Reasoning about Large Taxonomies of Actions

Yilan Gu
Dept. of Computer Science
University of Toronto
10 King'’s College Road
Toronto, ON, M5S 3G4, Canada
Email: yilan@cs.toronto.edu

Abstract

We design a representation based on the situation calaulus t
facilitate development, maintenance and elaboration of ve
large taxonomies of actions. This representation leads to
more compact and modular basic action theories (BATs) for
reasoning about actions than currently possible. We caenpar
our representation with Reiter's BATs and prove that our rep
resentation inherits all useful properties of his BATs. Btor
over, we show that our axioms can be more succinct, but ex-
tended Reiter’s regression can still be used to solve thje@ro
tion problem (this is the problem of whether a given logical
expression will hold after executing a sequence of actions)
We also show that our representation has significant compu-
tational advantages. For taxonomies of actions that can be
represented as finitely branching trees, the regression ope
ator can work exponentially faster with our theories than it
works with Reiter's BATs. Finally, we propose general guide
lines on how a taxonomy of actions can be constructed from
the given set of effect axioms in a domain.

Introduction

A long-standing and important problem in Al is the prob-
lem of how to represent and reason about effects of actions
grouped in a realistically large taxonomy, where some ac-
tions can be more generic (or more specialized) than others.
While the problem of representing largemantic networks

of (static) concepts has been addressed in Al research from
the 1970s and served as motivation for researctiestrip-

tion logics a related problem of representing and reason-
ing about large taxonomies attionsreceived surprisingly
little attention. We would like to address this problem us-
ing the situation calculus The situation calculus (SC) is

a well known and popular predicate logical theory for rea-
soning about events and actions. There are several differen
formulations of the SC. In this paper we would like to con-
centrate orbasic action theorie§BATS) introduced in (Re-

iter 2001), in particular, on successor state axioms (SSAS)
proposed by Reiter to solve (sometimes) the frame problem
(SSAs are part of a BAT). Recall that BATs are more expres-
sive than STRIPS theories: actions specified using BATs can
have context-dependenteffects. We propose a represantati
that allows writing more compact and modular BATs than is
currently possible. BATs are logical theories of a certain
syntactic form that have several desirable theoreticgbpro
erties. However, BATs have not been designed to support
taxonomic reasoning about objects and actions. Essegmntiall

Copyright © 2008, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

Mikhail Soutchanski
Department of Computer Science
Ryerson University
245 Church Street, ENG281
Toronto, ON, M5B 2K3, Canada
Email: mes@cs.ryerson.ca

these theories are “flat” and do not provide representation f
hierarchies of actions. This can lead to potential diffieglt

if one intends to use BATs for the purpose of large scale for-
malization of reasoning about actions on the commonsense
level, when potentially arbitrary actions and objects have

be represented. Intuitively, many events and actions have
different degrees of generality: the action of driving a car
from home to an office is a specialization of the action of
transportation using a vehicle, that is in its turn a spéezaal

tion of the action of moving an object from one location to
another. We represent hierarchies of actions explicitly an
use them in our new modular SSAs. However, we show that
our new modular SSAs can be translated into “flat” Reiter’s
SSAs and, consequently, we inherit all useful properties of
his BATs: formulas entailed from Reiter’s BAT remain en-
tailments from a modular BAT; consequently, the projection
problem can be solved.

Below, we first review the SC. Then we propose a new
representation that helps to design modular BATs and prove
that it has the same desirable logical properties as Reiter’
BATs. We also discuss the significant computational ad-
vantages of using modular BATs in comparison to Reiter’'s
“flat” BAT. Finally, we propose an approach to designing
taxonomies of actions and discuss related work.

The Situation Calculus

All dialects of the SCL,, include three disjoint sortsa¢-
tions situationsandobjecty. Actions are first-order (FO)
terms consisting of an action function symbol and its ar-
guments. Actions change the worldSituations are FO
terms which denote possible world histories. A distin-
guished constant is used to denote thiaitial situation,
and functiondo(a, s) denotes the situation that results from
performing actioru in situations. Every situation corre-
sponds uniquely to a sequence of actions. Moreover, the
notations’ C s means that either situatio#i is a subse-
guence of situatios or s = s’. Objects are FO terms
other than actions and situations that depend on the do-
main of an application.Fluents are relations or functions
whose values may vary from one situation to the next. Nor-
mally, a fluent is denoted by a predicate or function symbol
whose last argument has the sort situation. For example,
F(Z,do([a1,- -+ ,an], So)) represents a relational fluent in
the situationdo(a,, do(- - - ,do(aq, Sp) - - -)) resulting from
execution of actionsyy, - - - , a,, in Sy. For simplicity, we
omit all details related to functional fluents below. All é&re
variables are always-quantified at the front.

The SC includes the distinguished predic&tess(a, s)

to characterize actions that are possible to execute én
For any first order SC formula and a terms of sort situa-
tion, we sayp is a formulauniformin s iff it mentions only
fluents (does not mentioRoss or C), it does not quantify
over variables of sort situation, it does not use equality on
situations, and whenever it mentions a term of sort sitnatio
in a fluent, then that term is a variahiésee (Reiter 2001)).

