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Abstract

In multiagent environments, forms of social learn-
ing such as teaching and imitation have been shown
to aid the transfer of knowledge from experts to
learners in reinforcement learning (RL). We re-
cast the problem of imitation in a Bayesian frame-
work. Our Bayesian imitation modehllows a
learner to smoothly pool prior knowledge, data ob-
tained through interaction with the environment,
and information inferred from observations of ex-
pert agent behaviors. Our model integrates well
with recent Bayesian exploration techniques, and
can be readily generalized to new settings.
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communication channel, a sufficiently expressive represen-
tation language, a transformation between possibly different
agent bodies, and an incentive to communicate. In dynamic,
competitive domains, such as web-based trading, it is unreal-
istic to expect all agents to be designed with compatible rep-
resentations and altruistic intentions. Observation-basedtech-
niques, in which the learning agent observes onhotitevard
behaviors of another agent, can reduce the need for explicit
communication. Implicit communication through passive ob-
servations has been implementedraplicit imitation [Price

and Boutilier, 1999; 2001 In this model, the effects of other
agents’ action choices on the state of the environment can be
observed, but the internal state of other agents and their ac-
tion control signals are not observable. Independent explo-
ration on the part of the observer is used to adapt knowledge
implicit in observations of other agents to the learning agent’s

Reinforcement learning is a flexible, yet computationallyown needs. Unlike classic imitation models, the learner is not

challenging paradigm. Recent results demonstrating that uff€duired to explicitly duplicate the behavior of other agents.

der certain assumptions the sample complexity of reinforce; In this paper, we recast |mpI|C|t imitation in a Bayesian
Sframewprk. This new formula}tlon offers several adyar]tages

[Kearns and Singh, 199@re tempered by the sober fact that over existing models. First it provides a more principled,

the number of states is generally exponential in the numbe?nq[. mofre eI(tat?ant ap{?roaph LO It.h? sypooth poollng of mford-
of the attributes defining a learning problem. With recent in-mation irom the agents prior BENETS, 1ts own experience an

terest in building interacting autonomous agents, reinforcet—he observations of other agents (e.g., it eliminates the need

ment learning is increasingly applied to multiagent tasks, Jor certain ad hoc tuning parameters in current imitation mod-

development which only adds to the complexity of learning®!S): Second, it integrates well with state-of-the-art explo-
[Littman, 1994: Hu and Wellman, 1998n this paper, we ex- ration techniques, such as Bayesian exploration. Finally, the

amine multi-agent reinforcement learning under the assum 3ayesian imitation model can be extended readily to partially-

tion that other agents in the environment are not merely ar(_)bservable domains, though the derivation and implementa-

bitrary actors, but actors “like me”. That is, the other agentst|on are considerably more complex and are not reported here.
may have similar action capabilities and similar objectives.
This assumption radically changes the optimal learning strat¢ Background
egy. Information about other agents “like me” can give theWe assume a reinforcement learning (RL) agentis learning to
learning agent additional information aboutdsn capabili-  control a Markov decision processes (MDB) A,, R,, D),
ties and how these capabilities relate tooenobjectives. A with finite state and action sef A, reward functionR,, :
number of techniques have been developed to exploit this, inS — R, and dynamicsD. The dynamicsD refers to a
cludingimitation [Demiris and Hayes, 1999; Matari2004, set of transition distributionBr (s, a, ). The actions4, and
learning by watchindKuniyoshiet al, 1994, teaching or  rewardsR, are subscripted to distinguish them from those
programming by demonstratiditkeson and Schaal, 197 of other agents (see below). We assume throughout that the
behavioral cloningSammutet al, 1994, andinverse rein- agent knowsR, but not the dynamic® of the MDP (thus
forcement learningNg and Russell, 2040 we adopt the “automatic programming” perspective), and has
Learning by observation of other agents has intuitive apthe objective of maximizing discounted reward over an infi-
peal; however, explicit communication about action capabilnite horizon. Any of a number of RL techniques can be used to
ities between agents requires considerable infrastructure: laarn an optimal policy : S — A,. We focus here omodel-



