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Abstract

We present a new algorithm for the conformant probabilistic
planning problem. This is a planning problem in which we
have probabilistic actions and we want to optimize the prob-
ability of achieving the goal, but we have no observations
available to us during the course of the plan’s execution. Our
algorithm is based on a CSP encoding of the problem, and a
new more efficient caching scheme. The result is a gain in
performance of several orders of magnitude over previous AI
planners that have addressed the same problem.
We also compare our algorithm to algorithms for decision
theoretic planning. There our algorithm is faster on small
problems but does not scale as well. We identify the reasons
for this, and show that the two types of algorithms are able to
take advantage of distinct types of problem structure. Finding
an algorithm that can lever both types of structure simultane-
ously is posed as an interesting open problem.

Introduction
In this paper we address what has been called in the AI plan-
ning community the probabilistic planning problem (Kush-
merick, Hanks, & Weld 1995), but in modern terminology
would more accurately be called the conformant probabilis-
tic planning problem (CPP). Other work on probabilistic
planning, e.g., (Blum & Langford 1999; Onder & Pollack
1999; Blythe 1998; Goldman & Boddy 1994) makes differ-
ent assumptions about the observability of the environment.

Given a set of states S, we start with a belief state, which
is a probability distribution over S, a set of actions with
probabilistic effects, and a goal, which is a subset of S. The
problem is to compute a single sequence of actions π that
maximizes the probability that the goal will be true after ex-
ecuting π.

The basic assumption of the problem is that the system
state cannot be observed while the plan is being executed,
and that even when we start we do not know for certain what
state we are in. This is what makes it a conformant planning
problem. In fact, CPP is a generalization of the standard
conformant planning problem studied in, e.g., (Cimatti &
Roveri 2000). In particular, if our initial belief state assigns
probability zero to every impossible initial state and we re-
quire the plan to achieve the goal with probability 1, then the
problem reduces to that of standard conformant planning.

Conformant planning is useful for controlling systems

with non-deterministic actions when sensing is too expen-
sive, or when a fault has occurred and sensing is no longer
reliable. In these cases, conditional plans (which have a
branching structure) are not useful: executing a conditional
plan requires sensing to know which branch to follow.

CPP can be applied in situations where standard confor-
mant planning would fail (e.g., when a plan that guarantees
that the goal is always achieved does not exist). In such
cases we might still have some information about the likely
distribution of states the system might be in, and then we can
at least try to maximize the probability of achieving the goal
state.

In this paper we present a new planning algorithm, im-
plemented in a system called CPplan, for solving CPP. Our
algorithm utilizes the standard technique of fixing the length
of the plan and thus converting it to a problem over a finite
set of states (this technique was first used in (Kautz & Sel-
man 1996)). We then encode the resultant finite problem as
an instance of a constraint satisfaction problem (CSP). Stan-
dard CSP backtracking algorithms are then utilized to com-
pute a solution. Unlike the standard CSP problem, we are
not just interested in whether or not a solution exists. Nev-
ertheless, the answer we need can easily be computed from
the search tree generated by these standard algorithms.

Our approach is very closely related to the MAXPLAN
(Majercik & Littman 1998) planner which also solves CPP.
However MAXPLAN encoded the problem as a CNF for-
mula and used a variant of the DPLL (Davis, Logemann, &
Loveland 1962) algorithm to compute the solution. As we
will demonstrate, encoding in the higher-level formalism of
CSPs has a number of advantages which ultimately yield or-
ders of magnitude improvement in performance.

CPP can also be encoded as an instance of a partially ob-
servable Markov decision process (POMDP). Most POMDP
algorithms are specified to solve POMDPs with discounted
rewards. Our formulation, where we only care about achiev-
ing the goal after a finite length plan has been executed, re-
quires a more involved encoding to convert it to a discounted
reward problem. However, there is a class of POMDP algo-
rithms that can solve the problem directly. We were able to
run one of these algorithms on the same set of problems and
thus compare its performance to our approach.

Our data shows that the POMDP algorithm performs ex-
tremely well on many problems. This leads to the other



contribution of our paper, which is to clarify why our al-
gorithm performs better on certain types of domains while
the POMDP algorithm performs better on other types. Our
conclusion is that finding a way to combine the positive fea-
tures of these two algorithms would enhance our ability to
solve both CPP and POMDPs.

Background
In this section we give a more precise description of CPP
and the problem representation we use.

The input to CPP is a tuple 〈S,B, A, G, n〉. S is a set of
states. These are all of the states the system could possibly
be in at any instance. B is a belief state, i.e., a probability
distribution over S. We denote the probability of any partic-
ular state s ∈ S under B by B[s]. Similarly if S ′ ⊆ S then
B[S′] =

∑

s′∈S′ B[s′]. A is a set of actions. Each action is
a function that maps states s ∈ S to a distribution over S.
If a ∈ A we use Pr(s, a, s′) to denote the probability that
action a when applied to state s yields state s′. G is a goal
which is a subset of S. Finally n is an integer specifying the
length of the plan to be computed.