A basic action theor{BAT) D in the SC is a set of ax-
ioms written inZ . with the following five classes of axioms
to model actions and their effects (Reiter 200JAction
precondition axiomsD,,,: For each action functior (z),
there is one axiom of the formoss(A(Z),s) = (T, s).
IT4(Z, s) is a formula uniform ins with free variables
amongr ands, which characterizes the preconditions of ac-
tion A. Successor state axiom®,,: For each relational
fluentF'(Z, s), there is one axiom of the form

F(Z,do(a, s))=\/ ¢ (Z,a,5) V F(Z) A=(\/¢; (£,a,5)). (1)

Here, each formula; (#, a, s) (5 (%,a,s), respectively)

is uniform in s and specifies a positive effect (negative ef-

fect, respectively) with certain conditions on fluént Each

7 (Z,a,s) ory; (Z,a,s) in EQ. (1) has the syntactic form
3z.a = APV (E, 2, 5),)

wherez = ¢ — ¥ andv(Z, Z, s) is a context where the ac-
tion A(y) has the effect. The successor state axiom (SSA)
for each fluenf’ completely characterizes the truth value of
F inthe next situatiodo(a, s) in terms of values that fluents
have in the current situation Notice that, unlike STRIPS,

in general these SSA axioms are context-dependieitiaal
theory Dg,: A setof FO formulas whose only situation term
is Sy. It specifies the values of all fluents in the initial state.

the evaluation of a regressable formif#ato a FO theorem
proving task in the initial theory together with unique name
axioms for actions: D W iff Ds, UDuna = R[W].

This fact is the key result in the SC. It demonstrates that an
executability or a projection task can be reduced to a theo-
rem proving task that does not use precondition, successor
state, and foundational axioms. This is one of the reasons
why the SC provides a natural and easy way to represent
and reason about dynamic systems.

Action Hierarchies

In practice, it is not easy to specify and reason with a logi-
cal theoryD if an application domain includes a very large
number of actions. To deal with this problem, we propose to
represent events and actions using a hierarchy.

Definition 1 We use the predicatep(a1, a2) to represent
that actiona, is a direct specializatiomf actiona, (action

az is a direct generalizatiof a1). An action diagramis

defined by a finite sét of axioms of the syntactic form

sp(A1(T), A2(9)) = day,4, (7, 9) ®)

for two action functionsi (Z), A2 (%), whereg a, 4, (Z, 7)
is a satisfiable (i.e., not equivalent to) situation-free FO
formula with free variables at most amongiy. Also, H
must be such that the following condition hold:

HUD k= sp(ai,a2) D (Poss(a1,s) D Poss(az, s)).

Given any action diagrari, we say that a directed graph
G = (V,E) is adigraph of H whenV = {4,,---,A4,},
where allA;’s are distinct action function symbols i and
a directed edgel;— A, belongs to the edge sétiff there

It also describes all the facts that are not changeable by any is an axiom of the formsp(A; (), Ax(9)) = da; 4, (Z,)

actions in the domainUnique name axioms for actions
Duna: Includes axioms specifying that two actions are dif-
ferent if their action names are different, and that ideattic
actions have identical argumenEnundational axioms for
situations X: The axioms for situations which characterize

in H. FromD,,,, follows that the grapld: cannot have mul-
tiple edges from one node to another. When the digi@ph
of H is acyclic, i.e., there is no directed loop @ we call

‘H anacyclic action diagramBelow, we will only consider
acyclic action diagrams. Note that if each action in the di-

the basic properties of situations. These axioms are domain graph of an acyclic action diagram has only one parent (sin-

independent. They are included in the axiomatization of any
dynamic system in the SC (see (Reiter 2001) for details).
Suppose tha®D = D, U Dy U Dgy U U Dypgq i
a BAT, a4, -+ ,«a, is a sequence of ground action terms,
and G(s) is a uniform formula with one free variable
One of the most important reasoning tasks in the SC is
the projection problem, that is, to determine whethef
G(do([oa, - -+ ,an], So)). Another basic reasoning task is the
executability problem. Planning and high-level program ex
ecution are two important settings where the executability
and projection problems arise naturalRegressiolis a cen-
tral computational mechanism that forms the basis for auto-
mated reasoning in the SC (Reiter 2001). A recursive defini-
tion of the regression operat®ron anyregressable formula
¢ is given in (Reiter 2001). We use notati®&j¢] to denote
the formula that results from eliminatingoss atoms in fa-
vor of their definitions as given by action precondition ax-
ioms and replacing fluent atoms abalt«, s) by logically
equivalent expressions abaouas given by SSAs repeatedly
until it cannot make such replacements any further. The re-

gle inheritance case), then the digraph is actually a forest
but generally, there can be actions that have several [garent
(multiple inheritance case), as shown in Examples 1 and 2.

Example 1 Consider actions performed in a kitchen, ac-
tions such as washing, cooking, frying, etc. Some can be
considered as specializations of others. To simplify the ex
ample we assume that water and electricity are always avail-
able, ignore some other kitchen activities (such as chappin
mixing, etc) and consider the (simplified) action digraph
shown in Fig. 1. Each edge corresponds to epe@xiom
in the setH, for example,

sp(wash(z), kitchenAct), sp(prepFood(z), kitchenAct),

sp(cook(food, vessel), prepFood(food)),

sp(oilyCook(food, vessel), cook(food, vessel)),

sp(oilyCook(food, vessel), reheat(food)),

sp(microwave(food), reheat(food)), - - -, etc.