based RLmethods, in which the observer maintains an esti- @ e @
mated MDP(S, A,, R,, D), based on the set of experiences
(s,a,r,t) obtained so far. At each stage (or at suitable inter-
vals) this MDP can be solved exactly, or approximately using @ @
techniques such as prioritized sweepipore and Atkeson,
1993. SinceR, is known, we focus on learning dynamics.
Bayesian methods in model-based RL allow agents to inFigure 1: Dependencies among model and evidence sources
corporate priors and explore optimally. In general, we em-

ploy a prior density” over possible dynamids, and updateit  petween the twgNehaniv and Dautenhahn, 1998\e as-

with each data points, a, t). Letting H, = (so,s1,.-- ,87)  sume full observability of the mentor’s state space; but we do
denote the (currengtate historyof the observer, and, = ot assume the observer can identify the actions taken by the
(ao, a1, ... ,ar—1) be the action history, we use the poste- mentor—it simply observes state transitions.

rior P(D|H,, A,) to update the action Q-values, which are  \\e make two additional assumptions regarding the men-
used in turn to select actions. The formulation of Deardeng,'g dynamics: the mentor implements a stationary pol-
et al. 1999 renders this update tractable by assuming a cofey 7. ° which induces a Markov chaifr,,(s,s’) =

venient prior: P is the product of local independent densi- Pr(s,7%,,s'); and for each action®, taken by the mentor,
ties for each transition distributidPr(s, a, -); and each den-  there exists an action € A, such that the distributions
sity P(D**) is a Dirichlet with parametera®®. To model  py(.|s 4) andPr(-|s,x%,) are the same. This latter assump-
P(D**) we require one parameter-** for each possible tion is thehomogeneous action assumptimd implies that
successor stat€. Update of a Dirichlet is straightforward: the observer can duplicate the mentor’s pofics a con-
given prior P(D**;n**) and data vectoe>* (wherec;” is  sequence we can treat the dynamizss the same for both
the number of observed transitions frento ¢t undera), the  agents. Note that we do not assume that the learner knows
posterior is given by parametani$® 4 c*“. Thus the poste- a priori which of its actions duplicates the mentor’s (for any
riorin Eq. 1 can be factored into posteriors over local families:given states), nor that the observevantsto duplicate this pol-
sl rs. 5.1 s, s icy (as the agents may have different objectives).
P(D*|Hg) = a Pr(Hy*|D™*)P(D™") (1) Since the learner can observe the mentor’s transitions

where H5 is the subset of history composed of transitions(though not its actions directly), it can form estimates of the
from states due to actior:, and the updates themselves arementor’s Markov chain, along with estimates of its own MDP
simple Dirichlet parameter updates. (transition probabilities and reward function). [Rrice and

The Bayesian approach has several advantages over otHeputilier, 1999, this estimate is used to augment the normal
approaches to model-based RL. First, it allows the natural inBellman backup, treating the observed distributtafs, -) as
corporation of priors over transition and reward parameters? model of an action available to the_ observer._lmltators using
Second, approximations to optimal Bayesian exploration cagugmented backups based on their observations of a mentor
take advantage of this approach, and the specific structural agften learn much more quickly, especially if the mentor’s re-
sumptions on the prior discussed abfDearderet al, 1999. ward function or parts Of.ItS policy 0\_/erlap with that of the ob-

server. Techniques like interval estimatidtaelbling, 1993

. o can be used to suppress augmented backups where their value
3 Bayesian Imitation has low “confidence.”