One way of viewing probabilistic actions is to regard them
as mapping belief states to new belief states (a point of view
utilized in (Bonet & Geffner 2000)). For any action a, a(B)
is a new belief state such that for any state s′,

a(B)[s′] =
∑

s∈S

B[s]Pr(s, a, s′).

That is, the probability we arrive in s′ from s is the proba-
bility we started off in s (B[s]) times the probability a yields
s′ when applied in s (Pr(s, a, s′)). Summing over all states
s gives us the probability of being in s′ after executing a.

A sequence of actions is also a mapping between belief
states as follows. The empty sequence ε is the identity map-
ping ε(B) = B, and action sequence 〈a, π〉, where a is a
single action and π is an action sequence, is the mapping
〈a, π〉(B) = a(π(B)).

Under this view, CPP is the problem of finding the length
n plan π such that π(B)[G] is maximized: i.e., it maximizes
the probability of the goal G when applied to the initial be-
lief state. We call this probability of success (where the ini-
tial belief state B and goal G are fixed by the problem) the
value of π. More generally, for any belief state B′, or indi-
vidual state s, and plan (of any length) π, the value of π in
B′ (in s) is the probability of reaching the goal when π is
executed in B′ (or s): i.e., π(B′)[G] (or π(s)[G]).

Finally we introduce some other useful pieces of nota-
tion. Given a belief state B, we say that a state s is in B
if B[s] > 0. That is, the states in a belief state are those
that are assigned non-zero probability. Second, for any ac-
tion sequence π and belief state B, we say that state s′ is
reachable by π from B if π(B)[s′] > 0. That is, π arrives
at s′ with non-zero probability when executed in belief state
B. We also say that s′ is reachable by π from a particular
state s if π(s)[s′] > 0. Finally, for a particular action a and
state s we say that s′ is a successor state of s under a if
Pr(s, a, s′) > 0.

Representing S, A and G
We utilize higher level representations of S, A and G as fol-
lows. Let {v1, . . . , vm} be a set of m state variables. Each
vi can take on any of k(i) different values {d1, . . . , dk(i)}. A
state s ∈ S is represented as a particular setting of these m
state variables. Hence, there are

∏m

i=0 k(i) different states
in S. The set of goal states G is represented as a boolean
expression over the state variables that is satisfied by all the,
and only the, states in G.

Finally, the actions are represented using the sequential-
effects decision tree formalism of (Littman 1997) (also used
in the MAXPLAN planner). Each action is represented by
a sequence of decision trees each of which is labeled by the
state variable it changes. Given a state s, the decision trees
of action a are applied sequentially to modify the state vari-
ables of s and so generate a set of successor states. Each
change applied has a certain probability, given by the deci-
sion tree, and the probability of each successor state s′ is
the product of the probabilities of the changes made to s to
convert it to s′.

Consider the SANDCASTLE-67 example given in (Majer-
cik & Littman 1998). In this domain states are specified
by two boolean variables moat and castle. There are two
actions dig-moat and erect-castle, whose decision trees are
given in Figure 1. The domain concerns building a sand cas-
tle. We can build a moat with the action dig-moat, but this
action might not succeed. Alternately we can erect a castle
with erect-castle. This is more likely to succeed if a moat
has already been built, but it can also destroy the moat.

Say, for example, we apply the erect-castle action to the
state s = {moat,¬castle} (for boolean variables we write x
for x = true and ¬x for x = false). First we apply the deci-
sion tree for castle, following the branch compatible with s.
This brings us to the leaf node labeled r2. This leaf indicates
that castle is made true by the action (in this context) with
probability 0.67. So we get the two intermediate states with
probabilities

{

{moat,¬castle}:0.33, {moat, castle}:0.67)
}

.
Note that in these states the setting of castle is “new”, and
might be different from its original setting. Second, we
apply the decision tree for moat to these two intermediate
states, For {moat,¬castle}:0.33 we arrive at the leaf la-
beled r5 (the nodes moat and castle in the tree depend on
the setting of these variables in the original state, while the
node “castle :new” depends on the setting of castle in the
intermediate state1). Hence moat is made true with prob-
ability 0.5. This yields two final states with probabilities
{

{¬moat,¬castle}:0.33×0.5, {moat,¬castle}:0.33×0.5
}

.
From the other intermediate state {moat, castle}:0.67 we ar-
rive at leaf r4. Hence moat is made true with probability
0.75. This yields two more final states with probabilities
{

{¬moat, castle}:0.67×0.25, {moat, castle}:0.67×0.75
}

.
There are a few things worth noting. First, all other states

are assigned zero probability (in this example all states are
successor states). Second, the randomness of the action oc-
curs only at the leaves. The branch followed is completely
determined by the original state and by the changes gener-

1The decision trees are applied sequentially so that the settings
created by previous trees can be branched on in subsequent trees.
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Figure 1: Sequential Decision trees for SANDCASTLE-67

ated by the previous trees. And third, the action does not
provide any information about the state it actually generated.
So even if we start in a known state, all we will have after the
action is executed is a distribution over the states we could
be in.