= ===

Example 2 We show additional examples where actions in
‘H can have different numbers of arguments. Consider an
actiontravel(p, o,d): a personp travels from origino to

gression theorem (Reiter 2001) shows that one can reducedestinationd. It can be regarded as a direct specialization

Figure 1:A (Simplified) Action Digraph for Kitchen Activities

of move — personp moves from locatiorv to locationd:
sp(travel(p,o,d), move(p,o0,d)).

Consider an actiodrive(p, v, 0,d), representing that a
personp drives a vehiclev from origin o to destination
d. It can be considered as a direct specialization of ac-
tion travel — personp travels from locatiorv to location
d: sp(drive(p,v,o0,d),travel(p,o,d)). Itis also a direct spe-
cialization of actionmove — vehiclev moves from location
oto locationd: sp(drive(p,v,o,d), move(v,o,d)).

Consider an actiomassDr(p,dr): a personp passes
through a doowdr. It is considered as a direct specializa-
tion of move(p, o, d) iff the origin o is the outside oflr and
the destinatior is the inside ofir, or vice versa:
sp(passDr(p,dr), move(p,o0,d)) =

outside(o,dr) A inside(d, dr) V outside(d, dr) A inside(o, dr),
where predicateoutside(o,dr) (inside(d,dr), respec-
tively) is true iff o (d, respectively) is the location that is
outside (inside, respectively) af-.

In this paper, we will only consider action diagrams with
monotonic inheritancef effects:
DUH E (VF).sp(ai,a2) A F(s) # F(do(az, s))
D F(do(a1,s)) = F(do(az, s)).
Since there are only finitely many (say,) fluents inD,

One can easily prove that undey,,,,, H* is acyclic accord-
ing to Def. 3 iff the digraph of the action diagraf is
acyclic. Note that the above condition in Def. 3 is more gen-
eral than the antisymmetry ep* (because antisymmetry is
not strong enough to assure the acyclicity-6f

The following theorem states that the action hierarchies
entail the same intuitively clear taxonomic propertieshas t
predicatesp.

Theorem 1 LetH be an acyclic action diagram, whose cor-
responding action hierarchy i&*. Then,

H* UD [sp™(a1,az2) D (Poss(ai, s) D Poss(az, s)).

Proof: It follows from Def. 1, Def. 2 and Def. 3 using in-
duction, but details are omitted because of lack of space.

Moreover, the following lemma will be convenient later.

Lemma 1 Consider any acyclic action diagrafi, whose
corresponding action hierarchy i¥*. For any action func-
tionsA; (%) andAx (%), A1 (Z) is a (distant) specialization of
Ao (7)) iff ¢4, 4,(Z,y), for some situation-free FO formula
®4,,4, (including T and_L) whose free object variables are
at most among’ andy. That s,

H* U Duna ': Sp* (A1(£)7 A2(:l?)) = ¢A1,A2 (57 :lj)
And, ¢4, 4, can be found fronH in finitely many steps.

Proof: Let G = (V,E) be the digraph of the giveft,
and let maz(A’, A) be the maximum of the lengths of
all the distinct paths fromA’ to A in G. We prove
the following property P(n) for any natural number
n: “For any action function symbold’, A such that
maz(A’, A) = n,n <|V|, and for any distinct free variables
z,7, sp*(A'(Z), A(Y)) = ¢ar.4(Z,7) for some FO formula
¢as.4 (including T and L) with object variables at most

=9

amongzr andy "

the above second-order (SO) formula can be replaced by the Base caseP(0), maz(A’, A)=0, two sub-cases.

finite conjunction (over; = 1..m) of FO formulas (where
F;(2}, s) is jth fluent with object arguments;):
sp(ai,a2) A Fj(zj, s) Z F;(25, do(az, s))
o Fj (:C37 do(a17 8)) EFJ@@F do(a27 8))

Because in general we need to reason about a direct spe-

cialization of another direct specialization of an actiom,
define (distant) specializations using the predicate

Definition 2 The predicatesp*(as, as) represents that ac-
tion a; is a (distant) specializationf actionas and is de-
fined as a reflexive-transitive closure gf.

sp*(a1,a2) = (YP).{(Vv)[P(v,v)]A
(Vv,v’,v")[sp(v,v") A P(v',v") D P(v,v")] A
(Vv,v")[sp(v,v") D P(v,v")]} D P(ai,az) (4)
Axiom (4) requires SO logic, but we will show in Theorem 3

that we can still reduce reasoning about regressable formu-

las to theorem proving in FOL only. We denote the set of
axioms including Axiom (4) and all axioms in an action di-
agramH asH* and call it theaction hierarchy (ofH).

Definition 3 An action hierarchyH* is acyclic iff it en-
tails the following conditionsH* | sp*(A1(Z1), A2(71)) A
sp*(A2(2), A1(Z2)) D A1(Fs) = A2(gs) for all action func-
tions Ay, As.

Case 1:4=A’, sincesp* is reflexive
sp"(A'(@), A§)) = 7] = |51 A NIZ, @i = yi (by UNA).

