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ABSTRACT
In evolutionary algorithms, the typical post-processing phase
involves selection of the best-of-run individual, which be-
comes the final outcome of the evolutionary run. Trivial for
deterministic problems, this task can get computationally
demanding in noisy environments. A typical naive proce-
dure used in practice is to repeat the evaluation of each
individual for the fixed number of times and select the one
with the highest average. In this paper, we consider several
algorithms that can adaptively choose individuals to eval-
uate basing on the results evaluations which have already
been performed. The procedures are designed without any
specific assumption about noise distribution. In the experi-
mental part, we compare our algorithms with the naive and
optimal procedures, and find out that the performance of
typically used naive algorithm is poor even for relatively
moderate noise. We also show that one of our algorithms is
nearly optimal for most of the examined situations.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: [Probabilistic algorithms];
G.4 [Math. Software]: [Algorithm design and analysis]

General Terms
Algorithms, Theory, Experimentation

Keywords
Evolutionary Algorithms, Evolutionary Computation, Noise,
Robustness, Uncertainty, Approximation models

1. INTRODUCTION
In evolutionary algorithms, the typical post-processing

phase involves selection of the best-of-run individual, which
becomes the final outcome of the evolutionary run. In case
of deterministic problems, it is straightforward: one sim-
ply chooses the individual with the highest fitness (either
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from the last generation of the entire run). In noisy envi-
ronments, however, selecting the best individual is not such
a trivial task. Evaluating each individual once and selecting
the one with the highest fitness value is not enough, because
of the disturbing noise. A selection procedure typical used
in practice is resampling: each individual from a population
is evaluated k times, the individual’s fitness is estimated as
the average of evaluations and the one with the highest av-
erage is the result of the procedure. This procedure would
be optimal if the task was to estimate fitness of a set of indi-
viduals, but our task is to select the best one and estimating
the fitness of others is not of our concern. Intuitively, a bet-
ter procedure should pay more attention to individuals that
give more hope being better than others. In this paper, we
consider several procedures and experimentally show that
they are significantly better than the naive resampling.

The problem of selecting the best individual from a pop-
ulation is of practical importance. When the noise is low
and there are only a few individuals in the population, there
is no need to go beyond simple resampling. However, when
the population is large, the noise is heavy or the cost of
the evaluation is high, the time required to select the best
or close-to-best individual could be significant. Populations
of 1,000,000 individuals or more are not unusual in, e.g., ge-
netic programming and in some cases we would like to choose
the best-of-run individual not only from the last generations
of evolution, but from a bigger set of candidates. Finally, a
researcher would sometimes like to observe the evolution dy-
namics in a form of the best-of-generation individual for ev-
ery generation. This process could be more computationally
demanding than the evolution itself, thus a better method
than naive resampling is needed.

Noisy environments appear often in many kinds of simu-
lations, e.g., in evolution of artificial life creatures, which is
also an example of problem where the evaluation of an in-
dividual is computationally demanding, thus the cost of the
measurement is high. The problem of noisy environment
and costly evaluation function take place also in probabilis-
tic games, for instance, in poker. The random distribution
of cards requires the evaluation of a certain poker strategy
to be repeated many times. Since the strategy itself can be
computationally demanding, also the cost of the measure-
ment is high.

2. PROBLEM DESCRIPTION
The problem is to select the individual with the highest

fitness from a set of individuals. Usually, the set of our inter-
est is the last generation of evolutionary algorithm in which



the best-of-run individual is searched for. However, in noisy
environments, we do not know if the best-of-run individual
is in the last generation. In such a case an experimenter
would like to select the best-of-run from a set consisting of,
e.g., several last generations.

Generally, this set of individuals will be in the following
referred as population and denoted by A = {ai}. We denote
the size of A as n. We assume that the selection procedure
can use at most k evaluations; in other words, k expresses the
computational effort the experimenter wants (is ready to) to
devote to the task of best-of-run selection. The algorithm
can distribute these k evaluations among individuals on-line.
It means that the individuals are evaluated sequentially and,
after getting the evaluation result, the algorithm can make
decision about which individual to evaluate next.