The CSP Encoding
The technique of translating planning problems to constraint
satisfaction problems has been used before in classical plan-
ning, e.g., (van Beek & Chen 1999; Do & Kambhampati
2001). Here we apply this technique to CPP. In this section
we describe our encoding and the manner in which standard
CSP algorithms can be used to solve the problem.

A CSP consists of a set of variables and a set of con-
straints. Each variable has a finite domain of values and can
be assigned any value from its domain. Each constraint is
over some subset of the variables. It acts as a function from
an assignment of values to those variables to true/false. We
say that an assignment of values to the variables of a con-
straint satisfies the constraint if the constraint evaluates to
true on that assignment. A solution to a CSP is an assign-
ment of a value to each variable such that all constraints are
satisfied.

The CSP variables We represent a CPP with a CSP con-
taining three types of variables. For each step of the length
n plan, we have m state variables whose values specify the
state reached at that step of the plan; one action variable
whose value specifies the action taken at that step of the
plan; and R random variables whose values specify the par-
ticular random outcome of the action taken at that step.

As noted above, the random effects of an action occur at
the leaves of the decision trees. We call leaves with prob-
abilities that are not 0 or 1 random leaves. (Leaves with
probabilities 0 or 1 do not generate random effects). We as-
sociate a random variable with each random leaf. For each
random outcome at the leaf we have a value for its associ-
ated random variable, and the probability that the random
variable takes on that value is the same as the probability
that the leaf yields that random outcome. Assigning a value
to the random variable corresponds to asserting that its leaf
will generate the associated outcome. Thus once all of the
random variables from the decision trees of an action have

been set, the action becomes deterministic: at each leaf a
fixed outcome will be generated. We can examine all possi-
ble random outcomes of an action by examining all possible
settings of its random variables. This in fact is what occurs
while solving the CSP—we iterate over all settings of these
variables. This technique is exactly that used in (Majercik &
Littman 1998).

Example 1 Consider the SANDCASTLE-67 domain speci-
fied above. For a n step plan we will have the following
variables

State Variables: castlei, moati, i = 0, . . . , n.
Action Variables: Ai, i = 0, . . . , n − 1. The domain of

each action variable is the set {dig-moat, erect-castle}.
Random Variables: ri

1, . . . , r
i
5, i = 0, . . . , n − 1.

In most problems the state variables are boolean, but be-
cause we are encoding to a CSP, our formalism can deal
with arbitrary domain sizes. This makes the representation
of problems such as GRID-10X10 (described below) much
simpler. Similarly, we need only n action variables with do-
mains equal to all possible actions. In a SAT encoding one
needs kn action variables where k is the number of possible
actions, and n×k2 clauses to encode the constraint that only
one action can be executed at each step. These exclusivity
constraints are automatically satisfied in the CSP encoding
by the fact that in a CSP a variable (in particular the action
variables) can only be assigned a single value. As we will
discuss later we could also use non-binary domains to opti-
mize the processing of the random variables.

The CSP Constraints The CSP encoding of a CPP will
contain constraints over the variables specified above. One
constraint is used to encode the goal. It is a constraint over
the state variables mentioned in the goal that is satisfied only
by the settings to those variables that satisfy the goal. Since
the goal is a condition on the final state, its constraint would
only mention state variables from the n-th step.

The other constraints are used to model the action tran-
sitions. There is one constraint for every branch of every
decision tree in the problem specification. In particular, for
every step i in the plan and every leaf in the decision trees
there will be a single constraint. This constraint will be over
some subset of the state variables at step i, some subset of
the state variables at step i + 1, some subset of the random
variables at step i, and the action variable at step i. The con-
straint encodes the setting of the step i + 1 state variables
that is compatible with the execution of a particular action
with a fixed random outcome in the step i state.