Case 2:A+£A’, and sincenaz(A4’, A)=0, which means there
is nosp path betweem and A’, thensp*(4'(%), A(¥)) = L.
Inductive stepAssume thatP(j) is true for allj < n, we
prove P(n), wheren > 0. Consider any action function
symbolsA’; A such thatnaz(A’, A) = n, wheren < |V|.
Since G is acyclic, hence each path fromh to A’ has no
repetitions of the action nodes. Singe> 0, collect all
direct generalizations od’ in G, say{A4,, -, A;}, which
are (distant) specializations d@f. Then,
sp™ (A'(Z), A(y)) =

iz (373)[sp(A'(2), Ai(7)) A sp™(Ai(a3), A))).
For eachi, max(A;, A) < n—1. By the induction hypoth-
esis, we havesp*(A;(7:), A(Y)) = ¢a, a(T:,) for some
situation-free FO formulaga, 4 whose free variables
are at most among; andy. In H, for eachi we have

sp(A'(D), Ai(T)) = b0 4, (T,77),

whereg 4 4, is a situation-free FO formula. Let
= Vi1 G8)[bar,a, (T, 7)) A da,a(@, D)),

then P(n) is proved. Notice that < |V|; hence such FO
formula can always be obtained in finitely many step&l

¢A/,A (f7 g)

Example 3 We continue with Example 2. Most
of the FO formulas ¢4, 4,(Z,%) equivalent to
p* (A1 (%), A2(y)) are straightforward (either T,
L or the same as the axioms ofp), except for
sp*(drive(p, v, 0, d), move(obj, orig,dest)) for any
free variablep, v, 0, d, 0bj, orig, dest. By using Def. 2 and
the axioms given in Example 2, we have
sp* (drive(p,v, o, d), move(obj, orig, dest))
= sp(drive(p,v, o, d), move(obj, orig, dest)) V
sp(drive(p, v, o,d), travel(p,o,d)) A
sp(travel(p, o, d), move(obj, orig, dest))
_v—obj/\o—orig/\d dest vV
bj Ao = orig A\ d = dest,
which can be S|mpI|f|ed as: for any vanab]msv o0, d, obj,

p* (drive(p,v, o, d), move(obj, 0,d)) = p = objVv = obj.

Modular BATs
Our goal is to provide a more compact specification of a BAT
based on a given hierarchy of actions. We will call such a
modified BAT amodular BATand denote it a®” , where

D" = D,y UDIE UDE US U Duna.

Here, DY = Dg, UH*, in whichH* is the action hierarchy
andDg, describes the usual initial state, the same as Reiter’s
initial theory, andDX is the new class of SSAs specified
based ort*. Inthe sequel, Ietp*:(a, a’) be an abbreviation

for eithersp*(a, a’) ora = a’ in Formula (5) below.

The new syntactic form of SSAs iRl can be different
from Reiter’s format irD,,. Intuitively, instead of repeating
tediously each individual action in the right-hand side &H
of a SSA for a fluent, say'(Z, do(a, s)), one can take ad-

vantage of the action hierarchies and describe the effect of F(Z, do(A;(:), s))

(whenh > 0), axiomatizers gain flexibility of writing SSAs
that can deliver more computational advantages. Details ca
be found in the next section (see Example 6).

Other classes of axioms such as the initial thegy, the
precondition axiomsD,,,, the foundational axiom& and
unique name axioms for actiofi,,,, have the same formats
as in (Reiter 2001). It is easy to see that a modular BAT
DH differs from Reiter's BATD in the following aspects:
Dé{) includes the action hierarch}t* and can usep* to
specify SSAs forclassesf actions, whileD,s enumerates
each action individually. However, according to Lemma 2
(with a constructive proof), theorigd” andD are related.

Lemma 2 For a Dg, there exists an equivalent clagy
including SSAs of the syntactic form given in Reiter's BAT
(Reiter 2001): for each relational fluert

DH ': F(fv do(a, S)) = ¢F(fv a, S)
in which ¢ may have occurrences of the predicate,
there exists a uniform formuldy.(Z, a, s) that does not men-
tion sp* and suchthat D = F(Z,do(a, s)) = ¢%(Z, a, s).
Proof: Assume that a given BAD includesk action func-
tions in total, sayA; (1), - , Ax(¥%). For each relational
fluentF (&, s), assume that its SSA iR” is of the form (1)
whose positive and negative effect conditions have the syn-
tactic form (5), then we substitutewith each action func-
tion, sayA;(v;) (without loss of generality, we assume that
variables inu; are all new variables never used in the SSA
of F'), and in the RHS obtained by this substitution from the
SSA of F(Z,do(A;(7;), s)), replace every occurrence gf*
(that has two action functions as arguments) with its equiv-
alent FO formula (that exists according to Lemma 1). This
replacement results in an axiom of the following form
_w;r(f7ﬁivs)\/F(f7s) ﬂ/’ (‘T Ulv)

the whole class of action functions at once. One can say that Whenever);" (Z, 4, s) (1; (7, v, s), respectively) are con-

all those actions which are (distant) specializations ofiso

generic actionA(y) (actions from the branch going out of
A(Y)), except those (distant) specializations of some other

generic actions, say\(y;) for1 <1 < h (i.e., excluding

actions from some branches), can cause the same (positive

or negative) effects of’ under certain conditions. By doing

so, we can represent the effects of actions more compactly.

We will see later that this new form of SSAs leads to signif-
icant computational advantages as well.