Each individual ai has a (hidden) fitness denoted by fi.
We do not assume any distribution of fitness in a population.
Estimation of individual’s fitness is subject to noise.

The noise can come from many different sources such as
sensory measurements errors or randomized simulations and
can be modeled in many ways. In this work, we assume
additive noise. Evaluation of individual ai returns fi + ε
(observed fitness), where ε is a random error. We do not ex-
plicitly assume any distribution of ε apart from the obvious
condition that the noise is unbiased, E(ε) = 0.

As the selection procedures are probabilistic by nature,
in order to compare different selection procedures a perfor-
mance measure is required. One possible measure is the suc-
cess ratio, i.e., the probability that the individual selected by
a procedure is the best-of-population individual. However,
this measure does not take into account that two or more
individuals have a very similar fitness and in practice it does
not matter if we select the best or the nearly best one. Thus,
in this paper, we will evaluate selection procedures using the
expected fitness of the selected individual.

Several methods are proposed in this paper and to com-
pare their performance we must assume some model for the
experimental setup. Thus, for the purpose of experiment,
we will assume that the fitness of individuals in A is nor-
mally distributed, fi ∼ N(ν, τ). In practice, this is true or
approximately true for many domains, since mutation and
cross-over operators have a normalizing effect on the popu-
lation fitness distribution [?]. We assume the noise distribu-
tion to be N(fi, σ). The noise can come from many different
sources such as sensory measurements errors or randomized
simulations. A similar noise model (normal distribution for
the measurements and the population) was used by Miller
and Goldberg in [?].

3. RELATED WORK
Evolutionary optimization in noisy environments is a pop-

ular topic, since many practical problems are noisy by na-
ture. A comprehensive survey about uncertain environments
can be found in [?]. One of the most common problem con-
sidered in literature is to determine the optimal sample size
during the evolution, e.g., [?, ?]. These and similar papers
concentrate on the presence of noise during evolution, ne-
glecting the problem of selecting the best-of-run individual
from a population (see for example [?]). Nevertheless, in
practice, such a procedure is desired.

The only work we are aware of that considers a similar
problem in terms of evolutionary algorithms was done by
Branke and Schmidt [?]. However, the authors designed

only a simple statistical method in order to select the better
of two individuals in the tournament selection.

The problem presented in this paper belongs to the do-
main called experimental design; in particular, it has the
form of a selection problem, in which the objective is to
construct a procedure for selecting the best of a finite set
of alternatives, when stochastic simulation is used to infer
the value of each alternative [?, ?]. There are many selec-
tion procedures and we refer to [?] for a good review of
related works in this subject. Most of them is designed to
sample (evaluate) until some fixed accuracy of the result is
reached. Two different utility/loss functions are considered:
the probability of correct selection (PCS) and the expected
opportunity cost (EOC). The latter aims at choosing the
highest expected fitness value, which corresponds exactly to
the formulation of the problem presented here.

The selection procedures are often based on some assump-
tions about the data. Most of them assume that output
of evaluation has normal distribution with mean and vari-
ance specific for each alternative. The so called Indifference
Zone procedure [?] assumes that the best system is better
than other systems by at least some known constant value
on which the efficiency of the algorithm depends. Value of
Information Procedures (VIP) [?] and Optimal Computing
Budget Allocation (OCBA) [?] work in Bayesian framework
and therefore assume some form of prior distributions, which
leads to employing specific function inside the procedures,
such as density of t distribution. Moreover, each procedure
has a large number of parameters, which influences its ac-
curacy [?].

All the algorithms proposed here (except the optimal pro-
cedure derived for comparison only) were designed without
any specific distribution, data or framework assumptions in
mind. This led us to simpler parameter-free procedures that
are ready to implement and use also for practitioners with
no expert statistical knowledge. Despite their simplicity, as
the experimental results show, one of the proposed heuris-
tics is as good as the one-stage optimal procedure for most
of the cases. Thus, our aproach is rather in the spirit of so
called racing algorithms [?, ?], which were propose to solve
model selection problems in machine learning and were also
used in metaheuristic optimization.