Example 2 In the SANDCASTLE-67 domain at step i the
leaf labeled r5 in the second decision tree of the erect-castle
action (see Figure 1) will generate a constraint over Ai,
moati, castlei, castlei+1, moati+1 and ri

5 that encodes the
following boolean condition

Ai = erect-castle ∧ moati ∧ ¬castlei ∧ ¬castlei+1 ∧ ri
5

⇒ moati+1

Initial Belief State Finally we must capture the initial be-
lief state B. This is most easily done by having, like partial



order planning, a special initial action. Like the other ac-
tions, this action is specified by a collection of decision trees
with an associated set of random leaves. Since the initial ac-
tion is applied to the “null” state, its decision trees can only
refer to state variables set by the action’s previous decision
trees. Sequentially applying these decision trees yields a set
of states each with some associated probability: i.e., a belief
state. Given any initial belief state a sequential set of deci-
sion trees that yield precisely this belief state can be easily
constructed.

Once the initial action is specified we can encode its ran-
dom leaves with corresponding step zero random variables,
and the branches of its trees with constraints. Then every set-
ting of the step zero random variables will generate, via the
constraints, a setting of the step zero state variables (i.e., one
of the initial states s such that B[s] > 0), and the probability
of that particular setting of the step zero random variables
will be equal to B[s].

From CSP solutions to a solution to CPP
A solution to the CSP is an assignment of the state, action
and random variables representing a valid sequence of tran-
sitions from an initial state to a goal state. The settings of
the action variables represent the plan that is being executed,
the setting of the state variables specify the execution path
the plan induced, and the probability of the random vari-
ables assignments when multiplied together is equal to the
probability of that solution. That is, it is the probability that
this particular execution path was traversed by this particular
plan.

To evaluate the value (probability of success) of a plan π,
one must sum the probabilities of all the solutions to the CSP
where the settings of the action variables are equal to those
in π. Once this is done for every plan (i.e., every possible
sequence of assignments to the action variables) the optimal
plan will be the one with the highest value.

Reusing Intermediate Computations
A naive implementation in which all solutions are enumer-
ated and the value of each plan evaluated, as described
above, runs very slowly. To make our approach viable it is
necessary to do a further analysis to identify redundancies in
the computation that can be eliminated using dynamic pro-
gramming techniques, i.e., caching (recording) and reusing
intermediate results.

This analysis identifies two types of intermediate compu-
tation that can be cached and reused. The first arises from
the Markov property of the problem. In particular, if we ar-
rive at the belief state Bi with n − i steps remaining, the
optimal sequence of n − i actions to execute is independent
of how we arrived at Bi. Thus, for each step i and each belief
state we arrive at step i, we could cache the optimal subplan
for that belief state once it has been computed. If we once
again arrive at that belief state with n − i steps to go, we
can reuse the cached value rather than recomputing the n− i
step optimal plan for that belief state. This is the dynamic
programming scheme used in value iteration POMDP algo-
rithms (discussed below). It is also the dynamic program-
ming scheme used in MAXPLAN.

Both MAXPLAN and our own system CPplan work by
searching in a tree of variable instantiations. At each node n
in the search tree a variable v is chosen that has not been as-
signed by any ancestor node. The children of n are generated
by assigning v all possible values in its domain. The leaves
of the tree are those where some constraint has been violated
(or for MAXPLAN a clause falsified) or where all variables
have been assigned. The latter leaves are solutions.2 The
tree is searched in a depth-first manner (and in fact it is con-
structed and deconstructed as it is searched, so that the only
part of the tree that is actually materialized at any point in
the search is the current path).

MAXPLAN uses a variable ordering that instantiates the
action variables first, instantiating those in chronological or-
der. Thus at any node it has already committed to a i-length
plan prefix, and must compute the optimal n− i length plan
given the belief state produced by the prefix. MAXPLAN
caches the subformula generated by fixing the i-length pre-
fix. This subformula corresponds to an encoding of the be-
lief state generated by the current plan prefix, along with
all of the future possibilities for the next n− i steps. Hence,
when later on in the depth-first search it encounters the same
subformula, it has in fact discovered two distinct i-length
plan prefixes that map the initial state to the same belief
state. In this case both have the same optimal completion,
and that completion need only be computed once.3

Our planner CPplan uses a second more refined
caching scheme. It instantiates variables in the sequence,
A0, R0, S0, A1, R1, S1, Ai, Ri, Si, . . ., where Ai is the i-
step action variable, Ri are the i-step random variables and
Si are the i-step state variables. That is, like MAXPLAN
it builds up the plan chronologically, but after each action it
branches on all of the settings of the random variables as-
sociated with the chosen action. The setting of the previous
state variables, the action variable, and the random variables,
is sufficient to determine the next state variables (i.e., these
variables do not generate any branches—they each will have
only one legal value).