It is convenient to use the following notation related with
a quentF(x s): for any variable vectog; (I > 0), let
zZ = 4 — & (i.e., Z, are the new variables mentionedgjn
but not inZ). Note that, in the RHS of the SSA & (Z, s),
those new variables; need to be existentially quantified.
Formally speaking, the modified SSA of a relational flu-
ent F(7, s) has the format (1), where eacj (%, a, s) or
V7 (%, a, s) has either the syntactic form (2) or the follow-
ing syntactic form:

/\ (3 2)spZ(a, Au(@))]. (5)

In (5),~ is a formula uniform irs that hast, 2y, s at most as

its free variables. Notice that whene@r(l > 0) is empty,
then there is no existential quantifier ov#r In addition, in

(5), when indexh =0, the conjunction ovelrdoes not exist.
One can prove that axiomatizers can always write modified
SSAs inDH with h = 0 in (5). However, with negation

(3 20)[sp" (a, A(%0)) A\Y(Z, Zo,

fCooked(z,do(a, s)) =

sistent conditions (SC formulas uniform sy, A;(¢;) has a
positive effect (a negative effect) dhunder such condition.
Hence, the following yields the logically equivalent SSA of
Fin the usual BAT of (Reiter 2001):

F(&,do(a,s)) = [Vi_,(38:)(a= Ai(T:) Ay (5, 9)V
F(&,5s) A=[V)_ (3%)(=A; (W) Ay (Z, 75,)]

Notice that the above axiom can be simplified by removing
inconsistent clauses. Hence the lemmais proved. [
We then have the following important property:

Theorem 2 For eachD¥, there exists an equivale® of

the format given in (Reiter 2001), where equivalence means
that for any FO regressable sentenidé that has no occur-
rences of the predicatey, DY = W iff D = W.

Proof: Use Lemma 2. O

Here we provide some examples of the new way of repre-
senting SSAs, and compare them with Reiter’s format.

Example 4 We continue with Example 1 (recall Figure 1).
Consider a fluenf Cooked(z, s) (food z is cooked in the
situations), the modular BAT version of its SSA could be:
(y)sp™(a, cook(z,y))V fCooked(x, s).
Another example is a SSA for the flueditrtyVes(z, s) (it
will be false after washing a vesselin some manner, or it
will be true whenr is used to prepare food or drink):

dirtyVes(y,do(a, s)) = dirtyVes(y, s) A —sp*(a, wash(y))
V (3x)sp*(a, cook(z,y)) V (3x)a = makeSalad(x,y)
V (3z)sp*(a, prepDrink(z,y)).

The Reiter's SSA for fluentCooked(x, s) (with a bigger
taxonomy of actions, it will be much longer):
fCooked(z,do(a,s)) =

(3y)[a=cook(z,y)Va=lowOilCook(z,y)Va=steam(z,y)

Va=boil(z,y)Va=stew(x,y)Va=broil(z,y)
Va=bake(z,y)Va=roast(z,y)Va=ovenCook(z,y)
Va=pressureCook(x,y)Va=oilyCook(zx,y)
Va= fry(z,y) Va=deepFry(z,y) V a=stir(z,y)
Va=parboil(z,y) V a=grill(z,y)] V fCooked(z, s).
We can also get a similar longer Reiter’s SSA for fluent
dirtyVes(z, s) (details are omitted).

The definitions of the regression operator and the regress-
able sentences i are all the same as in (Reiter 2001).
Similar to the regression theorem (Reiter 2001), we have

DY =W iff DE UDuna = R[W]
for any regressable sentendé. Let £[R[W]]| (called the
extended regression 8¥) be the operator that eliminates
all occurrences (if any) of thep*(A’, A) predicate inR[W]
in favor of the corresponding FO formulas 4 that exists
according to Lemma 1. Then, we have:

Theorem 3 For eachD* and for any FO regressable sen-
tenceW, D = W iff Dg, UH U Dyna = E[RIW]].

This theorem is important becauﬁg) UDune (@nd hence

DH) include the SO definition of the predicatg*. How-

ever, all occurrences ofp* in sentenceR[W] can be re-
placed by FO sentences in finitely many steps according to
the Lemma 1. Consequently, one can use regression in our
modular BATs to reduce projection and executability prob-
lems to theorem proving in FOL only.

Advantages of Modular BATs

Using action hierarchies and specifying BATs modularly not
only provides a compact way of representing effects of ac-
tions, but sometimes leads to a more computationally effi-
cient (than Reiter’s) solution of the projection problem.

Example 5 Continuing with Example 4, consider a ground
actiona = deepFry(Egg:, FryingPani), and the regres-
sion of fCooked(Egg1,do(a, So)). Using Reiter's SSA for
this fluent, regression involves checkibg equality clauses
between actions when regressing on the positive conditions
in the SSA of fCooked (see the axiom above). Using the
modular BAT, extended regression of the positive condgion
involves only1 step of regression for predicatg*, and fi-
nally the replacement ofp*(«, cook(Egg:,y)) with the cor-
responding FO formula, i.e., the operafyrtakes at most
steps of recursive computation (see Figure 1).

Apart from specific examples, let us discuss in general the
following problems: when we can actually gain computa-
tional advantages using action hierarchies and how much we
can gain, whether there is any possible computational disad
vantage in using action hierarchies alone, and if so, whethe
it can be avoided.