In multiagent settings, observations of other agents can be In the Bayesian approach, the observer incorporates obser-
used in addition to prior beliefs and personal experience tyations of the mentor directly into aaugmented modef its
improve an agent's model of its environment. These obserénvironment. Let,,, denote the history of mentor state tran-
vations can have enormous impact when they provide inforSitions observed by the learner. As abol,and 4, repre-
mation to an agent about parts of the state space it has not VE nts the observer’s state and action history respectively. Fig-

< ; : . . e lillustrates the sources of information available to the im-
visited. The information can be used to bias exploration 05tator with which to constrain its beliefs aboiit, and their

wards the most promising regions of state space and therelyopapilistic dependence. While the observer knows its own
reduce exploration costs and speed convergence dramaticalljetion history,A4,, it has no direct knowledge of the actions
The flexibility of the Bayesian formulation leads to an ele-taken by the mentor: at best it may have (often weak) prior
gant and principled mechanism for incorporating these obseknowledge about the mentor’s poliey,,. The learner’s be-
vations into the agent’'s model updates. Following Price andiefs overD can then be updated w.r.t. the joint observations:
Boutilier 1999, we assume two agents, a knowledgeaielie- P(D|H,, Ao, Hy)
tor m and a nave observero! acting smultaneously, but in- —  aPr(H,, Hn|D, A)P(D)
dependently, in a fixed environmehtike the observer, the
mentor too is controlling an MDRS, A,,, R, D) with the = aPr(Ho|D, Ao) Pr(Hm|D)P(D). 2
same underlying state space and dynamics (thatis, for any ac- 2the homogeneous action assumption can be relfede and
tiona € A, N A,,, the dynamics are identical). The assump-Boutilier, 2004. Essentially, the observer hypothesizes that viola-
tion that the two agents have the same state space is not critions can be “repaired” using a local search for a short sequence of
cal: more important is that there is some analogical mappingctions that roughly duplicates a short subsequence of the mentor’s
- actions. If a repair cannot be found, the observer discards the mentor
1\We assume that the agents are performing non-interacting taskmfluence (at this point in state space).



have independentdistributioRs(r?, ) over.A,, for eachs—

We assume that the prid?(D) has the factored Dirichlet this update can be factored as well, with history elements at
form described above. Without mentor influence, a learneftates being the only ones relevant to computing the posterior
can maintain its posterior in the same factored form, updatingvemm(s)- We still have the difficulty of evaluating the in-
each component of the mode(D**) independently. Unfor- (hegrat: over mclqdels. FSIIIOW'”Q Dgardenﬁll. 1999, we ta%kle "
tunately, complications arise due to the unobservability of thé IS by sampling models 'tgaestlmate this quantlty_._ pectt-
mentor’s actions. We show, however, that the model updat¢@!ly, we sample model®** from the factored Dirichlet
in Eq. 2 can still be factored into convenient terms. P(D>*|H3*) overD.* Given a specific sampl®*¢, with

We derive a factored update model tB{D*) describ- ~Parametervectar**, and observed counts, , the likelihood
ing the dynamics at stateunder actioru by consideringtwo  of D¢ is:
cases. In case one, the mentor’s unknown aetfprcould be . ea santy (et
different than the actioa. In this case, the model factérs:* Pr(Hy,|mm, D) = [ [ (n>*") ). ®)
would be independent of the mentor’s history, and we can em- tes
ploy the standard Bayesian update Eq. 1 without regard for the . .
mentor. In case two, the mentor actiofy is in fact the same ~ We can combine the expression for expected model fac-
as the observer’s actian Then the mentor observations are tor probability in Eq. 3 with our expression for mentor policy
relevant to the update d?(D**): likelihood in Eqg. 5 to obtain a tractable algorithm for updating
P(D™|H2 S, 7% = a) f[he observer’_s beliefs about the d_ynamics madddased on

o o imy im its own experience, and observations of the mehtor.