At a node of its search tree where all of the i-step state
variables have first been set, i.e., the node where state s has
first been generated by i-steps of some plan prefix, CPplan
computes for every length n − i plan πn−i the value (suc-
cess probability) of πn−i in state s. It then caches these
values in a table indexed by the state s, and the step i.
If later on in the depth-first search CPplan again encoun-
ters state s at step i it backtracks immediately without hav-
ing to recompute these values. The variable ordering men-
tioned above can be altered as long as the i-step state vari-
ables Si are instantiated after the actions, state and random
variables for all steps j < i. For example, the ordering
A0, A1, Ai, . . . , R0, S0, R1, S1, Ri, Si, . . . is also possible.

Note that whenever the first caching scheme is able to

2Both MAXPLAN and CPplan do additional constraint propa-
gation to eliminate values from the domains of uninstantiated vari-
ables that would be bound to violate a constraint.

3Subformula caching also occurs when all n steps of the plan
have been determined. In this case the subformula caching has to
do with optimizing the computation of the value of the plan.



CPplan()
Action variable first; then random variables; then state variables

Select next unassigned variable V
If V is the last state variable of a step:

If this state/step is already cached return
Else-if all variables are assigned

Cache 1 as the value of the previous state/step
Else

For each value d of V
V = d
if GACPropagation()

CPplan()
If V is the action variable Ai

Update the cached results for the previous state/step
adding the value of all plans starting with d

Table 1: CPplan algorithm

avoid computing a subtree, the second is also. Furthermore,
the second scheme can avoid computing some subtrees that
the first must compute. First, if using the first scheme we
had previously encountered belief state Bi, then using the
second scheme we would have previously encountered all
of the states in Bi (i.e., those with non-zero probability).
Second, we could have two different belief states Bi and B′

i

which contain the same set of states (although the probabil-
ities assigned to these states might be different). The first
caching scheme would have to compute the subtree below
B′

i, but the second would have already encountered all of the
states in B′

i and thus could avoid this subtree.
In terms of space, in the worst case, the first scheme can

encounter as many different belief states as there are action
sequences of length less than or equal to n. All of these
would have to be stored in the cache. The second scheme,
on the other hand, might reach every state in S at each
level. Thus it might have to store for each state, informa-
tion about every action sequence of length less than or equal
to n. Hence, the second scheme can, in the worst case, re-
quire a factor equal to the size of the state space (|S|) more
space.

However, in practice, what is relevant for the first scheme
is the number of distinct belief states reached by a i-step
plan, and for the second scheme the number of distinct states
that are reached by a i-step plan. Although our current set of
experiments do not demonstrate this conclusively, it seems
intuitively reasonable that many more different belief states
would be reached than distinct states.

Our caching scheme also has some other important prac-
tical advantages, which we will discuss later.

The CPplan algorithm
We use value(π, s) to denote the value of π in state s (i.e.,
the probability π reaches the goal when executed in s). The
CPplan algorithm computes for every state s in the initial
belief state B (i.e., B[s] > 0), and every length n plan π,
value(π, s). From these values, the value of any length n

plan is simply computed by the expression
∑

s:B[s]>0

B[s] × value(π, s).

That is, the probability that π reaches the goal state from B
is the probability we start off in s (B[s]) times the probability
π reaches the goal when executed in s (value(π, s)). Thus
these values provide us with sufficient information to find
the length n plan with maximum value (success probability).

Note that we must have the value of all plans in each of
the initial states. It is not sufficient to keep, e.g., only the
plan with maximum value for each state. The plan with
maximum value overall depends on the probabilities of these
states. For example, the best plan for state s1 may be very
poor for another state s2. If B[s1] is much greater than B[s2],
then its best plan might be best overall, but if B[s1] is much
lower than B[s2] it is unlikely to be best overall. Even more
problematic is that the best plan overall might not be best for
any single state.4

A sketch of the CPplan algorithm is given in Table 1. As
mentioned it works by doing a depth-first search in a tree
of variable instantiations. Given the order it instantiates the
variables (action variable followed by the random variables
followed by the state variables), its computation can be re-
cursively decomposed as follows. To compute the value of
any length i plan π = 〈a, πi−1〉 in state s, where a is π’s
first action, we use the fact that

value(π, s) =
∑

s′:Pr(s,a,s′)>0

Pr(s, a, s′) × value(πi−1, s′).

That is, π can reach the goal from s by making a transi-
tion to s′, with probability Pr(s, a, s′), and then from there
reach the goal, with probability value(πi−1, s′). Summing
the product of these probabilities over all of s’s successor
states under π gives the probability of π reaching the goal
from s.