According to the definition in the previous section, the
digraph of an acyclic action diagram is in fact a directed

acyclic graph (DAG). Computing the FO formula equivalent
to sp*(A1(Z), A=(%)) for any pair of action functionsgl, ()
andA,(7) is similar to finding all paths froml; to A, in the
corresponding digraph. The latter problem has the compu-
tational complexity o (p) wherep is the number of all the
distinct edges in the digraph on any path frdmto A,, and
therefore has a computational complexity(@fe) wheree

is the number of all edges in the digraph (ieis the num-

ber of sp axioms inH). As a consequence, this yields the
following encouraging and important result.

We start with the casé = 0 in (5). Let¢(a,Z,s) de-
note (325)[sp*(a, A(%o)) A v(&, Z0,s)]. In general, to pro-
vide an equivalent SSA df (Z, s) in Reiter’s representation,
¢(a,Z, s) has to be replaced by an uniform formulé, z, s)
of the form (32)[vsp(a, Go) A (&, Zo, s)]. Here, i, (a, Ho)
might have the fornfa = A(%) v V74" (32)(a = Ai(%:) A
i (40, 9:))), where eachd; (7;) (1< i < na — 1) is a special-
ization of A(¢) under the conditio; (4o, ¥;), n4 is the to-
tal number of specializations of. The formulays,(a, %)
is a logically equivalent replacement 8p*(a, A(ijo)) in
¢ (see Lemma 2). Let the action diagrakhin D* be
acyclic and the corresponding action digraph rooted! at
have a tree structure (the most general actions are coadider
as roots and the most specialized actions are considered as
leaves). Then, the computational time of extended regres-
sionE[R[sp* (o, A(t", %))]] in the clausep(a, T, S), for any
object termg and any situation terrdo(a, S), is no worse
than and (sometimes) can be exponentially faster than com-
putational time of Reiter’s regression @n,, in V(o t, S).

Theorem 4 If the sub-tree rooted afl in the digraph ofH
is a completec-ary tree ¢ > 2) with n4 action functions

as its nodes, the computational complexity of extended re-
gressionE[R[sp*(a, A(t", %))]] is ©(log;, n.4), while the
computational complexity of Reiter’s regressiRif);,] on

an equivalent replacement®(n).

Proof: When a DAG of an action hierarchy has a tree
structure or a forest structure, there is at most one path
between any two action functions. In particular, assume
that the digraph of the action hierarchy is a complete
ary (¢ > 2) tree structure and consider the regression of
F(t,do(a, S)) for any action termy and situation terns.

To specify the equivalent SSA in Reiter's formafy, i, S)

needs to be replaced hy(a,t,S). It is easy to see that
one-step regression of the above clause in Reiter’'s format
takesO(n 4) steps (subsequently, additional time is required
to regress recursivelfR[y(t, 2o, S)]). To perform one-
step regression using the modular BAT format, it is suffi-
cient to regressp*(a, A(t’, %)) A (t, Zo, S) (Which takes
O(1) time, excluding again the time that subsequently re-
quired to compute recursivelR[y(, 2o, S)]) and then re-
placesp*(a, A(t", Z)) with the equivalent FO formula. Be-
cause this last replacement step can be considered as finding
the path from to Ay with the computational complexity of
©(log, n4). Finally, regression makes the same number of
recursive calls in both cases: the formglés the same. O

However, if we do not allow the usage of (in)equality be-
tween action terms (e.ge, = 4;) in DX, we may (some-

ss?

times) lose computational advantages when the effects of
actions for some fluents only involve very few actions in
a large taxonomy or when the structure of a DAG is not a
forest, especially if it is close to a complete DAG. Since a
dense DAG ofn nodes has at most the orderof edges

(a complete DAG ofn nodes hasi(n — 1)/2 edges in to-
tal), computing the FO formula equivalent to the predicate
sp* has complexityO(n?). To avoid such computational

axiom for any relational fluerff' (7, s) has the syntactic form

7/1X,F(fvl773)) F(g7 dO(A(f)7'S)7 (8)
and its negative effect axiom fdt (7, 82 is of the form
1/JA,F($7ZJ75)) _'F(y7 do A(I)78 . (9)

Definition 4 For an action functionA(Z) and a fluent

F (g, s), which has effect axioms of the form (8,9) we say that
an actionA has effect on a relational flueit (or F' could

be affected byA) iff either [~ o .(Z,7,s) = F(i,s) or

disadvantages, we can easily use both (in)equality between - V5 (&7, 5) = —F(7,s). For any action functionl(z), a

action terms and predicate* in modular BATs. Whenever
the (sub)digraph rooted at some action function symbol

special meta-functiov, (A) is used to represent the number
of fluents that can be affected bl

has a tree structure (even mostly a tree structure with afew g, any two action functionsl; (7;) and A (&), we say
extra edges) and most of its specializations have the samethat A, causes no less effects thap iff there exists no flu-

effects under certain common conditions on some fldént
one can use thep* predicate forA to gain both the compu-

ent such thatd; has no effect on it buti; has. We say that
A; causes more effects thaty, iff A; has no less effects

tational advantage and the advantage of compact representap A, and there exists at least one fluent such thahas

tion when writing the SSA foF'. Otherwise, one can use the
(in)equality format to avoid computational disadvantages

Now, we illustrate the advantage of using the negated
componentin clause (5) (i.e., allowirkg> 0).