Finally, we notice that the model used for experimental
setup is an example of Bayesian experimental design [?] (in
particular Bayesian selection problem), the framework for
optimal design of experiments based on Bayesian decision
theory [?]. It dates back to Lindley [?], who presented a
two-part decision-theoretic approach, providing a unifying
theory for most work on Bayesian experimental design today.
The one-stage optimal procedure presented in the Appendix
of this paper also falls under this category.

4. THE ALGORITHMS
We designed four algorithms for selecting the best-of-population

individual: naive, tournament, candidate selection and op-
timal. Input arguments for all of them are: the number
of available evaluations k, the size of the population n and
the population A itself. The optimal method knows also
the hidden parameters of the distribution used in the exper-
iment i.e., σ, υ, τ that would not be available in practice.
The optimal algorithm can be seen as a benchmark for other
(practical) algorithms in our experiment.



Algorithm 1 Naive procedure

1: procedure Naive(A,n, k)
2: t← k/n
3: for a ∈ A do
4: t times evaluate a;
5: update avg(a)
6: end for
7: return element a ∈ A with maximal avg(a)
8: end procedure

Algorithm 2 Tournament procedure

1: procedure Tournament(A,n, k)
2: t← k/n
3: while n > 1 do
4: for a ∈ A do
5: t/2 times evaluate a;
6: update avg(a)
7: end for
8: A← n/2 elements from A with maximal avg()
9: n← n/2

10: end while
11: return the only element from A
12: end procedure

4.1 Naive
Naive algorithm distributes the k available evaluations

fairly among the n elements1. Each element is evaluated
t = k/n times. The best-on-average element is returned as
a result (see Algorithm 1). This procedure is also called
sampling [?] and it is usually used to estimate the fitness of
all individuals during the evolution.

4.2 Tournament
The tournament procedure is based on the observation

that it pays off to evaluate more accurately individuals that
give more hope to be better than others. The algorithm re-
sembles the so-called single elimination tournament. First,
each of the n individuals is evaluated t times; then half of
the individuals with the the lowest estimated average fit-
ness are discarded and n/2 individuals remain. Next, the
remaining n/2 are again evaluated t times, their observed
fitness is updated (their fitness is based on 2t evaluations by
now), and the n/4 worst individuals are thrown out. This
process is repeated until one individual remains, which is
the result of the algorithm (see Algorithm 2). Notice that,
the worst individuals are evaluated only t times, whereas
the tournament finalists (best two) are evaluated t× log2 n
times. Setting t to k/(2n) ensures that approximately all k
available evaluations are used:

nt+
n

2
t+ . . .+

n

n/2
t = n

k

2n

(
1 +

1

2
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1

n/2

)
= k− k

n
.

In practice, the remaining k
n

evaluations can be distributed
among the tournament finalists to better estimate their fit-
ness, however its impact was found to be negligible.

The tournament procedure is intuitive, elegant and easy
to implement. In the experimental part of this paper, we

1If n does not divide k, the evaluations are distributed as
fair as possible.

Algorithm 3 Candidate selection

1: procedure Candidate Selection(A,n, k)
2: for a ∈ A do
3: evaluate a;
4: update avg(a) and cnt(a)
5: k ← k − 1
6: end for
7: while k > 0 do
8: amax ← element from A with maximal avg()
9: a2nd ← element from A\{amax} maximizing
avg() (second from the top)

10: amin ← element from A\{amax} maximizing the
confidence conf(a, amax)

11: if conf(amin, amax) < conf(amax, a2nd) then
12: evaluate amin;
13: update avg(amin) and cnt(amin)
14: else
15: evaluate amax;
16: update avg(amax) and cnt(amax)
17: end if
18: k ← k − 1
19: end while
20: return element a ∈ A with maximal avg(a).
21: end procedure

show that it is significantly better than the commonly used
naive procedure. Nevertheless, using more statistical knowl-
edge a better algorithm can be designed.

