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Abstract

In this paper, we use an extended version of the situ-
ation calculus to formalize goals and rational action.
We then use these notions and a definition of ability
(Lespérance et al. 1995b) to show that an agent that
is acting rationally will achieve its goals when it is able
to do so.

1 Introduction

This paper describes work on rational action that arose
from our efforts to create an explicit representation of
the goals of agents in the situation calculus. The util-
ity of an explicit representation of the goals of agents
is evident when we consider domains with multiple in-
teracting agents. In domains where agents are commu-
nicating and cooperating to perform a task, the ability
to specify the knowledge and goals of the agents be-
comes useful in order to determine that the agents can
perform their parts of the task and have the required
commitment to see their parts to completion. Design-
ers of agents can use this information to help predict
the behaviors of the agents they create. The agents
themselves can also use this information to commu-
nicate with other agents, and to reason about their
behavior.

Our work in this area builds on earlier efforts
both to enhance the situation calculus with a richer
set of primitives for modelling dynamic worlds ((Re-
iter 1991), (Scherl & Levesque 1993), (Lin & Reiter
1994), (Lespérance et al. 1995b)) and to develop a
high-level agent programming language called Golog
((Lespérance et al. 1994),(Lespérance et al. 1995a)).
We are expanding research in both these areas by
adding primitives to the extended language to explic-
itly talk about the goals of agents. Our efforts bring
together the work by Scherl and Levesque (Scherl &
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Levesque 1993) to add an explicit representation of
knowledge to the situation calculus with Cohen and
Levesque’s (Cohen & Levesque 1990) formalization of
intentions in terms of modalities for beliefs and goals.

One cannot predict what an agent will do based
solely on the specification of its knowledge and goals.
It is possible for an “irrational” agent to try to achieve
some goal without taking into account what it knows
about the world, and it is also possible for it to ig-
nore its goals altogether. We need to model rational
action explicitly in order to bridge the gap between
the knowledge and goals of agents, and their future
actions. Informally, we take an agent to be acting ra-
tionally when it is performing actions that it believes!
will bring about its goals. If agent A knows that agent
B has the appropriate goals and knowledge to help A
achieve its goals and agent B is acting rationally, then
A can rely on B’s cooperation, since B will be working
to achieve its goals, which coincide with A’s goals.

In the next section, we outline previous work on our
framework. In section 3, we develop a formalization of
the goals of the agent. In section 4, we define what it
means for an agent to be acting rationally, and state a
theorem that links the abilities and goals of an agent
that is acting rationally to what the agent will actually
achieve. While this is still work in progress, to our
knowledge it is the first attempt to develop a theory
of rational action that appeals to the abilities of the
agent.

2 Previous work
2.1 Theory of action

Our theory is based on an extended version of the sit-
uation calculus (McCarthy & Hayes 1979), a predicate
calculus dialect for representing dynamically changing
worlds. In this formalism, the world is taken to be in
a certain situation. That situation can only change as
a result of an agent performing an action. The term
do(a, s) represents the situation that results from the
agent’s executing action a in situation s. For exam-

!'In this paper, we do not distinguish between knowledge
and belief. The terms are used interchangeably.



ple, the formula ON(A, B, do(PUTON(A, B), s)) could
mean that A ison B in the situation resulting from the
agent’s doing PUTON(A, B) in s. Predicates and func-
tion symbols whose value may change from situation
to situation (and whose last argument is a situation)
are called fluents.

An action is specified by first stating the conditions
under which it can be performed by means of a pre-
condition axiom. For example,?

Poss(PIcKUP(z), s) =
Vz-HOLDING(z,s) ANEXTTo(z, s)

means that it is possible for the agent to pick up an
object z in situation s iff it is not holding anything
and it is standing next to z in s. Then, one specifies
how the action affects the world with effect arioms, for
example:

Poss(DROP(z), s) A FRAGILE(z) D
BROKEN (2, do(DROP(z), s)).

The above axioms are not sufficient if one wants to
reason about change. It is usually necessary to add
frame axioms that specify when fluents remain un-
changed by actions. The frame problem (McCarthy &
Hayes 1979) arises because the number of these frame
axioms 18 of the order of the product of the number
of fluents and the number of actions. Our approach
incorporates Reiter’s treatment of the frame problem
(Reiter 1991) (which extends previous proposals: (Ped-
nault 1989), (Schubert 1990) and (Haas 1987)). Reiter
describes a procedure which collects all effect axioms
about a given fluent. Using the assumption that these
axioms specify all the ways the value of the fluent may
change, a syntactic transformation is performed to ob-
tain a successor state ariom for the fluent, for example:

Poss(a,s) D [BROKEN(z,do(a, s)) =
(¢ = DROP(z) A FRAGILE(2))V
(BROKEN(z, s) A @ # REPAIR(2))].