Example 6 We continue with Example 5. Consider a fluent
nonBBQ(z,s): z is cooked without grilling. Its SSA in

D can be written without negation in (5), i.e. wheg=0:
nonBBQ(x,do(a, s)) = (Jy)[sp”(a, 0ilyCook(z, y)) V
sp”*(a, ovenCook(z,y)) V a=steam(z,y) V a=stew(z,y) V
sp*(a,boil(z,y))] V nonBBQ(z, s) A= (Jy)a+# grill(z,y) (6)

Alternatively, it can be written with negation (i.é.>0) as:
nonBBQ(z,do(a, s)) = (Jy)[sp™(a, oilyCook(z,y)) V
sp™ (a,lowOilCook(z, y)) A (Vz)(a#lowOilCook(z, z) A
a#grill(xz,z))] V nonBBQ(z, s) A~ (Jy)a # grill(z,y) (7)

Consideré[R[nonBBQ(Egg1, do(w, Sp))]], extended re-
gression wherey is the same as in Example 5. It takes 1
step less using Formula (7) than using Formula (6) during
regression (regardless the quantifiers). Clearly, the more
branchedowOilCook(z,y) has that have positive effects
on nonBBQ(z,s) without extra context conditions, the
more computational advantage we can obtain by allowing
h > 0 and using Formula (7) during regession.

How to Construct a Taxonomy of Actions

As we see, hierarchies of actions can lead to important com-
putational advantages. An important practical questien re
mains how an axiomatizer should approach the problem of
constructing a hierarchy of actions given only a set of affec
axioms which specify for each fluent what actions have a
(positive or negative) effect on the fluent. In a somewhat
similar vein, (Reiter 2001) starts from effect axioms and

demonstrates that under the causal completeness assump-

an effect on it butd, does not.

Note that ifA; causes more effects thahy, thenN.(A4;) >
N.(As2); however, it is not necessarily true the other way
around: actions might affect different sets of fluents. Give
effect axioms, for any pair of action4;, A,, a straightfor-
ward linear timeO(m) procedure can check whethdr
causes more effects thaty.

We would like to provide general guidelines on how an
axiomatizer can construct an action diagraffor D. Un-
der the assumption of monotonic inheritanced ifis a spe-
cialization of A,, then it causes no less effects thamnand
N.(A1) > N.(A3). Thus, to return a seil that represents
an action diagrantt, it is enough to start with generic ac-
tions A that have the smallest value 8f.(A) and proceed
towards more specialized actions checking on each it@ratio
if the next action we consider is a specialization of one of
the previously considered actions.

1. Sort the action functions and get the sequengér),
-+, Ap(&,) such thatV, (4;,) < N.(A;,) for iy <is.

2. Initially, let i=2 (index1 < ¢ < n) andH = 0.

3. If i > n, then returnH and terminate; else assign=i
and continue: look forl;’s that are generalizations df;.

4. Decremenjj=j—1. If =0 (i.e., all candidatesl; have
been already considered), then incremesat: + 1 and
go to step 3 (i.e., take a next actidip; from the sorted
sequence we obtained at step 1); elgé.if4;) = N.(A;),
go to step 4; else continue.
5. For any pair of indices, j such thatl < 5 < i —1, if
there is a path i from i to j, then we already know that
A, is a specialization off; and because specialization is
a transitive relation there is no need to add a new directed
edge from4; to A; and we can go to step 4; else continue.

tion, SSAs can be constructed from effect axioms. We con- 6. If A;(%;) is a specialization ofi;(#;) under FO condi-

tinue to consider only action diagrarfts with monotonic
inheritance of effects. In this subsection, we assume that a
the variables used below in action functions and fluents are
distinct from each other. Consider a BAT which includes

a set ofn action functions, sayA;(Z;) | « = 1..n}, and

m fluents, say{ F;(¥;) | j = 1..m}, that might be affected
by any of the above actions. For any action functifr),
without loss of generality, we assume that its positiveatffe

tion ¢; ;, then updatel = H U {(A:(Z:), A;(F5), ¢i5)}
and go to step 4; else do not chanfgieand go to step 4.
To implement the last step for any two action functions
A;(Z;) and A;(Z;), provided that axiomatizers are able to
write effect axioms of the form (8,9), we formulate the fol-
lowing principles to determine whether or ndt(z;) is a
specialization of4;(Z;) under some conditiog.

a. If A; causes more effects thaty, “guess” a FO formula
¢, whose free variables include at ma§tand;, such
that for any relational fluenft'(, s) that could be affected
by bothA; andA;,

D = ¢ D (Poss(Ai(Z), s) D Poss(A;(Z5),s)),

D ': ¢ o (d)j&i,F(CEi?gﬂs) = wjj,F(fj7g7 8))7

D ': o) (wgi,F(£i7g7S) = jo,p(fjv?l 8))
If one can find sucl, then4; is a specialization of;
under the conditio.

b. Otherwise A; is not a specialization o ;.