4.3 Candidate selection
The candidate selection procedure (termed simply candi-

date in the following) is based on iteratively choosing one
individual (a “candidate” for the best-of-population individ-
ual) for a single evaluation and updating the fitness estimate
of this individual. Two values are kept for each individual
during the procedure: the average value of all evaluations
avg(a), and the number of evaluations cnt(a).

The procedure is initialized by evaluating every individual
a ∈ A once. Next, in each iteration, for each a ∈ A we
calculate the confidence defined as:

conf(a, ā) = (avg(a)− avg(ā))2 · cnt(a) (1)

where ā is defined as ā = arg mina′∈A\a avg(a′). In other
words, if a is the individual with the highest avg(a), then ā
is the second individual from the top. Else, ā is the individ-
ual with the highest avg(a). Next, the individual with the
smallest confidence is chosen for evaluation. This process is
repeated until all the evaluations are done. The individual
the highest avg(a) is the result of the procedure.

The idea behind the confidence term is following. Suppose
x̄ is the average value of m independent random variables xi
with mean µ and variance σ2. Then for large m, the term
x̄−µ
σ

√
m (sometimes called confidence term or Z − score)

becomes distributed approximately as N(0, 1). It is used for
tests (such as t-test) whether to reject the hypothesis that xi
have mean value smaller than µ (if confidence exceeds some
threshold value). In our case, since σ is common across
all the individuals, we use the square of the confidence (to
avoid calculating square roots) and we put avg(ā) in place
of the mean value. Thus, we test the hypothesis whether a
given individual has its mean value greater than the maximal
average value among the individuals (or smaller than the



Algorithm 4 One-Step Optimal Bayesian Selection

1: procedure Optimal Bayesian(A,n, k, σ, τ, ν)
2: for a ∈ A do
3: avgB(a)← ν
4: cnt(a)← 0
5: end for
6: while k > 0 do
7: amax ← element from A with maximal avgB()
8: a2nd ← element from A\{amax} maximizing
avgB() (second from the top)

9: amin ← element from A\{amax} minimizing the
utility U(a, amax)

10: if U(amin, amax) > U(amax, a2nd) then
11: evaluate amin;
12: update avgB(amin) and cnt(amin)
13: else
14: evaluate amax;
15: update avgB(amax) and cnt(amax)
16: end if
17: k ← k − 1
18: end while
19: return element a ∈ A with maximal avgB(a).
20: end procedure

second from the top individual, if the maximal individual
is tested). The individual with the smallest confidence of
rejection (for which we keep the null hypothesis with highest
confidence) is evaluated.

4.4 Bayesian One-Stage Ahead Procedure
It is worth considering the optimal procedure for the ex-

perimental setup, mentioned in Section 2 and described in
more details in Section 5. If we assume that all hidden pa-
rameters (ν, τ, σ) are known, there exists an optimal proce-
dure for the best-of-population selection problem, since this
is a Bayesian framework. However, in real problems values
of ν, σ and τ are rarely known, thus such a Bayesian proce-
dure is impractical. Here, we present it only for comparison
with heuristic algorithms that do not know the hidden pa-
rameters.

The procedure is presented as Algorithm 4. Comparing to
the previous heuristics, a Bayesian average is used instead
of normal average value, defined as:

avgB(a) =
ν · σ2/τ2 + cnt(a) · avg(a)

σ2/τ2 + cnt(a)

Notice that ν and “signal to noise” ratio τ/σ is required to
calculate avgB(a). Moreover, individuals are being selected
for evaluation by calculating their utility :

U(a, ā) =
σ

δ(a)

(
1√
2π
e−

(∆(a,ā))2

2 + ∆(a, ā)Φ(∆(a, ā))

)
where we used δ(a) =

√
(σ2/τ2 + cnt(a) + 1)(σ2/τ2 + cnt(a))

and ∆(a, ā) = |avg(a) − avg(ā)| · δ(a)/σ. The derivation
of this expression is presented in the Appendix. For each
a ∈ A, the individual ā is obtained in the same way as in
the candidate procedure.

This procedure is a one-stage optimal Bayesian procedure,
which means that it is optimal procedure among all the pro-
cedures looking one step ahead. We do not know if this
procedure is also a globally optimal procedure, but if not,

our one-step optimal procedure should be a very good ap-
proximation of the globally optimal one.