This says that z is broken after the agent does action a
in situation s iff either the action was to drop x and z is
fragile, or z was already broken in s and the action was
not to repair it. This treatment avoids the proliferation
of axioms, as it only requires a single successor state
axiom per fluent and a single precondition axiom per
action.?

2.2 Knowledge and Perception

Suppose we want to model a world in which there is
a safe with a combination lock.* If the safe is locked
and the correct combination is dialed, then the safe be-
comes unlocked. However, if the incorrect combination

2By convention, unbound variables in a formula are uni-
versally quantified.

#This discussion ignores the ramification and qualifica-
tion problems; treatments compatible with our approach
were proposed in (Lin & Reiter 1994).

*This example is adapted from (Moore 1985).

is dialed, the safe explodes. The agent can only dial a
combination if the safe is intact, and it is not possible
to change the combination of the safe. Here are the
axioms for this scenario:

Poss(DIAL(¢c), s) = “EXPLODED(s)
Poss(a, s) D [EXPLODED(do(a, s)) =
Je(a = DIAL(c) A cOMBOFSAFE(s) # ¢)V
EXPLODED(s)]
Poss(a, s) D [LOoCKED(do(a, s)) =
Ve(a # DIAL(c) V cOMBOFSAFE(s) # ¢)A
LocKED(s)]
Poss(a, s) D [cOMBOFSAFE(do(a, s)) = ¢
COMBOFSAFE(s) = ¢]

In this scenario, the only agents that can definitely
unlock the safe are ones that know the combination in
advance because if an agent tries a random combina-
tion, the safe will likely explode. Suppose the correct
combination is written on a piece of paper, and an
agent can read the combination from the paper. How
can we model the effects on the world of reading the
combination? Scherl and Levesque (Scherl & Levesque
1993) call this type of actions (e.g., perception and
communication actions) knowledge-producing actions,
and they provide an account of how to represent these
actions in the situation calculus. Such actions affect
the mental state of the agent rather than the state of
the external world. For example, after performing the
action READCOMBOFSAFE, an agent might know the
combination of the safe it is trying to open:

Poss(READCOMBOFSAFE, s) D
Jde Know (coMBOFSAFE(s) = c,
do(READCOMBOFSAFE, s)).

Knowledge is represented by adapting the possible
worlds model to the situation calculus (as first done in
(Moore 1985)). K (s', s) represents the fact that in situ-
ation s, the agent thinks that it could be in situation s’.
We call ' an alternative situation to s. Know(¢, s) is
an abbreviation for the formula Vs'(K(s', s) D ¢(s')).?

Scherl and Levesque show how to obtain a succes-
sor state axiom for K that completely specifies how
knowledge is affected by actions. In our example,
the only knowledge-producing action is the READCOM-
BOFSAFE action. The successor state axiom for K can
be specified as follows:

Poss(a, s) D (K(s*,do(a,s)) =
s'[K (s, 8) As* = do(a, s') A Poss(a,s’) A
(¢ = READCOMBOFSAFE D
CoMBOFSAFE(s') = CoMBOFSAFE(s))]).

First note that for non-knowledge-producing actions
(e.g. DIAL(c)), the specification ensures that the only

5¢ is a formula that contains a placeholder now instead
of a situation argument, e.g., "LOCKED(now). Where the
intended meaning is clear, we suppress the placeholder, e.g.,
—LOCKED. ¢(s) is the formula that results from substitut-
ing s for now in ¢.



change in knowledge that occurs in moving from s to
do(DIAL(c), s) is the fact that the action DIAL has been
successfully performed. For the case of a knowledge-
producing action such as READCOMBOFSAFE, the idea
is that in moving from s to do(READCOMBOFSAFE, s),
the agent not only knows that the action has
been performed (as above), but also the value
of the associated fluent COMBOFSAFE. Since in
this case we require that CoOMBOFSAFE(s') =
CoMBOFSAFE(s), CoMBOFSAFE will have the same
value in all s’ such that K (do(READCOMBOFSAFE, s'),

do(READCOMBOFSAFE, s)). Observe that for any situ-
ation s, COMBOFSAFE (do(READCOMBOFSAFE, s)) =
¢ iff CoMBOFSAFE(s) = ¢. Therefore, COMBOFSAFE
has the same value in all worlds s* such that

K (s*,do(READCOMBOFSAFE, s)), and so

Jde Know(coMBOFSAFE(s) = c,
do(READCOMBOFSAFE, s))

holds. This can be extended to an arbitrary number of
knowledge-producing actions in a straightforward way.