= aPr(Hy% H,|D> 7, = a)P(D>|m,, = a) A Bayesian imitator thus proceeds as follows. At each

= aPr(Hy*|D>*)Pr(H,,|D>*, 7, = a)P(D>?). stage, it observes its own state transition and that of the men-
tor, using each to update its density over models as just de-
scribed. Efficient methods are used to update the agent’s value

function. Using this updated value function, it selects a suit-
via actiona, andc, the counts of the mentor transitions aPle action, executes it, and repeats the cycle.

from states. The posterioaugmented modéhctor density ~ Like any RL agent, an imitator requires a suitable explo-
P(D*°|H>* H$, 72, = a) is then a Dirichlet with parame- ration mechanism. In thBayesian exploratiomodel[Dear-
tersn®¢ 4 ¢3¢ + ¢, ; that is, we simply update with the sum denet al, 1999, the uncertainty about the effects of actions
of the observer and mentor counts: is captured by a Dirichlet, and is used to estimate a distribu-
tion over possible Q-values for each state-action pailo-
tions such as value of information can then be used to approx-
imate the optimal exploration policy. This method is compu-
ationally demanding, but total reward including reward cap-
ured during training is usually much better than that provided
by heuristic techniques. Bayesian exploration also eliminates
P(D>*|Hy*, Hy,) the parameter tuning required by methods kikgreedy, and

= Pr(ad, =alHS HS)P(D**; 0> + 5% +c5,) adapts locally and instantly to evidence. These facts makes it

Pr(nd, # alHS®, HE)P(D¥*;n>" + ¢3*). (3) @agood candidate to combine with imitation.

o

Let n®* be the prior parameter vector fé*(D**), and
c>* denote the counts of observer transitions from state

P(D™|H" i (s) = 0) = P(D™i0™ + ¢ + ¢3,).

Since the observer does not know the mentor’s action w
compute the expectation w.r.t. these two cases:

This allows a factored update of the usual conjugate form, bug Experiments
where the mentor counts, are distributed across all actions,

; : o , - In this section we attempt to empirically characterize the
\évﬁé%gteesd tggttgit?&s taetrlsc;;i%obabmtythat the mentorspOIICyapplicability and expected benefits of Bayesian imitation

With a mechanism to calculate the posterior over the menthrough several experiments. Using domains from the liter-
tor's policy, Eq. 3 provides a complefectoredupdate rule for ~ ature and two unique domains, we compare Bayesian imi-
incorporating evidence from observed mentors by a Bayesial@tion to non-Bayesian imitatidiiPrice and Boutilier, 1999
model-based RL agent. To tackle this last problem—that ofind to several standard model-based RL (non-imitating) tech-
updating our beliefs about the mentor’s policy—we have: niques, including Bayesian exploration, prioritized sweeping
and complete Bellman backups. We also investigate how
Pr(mm | Hrm, Ho) Bayesian exploration combines with imitation.

= aPr(Hm|mm, Ho) Pr(mm|Ho) First, we describe the agents used in our experiments. The

_ aPr(ﬂ'm)/ Pr(Hpn|m, D)P(D|H.). ) Oracle employs a fixed policy optimized for each domain,
DeD

4Sampling is efficient as only one local model needs to be resam-

If we assume that the prior over the mentor’s policy is fac-P/€d atany time step, . ,
tored in the same way as the prior over models—that is, we ~Scaling techniques such as those used in HMM's may be re-
- quired to prevent underflow in the terfn®®*)(¢»") in Eq. 5.

3This assumes that leastone of the observer’s actions is equiv- 5The Q-value distribution changes very little with each update
alent to the mentor’s, but our model can be generalized to the hetand can be repaired efficiently using prioritized sweeping. Infact, the
erogeneous case. An additional term is required to represent “nori@ayesian learner is cheaper to run than a full Bellman backup over
of the above”. all states.
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Figure 3: Flag world results (50 runs)

