On the Stochastic Constraint Satisfaction Framework

Lucas Bordeaux
Microsoft Research
Cambridge, UK

lucasb@microsoft.com

ABSTRACT

Stochastic constraint satisfaction is a framework that allows
to make decisions taking into account possible futures. We
study two challenging aspects of this framework: (1) vari-
ables in stochastic CSP are ordered sequentially, which is ad-
equate for the representation of a number of problems, but is
not a natural choice for the modeling of problems involving
branching; (2) the framework was designed to allow multi-
objective decision-making, yet this issue has been treated
only superficially in the literature. We bring a number of
clarifications to these two aspects. In particular, we show
how minor modifications allow the framework to deal with
non-sequential forms, we identify a number of technicalities
related to the use of the sequential ordering of variables and
of the use of multiple objectives, and in addition we pro-
pose the first search algorithm that solves multi-objective
stochastic problems in polynomial space.

1. INTRODUCTION AND MOTIVATION

Context: Integrating the Future in Decisions

An important and challenging problem in optimisation is
to make decisions in prediction to a future which, by def-
inition, cannot be forecasted precisely. To make this type
of decisions it is necessary to consider the whole range of
futures that are possible, to estimate the likelihood of each
of these future scenarios, to predict the quality of the deci-
sions w.r.t. each future, and to favour the decisions whose
quality is likely to be high. Examples of contexts involving
this type of prospective reasoning are abundant: a decision
whether to launch a new product will have completely dif-
ferent consequences depending on whether the competitor
is secretly planning to propose a similar offer; when decid-
ing the quantity of goods to produce we aim at satisfying
a future demand which can be estimated only with limited
confidence, but a storage cost will be incurred if there is
some surplus, and the decision has to take into account this
risk in addition to the production cost (Book Ezample, [7]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’07 March 11-15, 2007, Seoul, Korea

Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

Horst Samulowitz
University of Toronto, Dpt of Computer Science
Toronto, Canada

horst@cs.toronto.edu

The framework we discuss in this paper is more specifi-
cally driven by a class of uncertain decision-making prob-
lems that are best understood by considering a preliminary
example. In this example we want to make a trip from Paris
to Amsterdam. Train and car are the two options, but we
are in a period of strikes, and there is an estimated 40% risk
that the train never leaves, should we consider this option.
In case this happens, the train company would be forced to
provide a replacement (e.g., a bus service). This solution
is however typically essentially slower. Now if we directly
choose to take the car there is also some uncertainty , i.e.,
the traffic might be low, medium or high. What should we
decide? In general the train offers the best compromise be-
tween speed and price, but today if we choose this solution
we have a chance to end-up with an inefficient replacement
service (e.g., bus). The example can be described pictorially

as follows:
cost = c1(Traffic)
car Traffic duration = d1(Traffic)
cost=c2
Transport

no / duration=d2
[rai "

yes cost=c3(Bus)

duration=d3(Bus)

The diamonds represent decision variables: a decision
variable represents a choice for which we do or will have
to make the decision. On the contrary, the ovals represent
stochastic variables: the values of these variables will not be
decided by us but by some external agent, or by ”the envi-
ronment”. We assume that we can estimate the probability
according to which each value will be chosen. The diagram
specifies that we initially have to choose the value for a vari-
able Transport ranging over {car, train}. If (for instance)
we choose car, then the environment will fix a value for the
variable Traffic € {low, med, high}. The duration and the
cost in this case are both functions of the traffic (in the other
cases in the Figure the costs are simply constants). While
this example is simplistic, it exhibits the following features
which are representative of a whole class of applications:

e In evaluating the quality of our decision we have used
several criteria: the duration and the cost. This is
often the most natural way to state preferences, in
which case the problem is called multi-objective;

e We have adopted a ”branching” (tree-shaped) repre-

sentation of the future, as opposed to a ”linear” (se-
quential) one'. By this we mean, more specifically,
that some decisions only apply in some branches: for
instance variable Strike plays a role only if we choose
train. If on the contrary we choose car then variable
Strike simply does not exist;

e The leaves of the tree essentially specify values for each
of the objective. These values are most likely functions
of the variables accumulated along the corresponding
branch of the tree (in our simple example the cost and
duration depend on the traffic in the case of choosing
the car in the first place).