As a simple example, consider the graph in Figure 1.
Situations are nodes in the graph, and the edges are
labelled by actions. A subset of the K relation is rep-
resented by the boxes around the nodes. If a situation
s appears in the same box as another situation s’, then
K(s',s). The figure illustrates that the agent does not
know the combination of the safe in Sy, since the value
of COMBOFSAFE is not the same in Sy and S§. How-
ever, K only relates do(READCOMBOFSAFE, Sp) to it-
self, therefore in this situation, the agent does know
the combination.

2.3 Ability

With the addition of knowledge to the language, it
becomes possible to specify what goals the agent
knows how to achieve. In (Lespérance et al. 1995b),
Can(¢, s) is defined to mean that the agent knows how
to achieve ¢ starting in situation s. Intuitively, the
definition of Can specifies that in order for the agent
to be able to achieve ¢ starting in s, it must know
in s of some strategy that it can follow to eventually
achieve ¢. A strategy is formalized as a function from
situations to actions, which we call an action selection
function (ASF). As we will see, this way of formalizing
strategies is quite expressive. In particular, it allows
the agent’s choice of action to vary depending on what
knowledge it acquires as it acts.

To see how an ASF can be a model for a strategy,
consider the safe example of the previous section. One
strategy the agent can use to unlock the safe is to find
out the combination of the safe by reading it from the
paper, and then dialing the combination. Notice that
this strategy is not just a pair of actions, since the sec-
ond action varies according to the actual combination
(DIAL(e) is a different action than DIAL(c'), if ¢ # ¢).
The strategy allows the agent to take different actions
depending on the knowledge it acquires as it follows

the strategy. Let ¢ be an ASF, i.e., a mapping from
situations to actions. Given a starting situation sg, it
is easy to see that o defines an infinite sequence of sit-
uations. s; = do(c(so), so) is the second situation in
the sequence. In general, s; = do(o(s;-1),si-1). We
define the predicate OnPath to mean that situation
s’ is in the situation sequence defined by ¢ and s:°

OnPath(c, s, s') s < s'A
VaVs* (s < do(a,s*) < s’ D o(s*) = a),
The actions that label the transitions between situa-
tions in the sequence can be thought of as a possible
course of action for the agent to follow if it is in sit-
uation s. Also, for every alternative situation s* that
the agent thinks it might be in when it really is in s,
o defines a course of action starting at s*.

Suppose the agent does not know initially whether
the combination is 0 or 1. Thus in situation
Sy, there might be two alternative situations Sp
and Sj. Let the combination of the safe in sit-
uation Sy be 0, and the combination in Sj be
1.  An ASF oy that models the strategy out-
lined earlier has the following mappings: oq(So) =
READCOMBOFSAFE, 0¢(S;) = READCOMBOFSAFE,
o0(do(READCOMBOFSAFE, Sp)) = DIAL(0), and
00(do(READCOMBOFSAFE, S§)) = DIAL(1). This part
of oy is illustrated in Figure 1; the mappings are rep-
resented by solid edges in the figure. The agent does
not know in Sy whether the combinationis 0 or 1. The
strategy succeeds because after reading the combina-
tion, do(READCOMBOFSAFE, 57 ) is not an alternative
to do(READCOMBOFSAFE, Sp), and in the latter situ-
ation o prescribes dialing 0, which is the correct com-
bination.

If an ASF o maps different alternative situations
to different actions, then the agent cannot follow the
course of action suggested by o, since the agent does
not know which of the alternative situations it is actu-
ally in. We are only interested in ASFs that the agent
can follow. We are also only interested in ASFs that
define courses of action that are possible to perform.
Therefore, in the following discussion we restrict our
attention to ASFs that satisfy the following axiom:

OnPath(c,s,s’) D
Ja Know(o(now) = a,s’) A Poss(o(s'), s').
We say that the agent can achieve a goal ¢ in situation
s iff there exists an ASF o such that the agent knows
it will get to a state where ¢ holds by following o:”

Can(d, s) def -

JoKnow(3s'(OnPath(o, now, s') A ¢(s')), s).

s < s’ means that there is a sequence of actions that
can be performed starting in situation s and which results
in situation s’. s < s’ is an abbreviation for s < s'Vs=s'.