Hence, if we recursively compute the value of every
length i − 1 plan in all states reachable from s by a sin-
gle action, we can compute the value of every length i plan
in s, that starts with this action, with a simple computation.
After exploring a value a for the action variable below s, we
can update s’s cached value to include s’s value on the plans
starting with a. Subsequent actions a′ might be able to reuse
some of these computations (or previous computations). Af-
ter all actions have been tried, we can backtrack from s with
a complete cache for s. The recursion bottoms out at states
generated at step n that satisfy the goal (constraint propaga-
tion of the goal constraint means that no step n state falsify-
ing the goal will be visited). For these states we only need
to compute the value of the empty action sequence. This has
value 1 since the state must satisfy the goal. Finally, after

4This makes CPP inherently complex, and means that to ob-
tain truly practical algorithms we will probably have to examine
approximate versions of CPP. For example, (Kushmerick, Hanks,
& Weld 1995) examine the approximate version where any plan
with value greater than a fixed threshold was acceptable. This can
be done in our framework as well. Another way of avoiding com-
puting the value of all plans is the α-vector abstraction used in
POMDP algorithms. We will discuss this form of abstraction later.



backtracking from the initial call we can compute the value
of all length n plans from the caches for the initial states.

An important factor in the algorithm is its use of local
constraint propagation, specifically the generalized arc con-
sistency algorithm (GAC) (Mackworth 1977), before explor-
ing the subtree below a value assignment. GAC allows the
algorithm to avoid exploring some of states and actions that
have zero probability of achieving the goal (given the vari-
ables assignments already committed to at this node of the
tree). In particular, it prunes from the domains of the fu-
ture variables, values that would make achieving the goal
impossible. We do not affect the computed probabilities of
success by rejecting such assigments since they would only
contribute zero to the probability of success. GAC is a lo-
cal consistency check, hence it cannot detect all inconsis-
tent assignments. Nevertheless, it can eliminate some as-
signments thus reducing the size of the subtree that must be
searched below the current node. Furthermore, it can some-
times detect that an unassigned variable has no consistent
values remaining, in which it can avoid searching the sub-
tree altogether (GACPropagation() will return false in this
case). This is one of the important differences between our
approach and approaches based simply on reachability, e.g.,
(Bonet & Geffner 2000).

Partial Caching
Our caching mechanism provides an important gain in time
but can be very costly in terms of space: it is necessary to
store results for all possible plan suffixes rather than just
the best one. For an n-horizon problem with A actions,
the space required is proportional to An. However, there
is a very good space-time tradeoff that can be utilized. The
largest caches exist at the top of the tree, where each cache
contains the value of all length n plans at the state. If we
avoid caching states at the first i steps, we will only require
caches containing information about all length n − i plans,
at the expense of always having to recompute every state
reached in the first i steps (once we reach step i + 1 in these
computations, however, we can again utilize the cached re-
sults). Thus we increase computation time by a factor O(2i)
to save space of order O(2n−i). When i is small this is a
good tradeoff. However, we have not yet implemented this
partial caching scheme, so our empirical results are all re-
ported with full caching.

Another technique that can be utilized when partial
caching is used (the technique is redundant when full
caching is used), is to optimize the random variables. No-
tice, that the random variables are set after the action has
been chosen. This means that the only random variables
that can influence the next state are those in the branches of
the decision trees of that action, all other random variables
are irrelevant, Furthermore, even among those decision trees
only the branches compatible with the previous state (which
has also been previously set) are relevant.

We can stop the algorithm from branching on irrelevant
random variables (which would generate multiple copies of
the same state), by adding an extra value to the domain of all
random variables. Furthermore, we can add constraints to
force the random variables to take on this extra value when-

ever they become irrelevant. This makes irrelevant random
variables single valued, and they no longer generate extra
branches in the search tree.

These extra constraints involve minimal memory cost and
can therefore be very effective when only partial caching is
being performed.

Cache Keys
A final benefit of our scheme is that the cache key is very
short—the state and the time step. Thus we can quite effi-
ciently access the cache. This is in sharp contrast with the
caching scheme used in MAXPLAN, where the cache keys
are large CNF formulas. MAXPLAN’s cache only stores
a single value for each key, while we store an entire ta-
ble. Nevertheless, empirically the net space required for the
cache is significantly lower for CPplan.