Goal of the Paper

Our goal in this paper is to propose a framework that will
allow us to conveniently model problems such as the one
described above, i.e., problems in which we make decisions
against the future, in which the future involves alternating
decision and stochastic variables, and in which we adopt a
branching viewpoint on the future. We also investigate the
employment of multi-objectives and reveal several technical-
ities caused by its usage.

We think that the ability to model branching time is im-
portant as this branching will typically arise whenever the
environment is allowed to make a discrete choice that causes
the remaining possibilities for the next steps to be com-
pletely different. For instance, suppose that a construction
company is making decisions related to its interaction with
a particular client. The future is modelled as follows:

?if the customer accepts the current offer then
we will start the construction; otherwise we will
propose him an alternative”.

The answer of the customer is clearly a stochastic variable,
and at the time of the decision the only information we can
have on this variable is the probability of the yes/no answers.
Depending on this answer, we will have to make decisions on
which team of builders should start working or we will have
to schedule another round of negotiation with a member of
the business team. Clearly these two tasks take place in
completely different contexts and therefore do not involve
the same decision variables.

Summary of the Contributions

The framework we start off with is stochastic constraint sat-
isfaction as introduced by Walsh [7]. This appears like a
natural choice, as the distinction between deterministic and
stochastic variables is central to this framework. However,
this framework is essentially sequential and was not primar-
ily aimed at decisions involving a branching future. The
additional core observations can be summarized as follows:

1. The original stochastic CSP framework is sequential,
and does not allow any branching. At first this could
be considered as a minor drawback: a stochastic CSP
can be thought of as a formula in prenex form, while
branching time would require a non-prenex form. If
known results in the closely related field of quantified

'The branching/linear terminology we are using is borrowed
from the Temporal Logics literature, in which there have
been well-known debates on the respective advantages and
limitations of these two viewpoints on time, see, e.g., [6].

constraints were also applicable to stochastic CSP, we
could always express branching time using a sequential
framework. We show that this is in gemeral not the
case. In our newly introduced framework we are able
to clearly define the non-prenex form and to deal with
it in a proper fashion.

2. The original formulation of stochastic CSP allows to
model different objectives (each of which is assigned a
different threshold in the decision version). But sur-
prisingly, all the complete algorithms that have been
proposed for the original framework are only valid for
the case of a single objective 2. As an explanation
to this fact we ezhibit a technical issue that makes it
difficult to solve the multi-objective framework using
search-based approaches. We show that this issue can
be fixed using a new enumeration mechanism. This
algorithm provides us with the proof that the multi-
objective version of the problem can be solved in poly-
nomial space.

In the subsequent section we present our new stochastic
constraint satisfaction framework. In this section we also
position the original stochastic constraint satisfaction frame-
work and state the main difference to it. Then we address
the previously highlighted topics (1) and (2) in Sections 3
and 4, respectively. A brief discussion and a summary of
the results concludes the paper.

2. THE FRAMEWORK

Example

The stochastic constraint satisfaction framework [4, 7] uses
” quantifiers” of the form 3z and Yz to introduce decision
and stochastic variables in sequence. We use this idea and
propose to consider a class of non-prenezr stochastic CSPs.
In order to model tree-shaped problem structures we employ
the if-then-else. For instance the example of Section 1 will
be modelled by the following formula:

if Trans = car then
d Traffic.{c1 (Traffic), d1 (Traffic))

else
dTrans. if Strike=no then
dStrike. {e2,da)
else

A Bus.{cs(Bus), ds(Bus))

We note that all the branches of this expression end in a
vector of the form (a, b); this is the notation used to express
the quality of this branch w.r.t. each of the 2 criteria. The
reader might be surprised to see an existential quantifier ap-
pearing in the else branch of a condition whose then branch
is a vector. This is not a typing mistake that would make the
example ill-defined: such existential formulae should not be

*The algorithms we are mentioning are the search algo-
rithms in [7, 1]. In both of these papers the possibility of
using different objectives (or different thresholds) is initially
mentioned, but the algorithms are then presented for the
case where only one threshold is present. The approach
proposed by [5], on the contrary, seems to be able to deal
with multiple objectives. Our understanding is nevertheless
that this approach requires exponential space in order to
guarantee completeness.

understood as a Boolean condition, the branch starting by
this internal decision can be evaluated to a vector of costs.