4.5 Time complexity
The naive and tournament algorithms have time com-

plexity O(k); candidate and optimal algorithms have time
complexity O(kn). However, the impact of higher time com-
plexity in case of candidate and optimal algorithms is not
critical, if we assume that the cost of evaluation is much
higher than the cost of arithmetic operations. In this case,
all of the algorithms have time complexity O(k), since all
perform k evaluations.

5. EXPERIMENTS AND RESULTS
To compare the algorithms presented in the previous sec-

tion, we carried out a computational experiment. In a sim-
ulation run, we first generated a set of n individuals with
fitness drawn at random with normal distribution N(ν, τ).
Each algorithm under examination was then executed with
the same input parameters A, n, k. During each run, the
algorithms could k times evaluate a chosen individual ai.
Each such evaluation produced a value drawn at random
with normal distribution, i.e., ε ∼ N(fi, σ). The estimated
expected fitness of individual returned by each algorithm
was determined as the average of 1000 simulation runs.

The problem we have posed has five variables: n, k, ν, τ, σ.
It would be infeasible to test all points of the five-dimensional
space. Fortunately, only two combinations of those param-
eters are important. Firstly, notice that the standard devi-
ation τ is barely the scale of the fitness values axis and is
meaningful only in comparison with the noise σ, so that only
the ‘signal to noise’ ratio τ/σ matters; thus we set τ = 1 in
the experiment without loss of generality. Secondly, ν (a
priori mean) is only a fitness scale translation and does not
influence any of the methods, so it is set to 0. Finally, we
noticed experimentally that as we vary σ with varying k
proportionally to σ2, the results of all the procedures do not
change (see Figure 1). This is due to the fact that accu-
racy of estimated mean values grows with the square root
of evaluations and decreases proportional to σ. Therefore
setting σ2/k constant (with n being fixed) does not change
the accuracy of estimates and leads to similar accuracy of
the methods. Thus, we can fix k and change σ and n, so we
end up with only two parameters.

Therefore we set ν = 0, τ = 1, k = 8192. We examined
different noise values σ = (0.5, 1, 2, 4, 8, 16, 32, 64). For
each noise value, we checked how the algorithms cope with
different populations sizes n = (2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096). As the number of evaluations is fixed
(k = 8192), in the following analysis, we will sometimes use
the term the number of evaluations per individual k/n.

The results are shown in Figure 2. Each graph (a)–(h)
corresponds to one noise value. Notice that ticks at the top
axis correspond to the number of evaluations per individual,
whereas ticks at the bottom axis correspond to the popula-
tion size. The confidence intervals (95%) were marked as
gray bars.

The curve labeled as max on the graph is not a real al-
gorithm, but a maximal possible expected fitness that could
be obtained if returning always the individual with maximal
fitness. That is why max performance does not deteriorate
when the noise increases. The maximum possible expected
fitness increases with increasing number of individuals n, be-
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(b) σ = 1.0

248163264128256512102420484096

evaluations per individual k/n

2 4 8 16 32 64 128 256 512 1024 2048 4096

number of individuals n

0

1

2

3

4

ex
pe

ct
ed

fit
ne

ss

max
optimal
candidate
tournament
naive

(c) σ = 2.0
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(d) σ = 4.0
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(e) σ = 8.0
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(f) σ = 16.0
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(g) σ = 32.0
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(h) σ = 64.0

Figure 2: Each graph presents a comparison of four algorithms for different noises σ and population sizes n.
The rest of the parameters were fixed constant: ν = 0.0, τ = 1.0, k = 8192.
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Figure 1: When k is proportional to σ2 the expected
fitness remains constant for all procedures. This
graph was created using the following parameters:
n = 64, k/σ2 = 128, τ = 0.5, ν = 0. The simulation was
repeated 1000 times.

cause it has the form of the maximum order statistics which
expected value grows with the population size.