Comparison with MAXPLAN
We have compared CPplan to MAXPLAN on
SANDCASTLE-67 and on the SLIPPERY-GRIPPER problem
(Kushmerick, Hanks, & Weld 1995). All experiments
were conducted on a 2.4 GHz Xeon machine with
3GB of RAM. The description of SLIPPERY-GRIPPER
is as follows. There are 4 boolean state variables,
grip-dry, grip-dirty, block-painted, and block-held; and
4 actions, dry, clean, paint and pick-up. The initial
belief state is the set of states with associated probabil-
ities

{

{¬block-painted,¬grip-dirty, clean, grip-dry}:0.7,
{¬block-painted,¬grip-dirty, clean,¬grip-dry}:0.3

}

. The
goal is ¬grip-dirty ∧ block-held ∧ block-painted. Action
dry dries a wet gripper with probability 0.8; clean cleans
a dirty gripper with probability 0.85; paint paints the
block with probability 1 but makes the gripper dirty with
probability 1 if the block was held and probability 0.1 if it
was not; and pick-up picks up the block with probability
0.95 if the gripper is dry and with probability 0.5 if it is
wet. The actions do not affect any other state variables.
Figures 2 and 3 show the results on a logarithmic scale
for plans of length 10 to 20 for SANDCASTLE-67 and 5
to 12 for SLIPPERY-GRIPPER. In both cases, CPplan was
run with full caching. Results were also generated for
the BombToilet problem from (Majercik & Littman 1998)
(where MAXPLAN was faster than all other algorithms) but
both CPplan and MAXPLAN are able to solve the problem
in less than the precision of the timer.

These results show that CPplan’s caching mechanism is
much faster (between 2 and 3 orders of magnitude) on these
problems. The rate of growth seems to be similar, so the re-
sults do not tell us much about the effectiveness of CPplan’s
more refined caching scheme. CPplan also uses much less
memory. On SANDCASTLE-67, MAXPLAN cannot solve
the 20 step problem due to lack of memory while CPplan
goes up to 28 steps. On SLIPPERY-GRIPPER MAXPLAN
stops at 12 steps while CPplan can go to 14. These dif-
ferences are very significant since CPplan is operating with
full caching, and hence its memory requirements are grow-
ing exponentially with plan length.
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Figure 2: CPplan vs Maxplan on SandCastle-67
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POMDPs
CPP can also be seen as a special case of Partially Ob-
servable Markov Decision Processes (POMDPs). A gen-
eral POMDP model has probabilistic transitions but also al-
lows for partial observability (as compared to the complete
unobservability case of CPP). In this setting, a solution is
a mapping from history (past actions and observations) to
actions. Decision theoretic planning techniques for solving
POMDPs usually assume a fixed reward for every state and
an infinitely executing plan. The plan specifies the action to
take in each belief state, and each belief state visited yields a
reward equal to the expected reward under that distribution.
The plan’s infinite horizon is handled by discounting future
rewards exponentially.

To cast the n-step CPP in precisely this formalism re-
quires a specialized encoding to handle the fact that in a
CPP the rewards are only given after n steps of the plan have
been executed. One way to encode a CPP as a standard in-

finite horizon POMDP would be to generate n + 1 copies
of each state, each indexed by the time step i = 0, . . . , n.
The initial belief state would be a distribution over the 0-
step states, with all other states assigned zero probability.
The transitions would always map step-i states to step-i + 1
states, giving zero probability to any other transition. Only
n-step states would have a non-zero reward, with those n-
step states satisfying the goal having reward 1. All actions
would map the n-step states to an absorbing terminal state
that has zero reward. Finally, there would be no observa-
tions. The solution to this infinite horizon POMDP would
be precisely the solution to the corresponding CPP. Unfor-
tunately, the factor n blow up in the state space makes the
resulting problems impossible to solve with current POMDP
algorithms.

There is however, a class of POMDP algorithm that al-
though designed to solve the general infinite horizon prob-
lem, in fact does all the computations required to solve CPP.
These algorithms are called value iteration (VI) algorithms,
and we will now describe their basic operation. In our de-
scription we ignore observations, so that all plans are simple
action sequences rather than conditional plans.

Brief VI overview
VI algorithms use the first of the dynamic programming
scheme presented above. Specifically, they compute the op-
timal k step plan for every belief state starting at k = 0 and
increasing k until they reach a k such that adding one more
step to any of the plans makes less that ε difference to the
value of the plan.5

The reason this approach works is that there exists com-
pact representations for the function that maps any belief
state to its optimal k step plan. There are of course an infi-
nite number of belief states, but since there are only a finite
number of different k step plans it must be the case that the
same plan is optimal for an entire region of the belief space.
More importantly, it turns out that many of the k step plans
are nowhere optimal, and those that are optimal for some
belief state are optimal for a linear region of the belief space
surrounding that belief state.

For any k step plan, π, the value of π in any belief state is
a linear function of its value in the individual states. That is,

value(π,B) =
∑

s∈S

B[s] × value(π, s).

Thus by storing π’s value for every state, we can easily com-
pute its value for every belief state. If there are ` states in S,
then we need only store an ` dimensional vector of values
for π. This vector is called an α-vector.