We also note that, although the framework is entirely
based on the evaluation of functions, this is expressive enough
to represent constraints, which are seen as functions return-
ing values in {0,1}. Depending on the threshold she asso-
ciates to the constraint, the user is allowed to either impose
it strictly or ask to simply maximise its satisfaction.

Syntax

Formulae are built over a vocabulary S of stochastic vari-
ables, and a vocabulary I of internal decision variables. Each
variable z has a finite domain D,. If a variable y is stochas-
tic, then we are given, for each value v € Dy, the probability
py(v) that y takes value v (note that EveDy py(v) =1). A

stochastic formula (Form) over m objectives is an expression
written according to the following grammar:

The language allowed for terms can vary, for instance, a
simple language is based on linear expressions of the follow-
ing syntax:

A formula is closed if in every atom, every occurrence of
a stochastic or decision variable falls under the scope of a
quantifier. A formula is well-defined if it is closed and if no
variable appears under the scope of two different quantifiers.

Semantics

Because this is rarely done in the literature and because
this raises some technicalities we specify the semantics of
the formulae of our framework. This semantic is based on
the notion of strategy (a.k.a. policy). A strategy completely
specifies the choices made for the decision variables as func-
tions of the stochastic variables that are chronologically as-
signed before it. Because of the non-prenex form, strategies
have to be defined in a slightly non-standard way, as follows.

The relation ”wvariable x precedes variable y in formula
¥’ noted x <w ¥, is true if y falls under the scope of z.
Formally, if ¥ = Jz.¢ or ¥ = dz.¢, then z <y y holds
if # = z and y has an occurrence in ¢ or if z <4 y. If
¥ = if Cond then A else B then x <¢ y iff £ <4 y or
r <B Y.

Let Pred(z) denote the set of stochastic variables that
precede z in the considered formula. Then a strategy s de-
fines, for each decision variable z € I, a function s, of sig-
nature (][] Dy) — D, (where [] denotes Cartesian
product).

We can determine the vector of expected values of a for-
mula ¢ with respect to a strategy s. This evaluation func-
tion, eval,, takes as parameters the vector (I;..I,) of values
accumulated for the preceding decision variables during the
exploration of the formula, and similarly the vector (S;..S,)
of values accumulated for the preceding stochastic variables.
The rules are the following:

o eval,((I1..1,), (S1.-5¢),3z.¢) =
eval, ((I1.. Iy, Iy+1),{S1..54), ¢) where I,,41 = ${S1..5,)

o evaly((I1..1p),{S1..5¢),d y.¢) =
> vep, Py(v) - evals((I1..1p), (51.-Sq, v),)

Note that for the case dzx.¢, the multiplication is between
a real value (probability) and a vector returned by the eval-
uation; this corresponds to a weighted sum on each objec-
tive. In the base case (evaluation of an atom, i.e., vector

yEPred(z)

of terms), the evaluation simply returns the vector obtained
by computing each term. The conditional is evaluated as
one would expect.

Several computational problems can be considered:

satisfaction- the user provides a threshold for each of the
objectives (for instance constraints, whose satisfaction
will be imposed a lower bound); The problem is to
determine whether a strategy exists whose evaluation
on each vector satisfies the threshold;

optimisation- the user provides thresholds for each of the
objectives but one, and the goal will be to compute
the strategy that satisfies all the threshold and whose
value is optimal w.r.t. to the last objective.

