Madison,
Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

[8] S. Luke. ECJ evolutionary computation system, 2002.
(http://cs.gmu.edu/ eclab/projects/ecj/).

[9] S. Luke and R. Wiegand. Guaranteeing coevolutionary
objective measures. Poli et al.[201], pages 237–251.

[10] S. Luke and R. Wiegand. When coevolutionary
algorithms exhibit evolutionary dynamics. In 2002
Genetic and Evolutionary Computation Conference
Workshop Program, pages 236–241, 2002.

[11] L. Panait and S. Luke. A comparison of two
competitive fitness functions. In GECCO ’02:
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 503–511, San
Francisco, CA, USA, 2002. Morgan Kaufmann
Publishers Inc.

[12] A. G. B. Tettamanzi. Genetic programming without
fitness. In J. R. Koza, editor, Late Breaking Papers at
the Genetic Programming 1996 Conference Stanford
University July 28-31, 1996, pages 193–195, Stanford
University, CA, USA, 28–31 July 1996. Stanford
Bookstore.


	Introduction
	Fitnessless coevolution and its equivalence to EA 
	Experiments
	Tic Tac Toe
	Nim Game
	Rosenbrock
	Rastrigin

	Results
	Conclusions
	Acknowledgments
	References