"We only require that the agent know that o will
lead the agent to a situation where the goal holds. In
(Lespérance et al. 1995b), the agent is required to know
that o will lead the agent to a situation where it knows the

goal holds.
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Figure 1: An example of an ASF.

From this definition, it follows that if the agent knows
that the safe is intact then it can unlock the safe:

Proposition 1

Know(—EXPLODED, Sp) D Can(—LOCKED, Sp).

The agent can use og to achieve the goal. It is easy to
see from the axiomsin Section 2.2 that in the sequences
of situations defined by o¢ starting at Sp and Sg, the
safe is eventually unlocked.

An important property of this definition of ability
is that it can be used to infer when the agent is not
able to achieve a goal. If we modified the example so
that the agent was unable to read the combination in
situation Sp (and still did not know the combination in
So), we could show that ~Can(—LoCKED, Sp). Note
that it is still physically possible for the agent to unlock
the safe by dialing the right combination, but since
there is no way for the agent to determine the correct
combination, it is not able to unlock the safe.

3 Goals

In order to determine rational courses of action it is
necessary to first specify the goals of an agent, since
one of the requirements of a rational action is that
it brings the agent closer to achieving its goals. Fol-
lowing (Cohen & Levesque 1990), we characterize the
goals of the agent by specifying the paths (sequences
of situations, which we model using ASFs) in which
all the goals (both maintenance goals and achievement
goals) are achieved. The predicate H(c,s) is used to
denote those paths that satisfy the agent’s goals. For
instance, we extend the safe example by specifying that
H is true of those paths where eventually the safe is
unlocked and intact:

H(o,s) =
Eventually(—-LoCKED A “EXPLODED, ¢, s),

where Eventually(a, o, s) means that eventually «
will hold along the path defined by ¢ starting at s:3

Eventually(a, o, s) def

ds*(OnPath(o, s, s*) A a(o, s*)).

The path segments in Figure 1 that satisfy H are in-
dicated by a check mark.

Given a specification for H, we can formally state
what we mean by a goal. As noted in (Konolige &
Pollack 1993), there are some difficulties with using
Cohen and Levesque’s definition of a goal. They define
a goal to be any formula that is true in all goal paths.
Suppose that a« A # is a goal. According to Cohen
and Levesque’s definition, both @ and § are also goals.
Therefore, we could imagine a rational agent working
to achieve one of the conjuncts as a subgoal. But it
is easy to think of circumstances where achieving only
one component of a conjunctive goal is undesirable. As
Konolige and Pollack did for their intention modality
(I), we consider a’s that are the agent’s “only goals”,
i.e., a’s that are true in all and only the H-paths:

0Goal(e, s) def
VoVs'[K(s',s) D (H(o,s') = a(a,s'))].

In the safe example—using the specification of H given
at the beginning of this section—the agent initially has
the goal to unlock the safe without having it explode:

Proposition 2
OGoal(Eventually(—-LocKED A “EXPLODED), s).

Notice that for a formula to be an OGoal, it only
has to be equivalent to H over all paths that start
in an alternative situation. Therefore, the goals of
an agent can change when the agent acquires knowl-
edge. In Figure 1, the H-paths are the ones in which

8We use a to denote a formula with two placeholders sit
and asf. Again, we suppress the placeholders where possi-
ble. a(o,s) is the formula that results from replacing sit
with s and asf with o.



the agent eventually dials the correct combination.
In Sp, the agent does not have the goal to eventu-
ally dial 0 because the agent dials 1 in the H-paths
that start in the alternative situation S;. However, in
do(READCOMBOFSAFE, Sp), the agent has the goal to
eventually dial 0 since in all paths that include this sit-
uation (and there are no alternative ones), the agent
eventually dials 0 iff the path is in H.

4 Rational Action

A definition of the goals of the agent is only useful if
the goals somehow constrain the agent’s future actions.
One way of enforcing such a constraint is to bring in
a notion of acting rationally. If an agent is acting ra-
tionally, then to the best of its ability it is acting to
bring about (and maintain) its goals. In other words,
if an agent’s actions are rational starting in situation s,
then ideally it is following an ASF ¢ such that H (o, s).
But since the agent may be uncertain as to which situ-
ation the world is actually in, it ought to be following a
course of action that it knows will achieve its goals, i.e.,
Vs'K(s',s) D H(o,s'). However, there may not always
be such a ¢ for the agent to follow. We require instead
that a rational agent follow a ¢ such that H(c,s’) in a
maximal set of s’ such that K(s',s). To that end, we
define an ordering over ASFs for each situation:

= (01,09,8) d:erS’K(S’,S) A H(og,s") D H(o1,s').