Features of the Framework

In summary the two key features of the framework are that it
allows to express non-prenex formulas, and to deal with mul-
tiple thresholds. Prenex formulae are essentially equivalent
to the classical (sequential) stochastic CSP framework; the
special case of formulae involving only one objective func-
tion will also be of special interest, as we will show that is
it better-behaved in some aspects. We call this special case
single-objective, as opposed to the general SCSP framework
defined by Walsh which is multi-objective.

3. DEALING WITH BRANCHING TIME

To allow to naturally encode the tree-shaped structure of
applications such as the example of Section 1, we have pro-
posed to use a prenex form and conditional expressions. Let
us first note that, while the idea of non-prenex form appears
to be natural, classical non-prenex form (in the sense ofnon-
prenex quantified logical formulae) does not directly apply
in our context: consider the following stochastic SAT [3] in-
stance ¥z. dy. (x Ay). An attempt to put this formula into
non-prenex form (e.g., dz.z AY y.y)) would be incorrect, as
stochastic formulas evaluate to real numbers, not Booleans.

Prenex Form

A legitimate question is whether systematic means exist to
put a arbitrary formula into an equivalent formula in prenex
form. Putting a formula into prenex form means that we
extract quantifiers that appear as subterms of the formula
and bring them outside of the formula. In our case the
syntax allows to nest quantifiers only within one type of
constructs, namely the if-then-else, for instance:

if cond then I z.A else B

And similarly with a quantifier 4. (We may also consider
the case where the quantified formula appears in the else
branch, but this case is clearly symmetric.) The question is
therefore whether the following rewritings are correct:

if cond then dz.A else B = 3z.if cond then A else B

if cond thendx.A else B = dz.if cond then A else B

As it turns out, this question is dependent on whether we
consider a multi-objective framework or not.

The Single-Objective Case

In case we have a single-objective problem, we can benefit
from an important simplification: because the quantity to

optimise (say, minimise) is a unique value instead of a vector,
we will always obtain the best chance to obtain a winning
strategy if we take the Min of all possible values whenever
we meet a decision variable. For this reason it is easy to see
that the equalities justifying the transition to prenex form
are correct, e.g., the minimum value of a formula of the
form:

if cond then z.A else B

will be Minyep, eval(A[z := v]) if cond is true and eval(B)
otherwise. In both cases we have the same value for:

Jz.if cond then A else B
(The other case is similar.)

The Multi-Objective Case

The multi-objective case is unfortunately much more com-
plex, and indeed the transformation into prenex form has
unpredictable effects. To see this, consider the formula:

if x =0 then
N Jda. {(a,1 —a)
else
dy. (0.5,0.5)

where all variables have domain {0, 1}, and the probabili-
ties are p5(0) = pz(1) = py(0) = py(1) = 1/2. This formula
has two objectives. The constraint is to find a strategy that
would assign an expected value of at least 1/2 to each of the
components.

We first observe that the formula in its original form does
not have a strategy that satisfies the given thresholds. A
strategy for this formula is a function deciding the value
assigned to a depending on x. Due to the condition, the
evaluation of a is only applied under the setting = 0, and
under this fix setting of x there is only one choice for a.
Consequently, we will always average the vector (0.5,0.5)
(else branch) with either (0, 1) or (1,0) which in both cases
obviously violates the given thresholds.

Now by putting the formula into prenex form, we can
obtain the following:

dg.¥y.Ja. (if z =0 then (a,1 — a) else (0.5,0.5))

It is easy to see that this formula has a number of satisfying
strategies. For instance, with a strategy that systematically
applies the value of y to a, we obtain the required expected
values (0.5,0.5). Note that in this example there actually
exists an equivalence-preserving conversion to the prenex
form. However, in the general case there exists no systematic
procedure to gain an equivalence-preserving conversion to
prenex form.

Conclusion

With the single-objective framework the transformation of

an arbitrary formula into prenex form is equivalence-preserving.

This indicates that the sequentially defined framework is in
theory expressive enough in this particular case. We nev-
ertheless believe that the non-prenex form is more natural
and that makes the structure apparent and therefore easy
to exploit. In contrast in the context of the multi-objective
framework it is necessary to use a non-prenex form.