Let us first comment on how the noise affects the exam-
ined algorithms. Low noise (e.g. σ = 0.5) does not influence
much on any algorithm, but when the noise increases, it is
much harder to find the best-of-population individual; fi-
nally, in the presence of high noise (σ = 64), no algorithm
can confidently select the best among two individuals even
when the number of evaluations per individual is as high as
4096 (see Figure 2h). Moreover, when the noise is moder-
ate (σ = 8.0) and the number of evaluations per individual
medium (k/n = 32) even the optimal algorithm produces
expected fitness significantly lower than the maximum pos-
sible. At the same time, the expected fitness of naive algo-
rithm is nearly two times lower than max.

When the number of evaluations per individual is high
and noise is low, it does not matter which algorithm we
use, because all of them perform, approximately, as good as
possible. When the noise is higher or the number of eval-
uations per individual lower, we can clearly see that naive
algorithm is much worse than other algorithms. Already
with a relatively small noise σ = 1.0, we can notice that
having less than 32 evaluations per individual makes the
naive algorithm perform worse than others. The most strik-
ing difference between naive, and tournament or candidate
algorithm is when k/n = 2 and σ = 4.

We can also see, that candidate algorithm is, in most of
the cases, equal or better than tournament. The only ex-
ception of this rule is when σ = 32 and n ∈ [4, 16], but the
difference is small and the confidence intervals overlap heav-
ily. Among the considered methods, candidate is the most
robust procedure.

Candidate procedure is for most examined cases nearly as
good as the optimal one. Surprisingly, however when the
number of individuals increases, the expected fitness of can-
didate procedure deteriorates. This effect can be observed,
for example, for σ = 8. Expected fitness peak is achieved
for n = 512, whereas for n = 1024 the method behaves
significantly worse. This effect is, counter-intuitive to some
extent, since we would expect that when the maximum pos-
sible fitness max increases the expected fitness of candidate

algorithm should also increase, because there are better in-
dividuals in bigger populations. This effect is also notice-
able for other algorithms (naive and tournament); only op-
timal holds the level. This problem appears, because when
the number evaluations per individual drops, the algorithms
loose to much time (evaluations) to assess if an individual
gives a hope for being the best-of-population. On the other
hand, the optimal algorithm has complete information about
the distribution, i.e, ν and τ . In result, it quickly decide
what is the probability that evaluated individual is better
than others. That is why optimal algorithm does not evalu-
ate most of the individuals in some cases—it selects a sam-
ple from A and concentrates its efforts to determine which
of them is the best.

As we have noticed, for σ = 8 and n = 1024 the result
of candidate algorithm is worse than for k = 512. Thus, for
k = 1024, it would be wise to discard half of the individu-
als and run the candidate algorithm on the remaining 512
individuals receiving the same good result as for k = 512.
Generally, if we could know the optimal nσ,k for all σ2 and
k value, we could design a better than candidate algorithm,
by calling the procedure with argument nσ,k instead of n al-
ways when n > nσ,k. Unfortunately, σ (nor τ) is not known
to the algorithm in most practical cases. We could probably
try to estimate σ/τ on-line, but this idea needs additional
research.

To further compare the profit of application candidate al-
gorithm instead of naive one, we checked how many times
more evaluations are required by naive algorithm to get at
least the same expected fitness as candidate algorithm. The
results for different number of individuals n and noise values
σ are shown in Table 1. As we can see, for some parameters
the naive algorithm requires two orders of magnitude times
more evaluations than the candidate.

It is interesting whether our algorithms work well with
different utility function, i.e., the probability of correctly
choosing the optimal element (success probability). To in-
vestigate this, we conducted additional experiment with two
different noise values in which we test the algorithms mea-
suring the success probability. The results are shown on Fig-
ure 3 and look surprising on the first sight. It follows that
in many cases the candidate procedure outperforms optimal.
However, the optimal procedure is not optimal anymore for
such utility function. Those results show that our best can-
didate procedure is robust to the changes of utility measure.
On the other hand, performance of the optimal procedure
deteriorated, which suggests that procedures optimized to
specific conditions might work poorly when conditions are
changed.