prit

ES

ar
(e AT aCRERASNEES

Oracle(Fixed Policy Mentor)
+- EGBS (Eps Greedy, Bell. Sweep Control)
x- EGPS (Eps Greedy, Prio. Sweep Control)
¥ — - BE (Bayes Exp, Bell. Sweep Control)
—B- EGNBI (Non-Bayesian Imitation)
x —— EGBI (Eps Greedy, Bayes Imitation)
—©- BEBI (Bayes Exp, Bayes Imitation)

lns}
b4

I I I I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Steps of simulation

Figure 4: Flag World Moved Goal (50 runs)

providing both a baseline and a source of expert behavior
for the observers. The EGBS agent combinggeedy ex-
ploration (EG) with a full Bellman backup (i.e., sweep) at
each time step. It provides an example of a generic model-
based approachto learning. The EGPS agentis a model-based
RL agent, using-greedy (EG) exploration with prioritized
sweeping (PS). EGPS use fewer backups, but applies them
where they are predicted to do the most good. EGPS does not
have a fixed backup policy, so it can propagate vahudtiple
steps across the state space in situations where EGBS would
not. The BE agent employs Bayesian exploration (BE) with
prioritized sweeping for backups. BEBI combines Bayesian
exploration (BE) with Bayesian imitation (Bl). EGBI com-
binese-greedy exploration (EG) with Bayesian imitation (BI).
The EGNBI agent combinesgreedy exploration with non-
Bayesian imitation.

In each experiment, agents begin at the start state. The
agents do not interact within the state space. When an agent
achievesthe goal, it is reset to the beginning. The other agents
continue unaffected. Each agent has a fixed number of steps
(which may be spread over varying numbers of runs) in each
experiment. In each domain, agents are given locally uniform
priors (i.e., every action has an equal probability of resulting
in any of the local neighbouring states; e.g., in a grid world
there are 8 neighbours). Imitators observe the expert oracle
agent concurrently with their own exploration. Results are re-
ported as the total reward collected in the last 200 steps. This
sliding window integrates the rewards obtained by the agent
making it easier to compare performance of various agents.
During the first 200 steps, the integration window starts off
empty causing the oracle’s plotto jump from zero to optimalin
the first 200 steps. The Bayesian agents use 5 sampled MDPs
for estimating Q-value distributions and 10 samples for esti-
mating the mentor policy from the Dirichlet distribution. Ex-
ploration rates foe-greedy agents were tuned for each exper-
imental domain.

Our first test of the agents was on the “Loop” and “Chain”
examples (designed to show the benefits of Bayesian explo-
ration), taken fron{Deardenet al,, 1999. In these experi-
ments, the imitation agents performed more or less identically
to the optimal oracle agent and no separation could be seen
amongst the imitators.

Using the more challenging “FlagWorld” domdiDearden
et al, 1999, we see meaningful differences in performance
amongst the agents. In FlagWorld, shown in Figure 2, the
agent starts at stateand searches for the goal stété. The
agent may pick up any of three flags by visiting statéls
F2 andF'3. Upon reaching the goal state, the agent receives
1 point for each flag collected. Each action (N,E,S,W) suc-
ceeds with probability 0.9 if the corresponding direction is
clear, and with probability 0.1 moves the agent perpendicu-
lar to the desired direction. Figure 3 shows the reward col-
lected in over the preceding 200 steps for each agent. The Or-
acle demonstrates optimal performance. The Bayesian imita-
tor using Bayesian exploration (BEBI) achieves the quickest
convergence to the optimal solution. Thgreedy Bayesian
imitator (EGBI) is next, but is not able to exploit informa-
tion locally as well as BEBI. The non-Bayesian imitator (EG-
NBI) does better than the unassisted agents early on but fails



Cumulative reward in last 200 steps

Cumulative reward in last 200 steps

25

15

0.5

.
)
T

— - BE (Bayes Exp, Bell. Sweep Control)
—&- EGNBI (Non-Bayesian Imitation)
—— EGBI (Eps Greedy, Bayes Imitation)