4. DEALINGWITHMULTIPLEOBJECTIVES

The Problem

Solving a stochastic constraint satisfaction problem involv-
ing a unique objective can be done using a tree-search al-
gorithm involving a number of technicalities that we shall
not explain due to space limitations (we refer the reader to
[7, 1]). With multiple objectives, an additional issue is that
each leaf of the search tree is ranked by a vector of values,
one value for each component of the objective.

To see whether existing search algorithms can be adapted
to this context we consider an instance of the form dz.3y. ¢,
also represented in the figure below. Each of the variables x
and y have two values, say 0 and 1 (left and right branches).
The probability of each branch of the stochastic variable x is
0.5. For the sake of simplicity we do not specify ¢, which in
the figure is abstracted by triangles. We have two objectives:
a, on which we impose a threshold of 0.7, and b, on which
we have a threshold of 0.8. Note that the evaluation of ¢ in
the end of each branch gives us a pair of values for a and b.
In general, this pair would not necessarily be unique: each
subtree may very well have a number of strategies whose
value vectors are incomparable, like (0.7,0.6) and (0.6, 0.7).
But for simplicity in the example each subtree does have
a unique vector of costs, e.g., {0.85,0.85) for the leftmost
subtree.

y
a=0.85 a=09 a=05 a=038
b=0.85 b=0.8 b=0.85 b=0.6

Essentially and ignoring the technicalities and optimisa-
tions not directly relevant to our current discussion, the
search algorithms that have been proposed for the single-
objective case [7, 1] recursively explore the search tree and
do the following: once we have explored all branches of a
stochastic node we return the weighted sum of the values of
these nodes; once we have explored all branches of a decision
node we return the value of one of the satisfactory nodes, in
fact we can typically choose the one with the best value.

Now with multiple objectives we return vectors of values
instead of values. Importantly, there exists no notion of
"best vector of values” in general as some vectors may be
incomparable. All we can do is therefore check whether one
of the branches is satisfactory and return its vector of values.
Now following the execution of the algorithm we will see
that it becomes non-trivial to adapt the search algorithm to
vectors of values. In our example the algorithm explores all
branches of the variable z, starting (say) by the left. Then
it explores a branch of y (e.g., the left branch). This branch
looks completely satisfactory (e.g., (0.85,0.85)) - yet when
the algorithm goes ahead and explores the two possibilities
for the right branch of z, none of these possibilities allows
us to satisfy the thresholds for a and b (i.e., 0.7 and 0.8) at
the same time. In one case the expected value of a will be
(0.85 + 0.5)/2 < 0.7, in the other case the expected value
of b will be (0.85 + 0.6)/2 < 0.8. As it turns out, we should
have considered the leaf with values (a = 0.9,b = 0.8) when

exploring the first value of z, as this leaf, together with
the leaf (a = 0.5,b = 0.85) for the branch on z, satisfies
the thresholds. But how could we guess this before having
explored the right branch of 7

The Solution

To fix the previous problem the idea is that when we in-
spect a stochastic node, we have to make sure to consider
all the vectors of values that can be obtained for each subtree.
To ensure that, we enumerate all the possible combinations
of vectors of thresholds for each branch. In fact, it is only
necessary to enumerate the combinations of vectors whose
weighted sum yields a vector satisfying the thresholds im-
posed at the current level. Once the combinations are fixed,
we can recursively ask to each sub-branch whether a subtree
can be found that satisfies the vector of thresholds we have
fixed for this branch. Note that we shall potentially explore
each of the branches multiple times®.

1: ALGORITHM solve(®, (01 ...0m)):
2:
3: if ¥ is of the form Jz.¢ then
4: for all v € D, do
5: if solve(¢[z :=v], (f1...6m)) then
6: return true
7: return false
8: else if U is of the form dz.¢ then
9: for all (A} .AZ),..., (A}, - ATL)
st \j(Zi N - pa(i) > 65) do
10: ok « true
11: for all v € D, do
12: if - solve (p[x :=v], (A\L..A¥) then
13: ok « false
14: if ok then return true
15: return false
16: else

17: return the vector of values for each objective

The 8s represent the thresholds imposed on each of the m
objectives. The algorithm verifies if these given thresholds
can be satisfied or not. The matrix (Aj, . AL), ..., (AL, AT)
represents all combinations of thresholds; the sum checks
that the currently tested combination is valid (averaging to
the 0s). The notation ¢[z := v] indicates that we instantiate
variable z by v in ¢.