6. CONCLUSIONS
We presented an interesting problem of selecting the best

individual from a population in a noisy environment and
designed several procedures solving it. All presened pro-
cedures are straighforward to implement and use. In the
experimental part, we compared our algorithms and found
out that the commonly used resampling procedure is weak
even if the noise is low. For a situation when both the noise
and the fitness in population are normally distributed, we
designed an optimal algorithm, which need complete infor-
mation about the distributions. We found out, however that,

2To be exact, σ/τ .
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Figure 3: Success probability.

Table 1: How many times more evaluations naive
algorithm should use to get the same result as can-
didate algorithm in function of noise σ and number
of individuals n.

σ\ n 32 64 128 256 512 1024 2048 4096

0.5 7.2 6.9 9.5 14.4 36.4 99.0 137.0 171.0

1 2.9 3.6 8.6 14.9 23.8 51.0 78.3 122.5

2 1.5 2.9 7.8 10.3 22.6 32.0 48.0 34.0

4 1.5 3.7 6.2 10.2 17.6 22.1 20.0 11.5

8 1.7 3.9 5.7 8.9 12.6 12.0 11.0 7.5

16 2.4 3.9 5.8 7.2 8.6 9.0 8.5 6.5

32 3.6 4.0 6.9 7.8 7.3 7.6 6.5 5.0

64 3.0 4.6 5.4 5.7 8.2 7.0 5.5 6.0

our candidate selection procedure, that have no information
about the distribution, is nearly optimal in the most of pa-
rameters combinations.

We also showed that it does not always pay off to have a
big set of candidate solutions. When the noise is high, to
maximize the expected fitness, it is better to consider only
part of the population. However, to answer the question
how many individuals should be discarded and under what
conditions requires further research.

Neither tournament nor candidate methods does not rely
on any assumption concerning noise and population distri-
butions. In the future, we would like to test our algorithms
on other than normal distributions (t-Student or Cauchy-
Lorentz) and also verify their utility on real-world data.
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APPENDIX
A. DERIVATION OF THE OPTIMAL PRO-

CEDURE
In this Section we derive the Algorithm 4. It is based on

the Bayesian decision theory [?] and is the one stage ahead
optimal procedure, i.e. in each iteration t = 1, . . . , k we
choose one individual for evaluation such that the choice is
optimal between all single-evaluation procedures. The algo-
rithm is a special case of more general optimal procedure
described in [?] but the derivation and the form of the al-
gorithm presented here is simpler.

Let m = (m1, . . . ,mn) be a vector of numbers of evalu-
ations for each individual in iteration t − 1. Assume that
for ith individual, values {xi,1, . . . , xi,mi} has already been
obtained in mi evaluations. Let x̄ = (x̄1, . . . , x̄n) be a vector
of average values for each individual in iteration t − 1, i.e.

x̄i =
∑mi
j=1 xij

mi
and x̄i := 0 if mi = 0. Let x̃ = (x̃1, . . . , x̃n)

be a vector of so called Bayesian averages in iteration t− 1
defined as:

x̃i =
ν · σ2/τ2 +mkx̄k
σ2/τ2 +mk

(2)

Let m′, x̄′, x̃′ be the above described values in iteration t,
after updating them with new evaluation x of one of the in-
dividuals. Let d1 be the index of the individual chosen for
evaluation in iteration t. Let d2 be the index of individual
chosen to be the best, after iteration t. From Bayesian deci-
sion theory it follows that d1 is of the form d1(x̄) (depends
only on x̄), since x̄ is so called sufficient statistics for normal
distribution [?]. Similarly, and d2 is of the form d2(x̄)′. We
called the pair (d1, d2) the decision function.

We define the utility u(f , i) of choosing the ith individual,
when the fitness vector is f = {f1, . . . , fn}. Since we aim at
maximizing the response of the procedure, we define utility
simply as u(f , i) = fi. We define expected utility of decision
function (d1, d2) as the expected value of u according to the
random choice of data x̄′ and fitness vector f .