In other words, in situation s, oy is as good as oy (with
respect to ») iff o1 achieves the goals of the agent in
all the alternative situations in which o5 achieves its
goals.

We say that an ASF o describes a rational course of
action in s iff it is maximal in >.

Rational(c, s) def Vo' (= (o', 0,8) D= (0,07, 5)).

The way these notions are defined ensures that the
following important principle holds: if an agent has
the ability to achieve ¢, has ¢ as an achievement goal,
and is acting rationally, then eventually ¢ will hold.

Theorem 1

VoVs(Can(g, s) A OGoal(Eventually(¢), s)A
Rational(c, s) D Eventually(¢, o, s))

This theorem characterizes the main role that ratio-
nal action plays in our theory. It connects the knowl-
edge and goals of an agent with its future actions, by
guaranteeing that when the agent has sufficient knowl-
edge to bring about an achievement goal, eventually
the agent will achieve it.

With this definition of rational action, we can show
that if the agent does not know the combination, and it
knows that the safe is locked and intact in situation s,
then it is rational for the agent to read the combination
of the safe and dial it. Let o1 be an ASF that prescribes
reading the combination initially and then dialing the
combination. For any situation s’ such that K (s, s),

it is easy to see that in the path defined by o starting
at s’, eventually the safe will be unlocked and intact.
Therefore, H(oy,s’) for any s’ such that K(s',s). It
follows that for any o*, > (01, 0%, s). We conclude that
Rational(oy, s).

On the other hand, we can show that it is irra-
tional for the agent to dial a combination without
first reading the combination of the safe in s. Let
¢ be a combination and oy be an ASF that maps
any situation s’ such that K(s”,s) to the action
DIAL(c). Since the agent does not know the combi-
nation in s, there will be a situation s* such that
K(s*,s) and coMBOFSAFE(s*) # ¢, and therefore
EXPLODED (do(DIAL(c), s*)). Since the safe always re-
mains exploded once it happens, we can infer that
—H(02,s*). We showed that H(o,s’) for any s’ such
that K (s',s), therefore = = (02,01,8). Since we
showed that > (o1,0%,s) for any o*, it follows that
-Rational(cs, s).

Consider a modification to the safe example in which
the combination of the safe may be illegible. If the
combination is legible, then the agent knows the com-
bination of the safe after reading it, as before. But if
the combination of the safe is not legible, then it is not
possible for the agent to read the combination. We add
a knowledge-producing action SENSECOMBLEGIBLE,
which tells the agent whether the combination is legi-
ble. In this case, we can show that it is still rational for
the agent to read the combination and dial it should
the combination be legible. If the combination is not
legible, then the agent can only guess the combination
(i.e., dial any combination), and it is rational to do so.

5 Related and Future Work

The framework described above is overly simplistic in
various ways. Work is underway to make the paradigm
more realistic. In section 3, we saw that it was unde-
sirable to have as goals all the formulae that are true
in all goal paths. However, some of these formulae are
legitimate subgoals and we should have a way of spec-
ifying them. This can be accomplished by altering the
framework to allow subgoals to be explicitly defined.
The new framework allows incremental specification of
subgoals instead of requiring that all the goals of the
agent be defined in a single predicate (H).

We saw at the end of Section 4 that it could some-
times be rational for the agent to guess the combina-
tion. Although this allows the agent to unlock the safe
in some possible worlds, in most, the safe will explode.
This might be an overly precarious strategy for the
agent to take. The situation can be remedied by mak-
ing a maintenance goal of never exploding the safe a
higher priority goal than the achievement goal of un-
locking the safe. Then it will be rational for the agent
to dial a combination only if it knows the combination
of the safe. We have been investigating the addition of
prioritized goals to the framework.

In addition to having an ordering on goals, it would



be useful to be able to characterize the plausibility of
the alternative situations. One way of doing this would
be to have a plausibility ordering on the alternative
situations. Then the agent can consider tradeoffs be-
tween the priority of goals in a given situation and the
likelihood of that situation occurring.

Finally, the current framework only allows for a sin-
gle agent in the world. We are currently extending the
framework to model multiple, interacting agents.
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