A careful investigation of the previous algorithm shows
that there is room for many optimisations that we do not
detail as our goal is to keep its presentation minimal. Never-
theless, the cost of dealing with multiple objectives seems to
be high: the algorithm is extremely redundant and explores
some branches multiple times that would be explored only
once if we use a single objective.

Conclusion

We note that our algorithm provides a proof that stochastic
constraint satisfaction with multiple chance constraints can
be solved in polynomial space, and is therefore PSPACE-
complete (the hardness part is trivial). The result was in-
deed stated in [5]: this paper considers a stochastic con-

3A minor technicality regards the precision of the enumer-
ation. The only real values that need to be considered are
determined by the probabilities involved in the problem, but
we will not discuss this in detail.

straint satisfaction framework that allows to define multiple
chance constraints, each of which has a different threshold
(which is essentially equivalent to what we have considered).
While the result announced is correct, the proof of mem-
bership in PSPACE follows from the existence of a naive
algorithm [... which] recurses through the variables in order,
making an “and” branch for a stochastic variable and an
Zor” branch for a decision vartable. This clearly does not
hold for multiple objectives, as we have seen, and indeed
the search algorithm has to explore the same branches po-
tentially an exponential number of times, asking every time
for a different vector of values.

5. SUMMARY OF THE CONTRIBUTIONS

In this paper we have proposed a number of modifications
to the stochastic CSP framework which keep the essence of
the original definition but enable the framework to model
optimisation problems with branching time. The paper in-
volves a number of new technical results which we now sum-
marise: (1) we have shown that the search algorithms pro-
posed in the literature cannot directly be used to solve multi-
objective stochastic problems; (2) we have proposed the first
search algorithm for these problems; while this algorithm
is naive but it provides the first proof of membership in
PSPACE of multi-objective stochastic CSP; (3) we have
shown that non-prenex stochastic CSP cannot, in general,
be put in prenex form.

A number of conclusions and guidelines naturally follow.
In particular, whenever possible we advise to prefer an ap-
proach in which multiple objectives are aggregated into a
unique objective; this avoids having to deal with consider-
ably more complex algorithms.

Uncertainty is a topic of increasing importance in con-
straint satisfaction [2]. We believe stochastic constraint sat-
isfaction to be an appealing framework in which a particu-
lar type of problems with uncertainty can be formalised and
solved. These problems are those in which the uncertainty
arises from a forecast on future decisions, with an alterna-
tion between decision and stochastic variables. Our hope is
that the results presented in this paper will help developing
the applications of the framework.

6. REFERENCES

[1] T. Balafoutis and K. Stergiou. Algorithms for stochastic
csp. In Proc. of Int. Conf. on Principles and Practice of
Constraint Programming (CP). Springer, 2006.

[2] K. M. Brown and I. Miguel. Uncertainty and change. In
F. Rossi, P. Van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, chapter 21. Elsevier, 2006.

[3] M. L. Littman, S. M. Majercik, and T. Pitassi.
Stochastic boolean satisfiability. J. of Automated
Reasoning, 27(3):251-296, 2001.

[4] C. Papadimitriou. Games against nature. J. of
Computer and System Sciences, 31(2):288-301, 1985.

[6] A. Tarim, S. Manandhar, and T. Walsh. Stochastic
constraint programming: A scenario-based approach.
Constraints, 11(1):53-80, 2006.

[6] M. Y. Vardi. Branching vs. linear time: Final
showdown. In Proc. of Int. Conf. on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), pages 1-22. Springer, 2001.

[7] T. Walsh. Stochastic constraint programming. In Proc.
of Euro. Conf. on Artificial Intelligence (ECAI), pages
111-115. John Wiley and Sons, 2002.