Oracle(Fixed Policy Mentor)
+ EGBS (Eps Greedy, Bell. Sweep Control)
x- EGPS (Eps Greedy, Prio. Sweep Control)

I —©- BEBI (Bayes Exp, Bayes Imitation)
iR

}% II}I

1000

TR I
1500 2000

Steps of simulation

Figure 5: Tutoring domain results (50 runs)

S

G

Figure 6: No-south domain

ﬂﬂ

i

Bestieals

Oracle(Fixed Policy Mentor)
+ EGBS (Eps Greedy, Bell. Sweep Control)
x- EGPS (Eps Greedy, Prio. Sweep Control)
— - BE (Bayes Exp, Bell. Sweep Control)
—&- EGNBI (Non-Bayesian Imitation)
——- EGBI (Eps Greedy, Bayes Imitation)
—©- BEBI (Bayes Exp, Bayes Imitation)

ittt

f‘¥*¥¢**$********¢x&*E&*giiiz%iIIEEI

I
1000

I
2000

I
3000

I
4000

I I I
5000 6000 7000

Steps of simulation
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to find the optimal policy in this domain. A slower ex-
ploration rate decay would allow the agent to find the opti-
mal policy, but would also hurt its early performance. The
non-imitating Bayesian explorer fares poorly compared to the
Bayesian imitators, but outperforms the remaining agents, as
it exploits prior knowledge about the connectivity of the do-
main. The other agents show poor performance (though with
high enough exploration rates they would converge eventu-
ally). We conclude that Bayesian imitation makes the best use
of the information available to the agents, particularly when
combined with Bayesian exploration.

We altered the FlagWorld domain so that the mentor and the
learners had different objectives. The goal of the expert Ora-
cle remained at location G1, while the learners had goal loca-
tion G2 (Figure 2). Figure 4 shows that transfer due to imita-
tion is qualitatively similar to the case with identical rewards.
We see that imitation transfer is robust to modest differences
in mentor and imitator objectives. Thisis readily explained by
the fact that the mentor’s policy provides model information
over most states in the domain, which can be employed by the
observer to achieve its own goals.

Thetutoring domairrequires agents to schedule the presen-
tation of simple patterns to human learners in order to min-
imize training time. To simplify our experiments, we have
the agents teach a simulated student. The student's perfor-
mance is modeled by independent, discretely approximated,
exponential forgetting curves for each concept. The agent’s
action will be its choice of concept to present. The agent re-
ceives a reward when the student’s forgetting rate has been
reduced below a predefined threshold for all concepts. Pre-
senting a concept lowers its forgetting rate, leaving it unpre-
sented increases its forgetting rate. Our model is too simple to
serve as a realistic cognitive model of a student, but provides
a qualitatively different problem to tackle. We note that the
action space grows linearly with the number of concepts, and
the state space exponentially.

The results presented in Figure 5 are based on the presen-
tation of 5 concepts to a student. (EGBS has been left out as
it is time-consuming and generally fares poorly.) We see that
all of the imitators learn quickly, but with the Bayesian imita-
tors BEBIl and EGBI outperforming EGNBI (which converges
to a suboptimal policyy. The generic Bayesian agent (BE)
also chooses a suboptimal solution (which often occurs in BE
agents if its priors prevent adequate exploration). Thus, we
see that imitation mitigates one of the drawbacks of Bayesian
exploration: mentor observations can be used to overcome
misleading priors. We see also that Bayesian imitation can
also be applied to practical problems with factored state and
action spaces and non-geometric structure.

The next domain provides further insight into the combina-
tion of Bayesian imitation and Bayesian exploration. In this
grid world (Figure 6), agents can move south only in the first
column. In this domain, the optimal Oracle agent proceeds
due south to the bottom corner and then east across to the goal.
The Bayesian explorer (BE) chooses a path based on its prior
beliefs that the space is completely connected. The agent can

"Increasing exploration allows EGNBI to find the optimal policy,
but further depresses short term performance.
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