U(d1, d2) =

ˆ
u(f , d2)dP (x̄′, f) (3)

(notice that the dependence on d1 follows from the fact that
x̄′ depends on d1). We aim at finding d1 and d2 which

maximizes (3). But expression (3) can be transformed to:

U(d1, d2) =

ˆ (ˆ (ˆ
u(f , d2)dP (f |x̄′)

)
dP (x|x̄)

)
dP (x̄)

which shows that to maximize (3), it is enough to find d1

and d2 maximizingˆ (ˆ
u(f , d2)dP (f |x̄′)

)
dP (x|x̄) (4)

for each x̄. From Bayesian theory it follows that f |x̄′ has
posterior distribution of the form fi|x̄′i ∼ N(x̃′i, ρi) where x̃′i
was defined above and ρ2

i = τ2σ2

m′
k
τ2+σ2 . Then, one can easily

show that ˆ
u(f , d2)dP (f |x̄′) = x̃′d2 (5)

But this expression is maximized for d2 = arg maxi x̃
′
i. Thus,

from (4) and (5) it follows that the optimal decision d1 is
the one which maximizes:

U(d1) =

ˆ
max
i
x̃′iP (x|x̄)dx (6)

To simplify expression (6), first notice that P (x|x̄) = P (x|x̄d1).
We can obtain this probability density by decomposition

P (x|x̄d1) =

ˆ
P (x|fd1 , x̄d1)P (fd1 |x̄d1)dfd1

Since x|fd1 , x̄d1 = x|fd1 ∼ N(fd1 , σ) and fd1 |x̄d1 ∼ N(x̃d1 , ρd1),
by solving typical Gaussian integral we obtain x|x̄d1 ∼ N (x̄d1 , σk)

where σk =
√
ρ2
d1

+ σ2. To calculate the integral (6), first

notice that d1 6= d2 as long as x̃′d1 < maxi x̃
′
i which is equiv-

alent to:

x < x̃′d2(σ2/τ2 +mk + 1)−md1 x̄d1 − νσ
2/τ2 =: βd1

But then, the integrand maxi x̃
′
i is constant and equal to x̃′d2

or x̃d2 , since x̃d2 was not changed and d2 can be expressed
as:

d2 = arg max
i 6=d1

x̃i (7)

(since d2 6= d1 and d2 corresponds to the largest x̃i). More-
over, if x ≥ βd1 than d1 = d2. Therefore we decompose (6)
as:

U(d1) = x̃d2

ˆ βd1

−∞
P (x|x̄)dx+

ˆ ∞
βd1

x̃′d1P (x|x̄)dx

where d2 is defined in (7). The first integral equals to:

x̃d2Φ ((βd1 − x̃d1)/σk)

where Φ is the standard normal cumulative distribution func-
tion. The second integral equals to:

x̃d1Φ

(
x̃d1 − βd1

σk

)
+

σk√
2π

exp

(
− (βd1−x̃d1 )2

2σ2
k

)
σ2/τ2 +md1 + 1

If we denote δd1 =
√

(σ2/τ2 +md1 + 1)(σ2/τ2 +md1), then
it follows that:

σk =
√
ρ2
d1

+ σ2 =
σ

σ2/τ2 +md1

δd1

and:

x̃d1 − βd1

σk
=
x̃d1 − x̃d2

σ
δd1



So that we obtain:

U(d1) = x̃d2+(x̃d1−x̃d2)Φ

(
x̃d1 − x̃d2

σ
δd1

)
− σ√

2π
e
−

(x̃d1
−x̃d2

)2δ2d1
2σ2

(8)
This expression can be already used, however it is numer-

ically unstable. Therefore, we transform it using the equiv-
alences Φ(z) = 1−Φ(−z) and x̃d1 − x̃d2 = max{x̃d1 , x̃d2}−
|x̃d1 − x̃d2 |, and noticing that max{x̃d1 , x̃d2} = maxi x̃i is
constant and can be dropped. Finally, we obtain:

U(d1) =
σ

δd1

(
1√
2π
e−

∆2
d1
2 + ∆d1Φ(∆d1)

)
(9)

where ∆d1 =
|x̃d1−x̃d2 |

σ
δd1 . Thus, in each iteration we

choose to evaluate the individual with index d1, which max-
imizes the above expression.