Note that for any action functions, (Z), A»(%) and FO for-
mula ¢, each(A:(Z), A2(%), ¢) in the returned sell corre-
sponds to an axiomp(A:(F), A2(¥)) = ¢, and the collection
of all these axioms results in an action diagram

In general, to determine whether one action is a special-
ization of another under certain condition is undecidable.
Hence, the axiomatizers have to observe the preconditions
and effects of actions, guess formufa(using their intu-
ition), and construct action diagrams manually. In therfeitu
we would like to consider whether it is possible to generate
action diagrams automatically in some special cases.

Discussion and Future Work

There are a few papers related to our work that we would like
to mention. (Lifschitz & Ren 2006) consider modular theo-
ries in the propositional action representation language

and address the problem of the development of libraries of
reusable, general-purpose knowledge components. In com-
parison to them, we explore how to manage a large num-
ber of actions in the predicate logic using a hierarchicad re
resentation for actions in SC. We propose a representation,
which not only facilitates writing axioms succinctly, butrf
realistic taxonomies can also gain computational advastag

in solving the projection problem. (Kautz & Allen 1986)
and subsequent papers of H.Kautz develop frameworks for
plan recognition using hierarchies of plans, in which pfimi

sitional dynamic logic). All actions in CLASP are repre-
sented in the style of STRIPS, which is less expressive than
general Reiter's BATs and our modular BATs. Our formal-
ism is very different from all the papers mentioned above.
We use a specialization relation between primitive action
functions, and provide a formal axiomatization of the dy-
namic aspects of actions using full predicate logic (hence,
our theory is quite expressive). Also, we gain both represen
tational and computational advantages by using the action
hierarchies. The extensive research on Hierarchical Task
Networks (HTN), that can be traced to the pioneering work
of Sacerdoti on ABSTRIPS, considers a completely differ-
ent recursive decomposition of complex actions (i.e., plan
or nonprimitve tasks) into constituents, but does not exeplo
large taxonomies of primitive actions and whether these tax
onomies can provide any computational advantages when
solving the projection problem. Our work is motivated in
part by the well-known hierarchies of verbs (full troponym)
in WordNet (Fellbaum 1998). Exploring connections with
other frameworks (e.g., FrameNet, Levin's taxonomy, Verb-
Net, etc) in computational linguistics and natural languag
processing is a possible direction for our future research.
(Amir 2000) proposes and studies an object oriented version
of the SC with the purpose of developing decomposed theo-
ries of actions, but he investigates a representationglisad
nificantly different from our approach and considers neithe
taxonomies of actions nor BATs. In the future, we will ex-
plore how to combine Amir's decomposed SC theories with
our action hierarchies. Moreover, currently we considéy on
hierarchies of primitive actions. In the future, we may also
consider hierarchies of complex actions (plans), and egplo
what criteria should be followed for constructing such hier
archies, whether we can construct them automatically from
the existing hierarchies of primitive actions and our BATSs.

Acknowledgments

Thanks to the Natural Sciences and Engineering Research
Council of Canada (NSERC) for partial financial support of

tive action and plan instances belong to certain event types ihjs research. Thanks to Fahiem Bacchus, Hector Levesque,
represented as unary predicates, and a hierarchy of plans isyng Sheila Mcllraith for comments on preliminary versions.

a collection of restricted-form axioms specifying relatio
ships between various event types. However, their axiemati
zations of actions (preconditions and effects of the as)ion
are limited and they do not address the projection problem.
(Kaneiwa & Tojo 2005) give an ontological framework to
represent actions/events and their hierarchical relgliips

in information systems using an order-sorted SO logic. In
this framework, events (or actions) are represented as-pred
cates rather than terms, and the authors consider taxonomi-
cal reasoning about relationships between events rataer th
reasoning about effects of actions. The authors do not pro-
vide axiomatizations of the dynamic aspects of actions and
do not explore computational properties of their framework
(Devanbu & Litman 1996) proposean-base&nowledge
representation and reasoning system, called CLASP (CLAs-
sification of Scenarios and Plans). CLASP extends the no-
tions of subsumption from terminological languages to plan
by allowing the construction of plans from concepts corre-
sponding to actions and using plan description forming-oper
ators for choice, sequencing and looping (similar to propo-

References

Amir, E. 2000. (De)Composition of Situation Calculus Theo-
ries. InProceedings of the Seventienth National Conference on
Artificial Intelligence (AAAI-00) AAAL.

Devanbu, P. T., and Litman, D. J. 1996. Taxonomic plan reason
ing. Artif. Intell. 84(1-2):1-35.

Fellbaum, C. 1998. English verbs as a semantic net. In ketiba
C., ed. WordNet: An Electronic Lexical Database, with a preface
by George Miller, Chapter 3The MIT Press. 69-104.

Kaneiwa, K., and Tojo, S. 2005. Logical aspects of eventarQu
tification, sorts,composition and disjointness. Aroceedings of
Australasian Ontology Workshop (AOW 2005)

Kautz, H. A., and Allen, J. F. 1986. Generalized plan recogni
tion. In Proceedings of the fifth National Conference on Atrtificial
Intelligence (AAAI-86)32—-37. AAAI Press.

Lifschitz, V., and Ren, W. 2006. A modular action descriptio
language. IrProceedings of the Twenty-First National Confer-
ence on Artificial Intelligence (AAAI-O6AAAL

Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Describing and Implementing Dynamical SysteMs$T Press.