Abstractly VI algorithms start with k = 1 and with a set
Φ+

1 of α-vectors that contains an α-vector for every one-
step plan. Then they prune from Φ+

1 all α-vectors that are

5This is where the assumption of discounted future rewards
comes into play. k step plans only differ from k + 1 step plans by
the belief states they visit at step k + 1. Since the reward achieved
by visiting these belief states has been discounted by a factor of
size 1/O(2k+1) the value of the optimal k step plan will not be
much different from the value of the optimal k + 1 step plan when
k is large.



nowhere optimal; i.e., those whose value on any belief state
is always dominated by some other α-vector in Φ+

1 . This
yields a reduced set of one-step α-vectors Φ1, each of which
represents a one-step plan that is optimal for some region of
the belief state. At stage k we have a set Φk of α-vectors
each corresponding to some k-step plan that is optimal for
some region of the belief state, and we use this to compute
Φk+1. We first compute Φ+

k+1 which is a superset of Φk+1.
The dynamic programming scheme is based on the fact that
any optimal k+1 plan must be of the form 〈a, πk〉 where πk

is an optimal k step plan. Thus πk must be one of the plans
already represented in Φk. So one simple way to compute
Φ+

k+1 is to include in it all one step extensions of the plans
represented in Φk. That is, we compute the α-vectors as-
sociated with all one step extensions of the plans in Φk and
place these α-vectors in Φ+

k+1. Then we prune from Φ+
k+1

all nowhere optimal α-vectors, to obtain Φk+1 the set of α-
vectors representing somewhere optimal k + 1 plans.

Once we have the set Φn we can find the optimal n step
plan for a particular belief state B, by computing the value
of all of the plans in Φn at B (using the α-vectors as shown
above) and identifying the plan with maximal value. The
value of this maximum value plan at B is also called B’s
value. Thus, the set Φn also represents a value function that
maps every belief state B to the value of the best plan for B.

Modern POMDP VI algorithms attempt to optimize the
construction of Φk+1 in various ways. For example, they
might generate this set directly without first generating
Φ+

k+1 (e.g., the linear support algorithm of (Cheng 1988)
or the witness algorithm of (Kaelbling, Littman, & Cassan-
dra 1998)); or they might prune Φ+

k+1 while it is being con-
structed (e.g., the incremental pruning algorithm of (Cas-
sandra, Littman, & Zhang 1997)); or they might wait until
the end to do the pruning (e.g. the DP-Backup algorithm of
(Monahan 1982)). In all cases much of the computation is
performed by setting up and solving various linear program-
ming problems.

The key factor, however, in the complexity of VI POMDP
algorithms is the number of somewhere optimal length k
plans and how this number grows with k. These algorithms
scale well if this number grows slowly. As we will see in the
next section, this is the case for many of the problems we
have experimented with.

But before we present some of these empirical results,
there is one more source of efficiency that POMDP algo-
rithms take advantage of, that should be mentioned. Im-
plementations of POMDP algorithms utilize linear program-
ming packages which work with finite precision. This means
that if two α-vectors are within ε of the optimal for some re-
gion of the belief space, these algorithms will only keep one
of them. Thus although the run times of these algorithms
grow exponentially with the number of steps, we tend to see
the exponent shrinking as the number of steps increases. In
other words, the rate at which the sets of somewhere op-
timal α-vectors grows slows down as the number of steps
increases, since more and more of these α-vectors become
approximately equal.

α-vector abstraction
α-vector abstraction refers to the fact that each α-vector
specifies a plan that is optimal for a (linear) region of the
belief space. Thus it can be that a relatively small number of
plans are in fact sufficient to cover the entire belief space.

This is illustrated in the SLIPPERY-GRIPPER problem, de-
scribed above. The 0 stages-to-go value function is obvi-
ous: the value of each belief state is the sum of the proba-
bilities of the two goal states in that belief state, V 0(b) =
b(s1

G) + b(s2
G). With 1 stage-to-go, out of the 4 possi-

ble actions 2 are sufficient to represent the optimal value
function (clean and pick-up). For the paint action, if the
block was held the gripper will become dirty and if it was
not paint will not pick it up, so in both cases a goal state
cannot be reached. The dry action will only reach a goal
state from a goal state, but clean and pick-up also main-
tain goal states and furthermore they transition some non-
goal states to goal states. Thus they dominate dry in all
belief states. Now with 2 stages-to-go, working from the
two 1-stage plan, clean and pick-up, and pruning dominated
plans, there are only six α-vectors (plans) necessary to rep-
resent the optimal value function, instead of 42 = 16. These
plan are 〈clean, clean〉, 〈clean, pick-up〉, 〈pick-up, pick-up〉,
〈dry, pick-up〉, 〈paint, clean〉, and 〈paint, pick-up〉. Any
other length two plan is dominated by one of these six in all
belief states. For three stages-to go there are ten α-vectors
representing the optimal value function (instead of 43 = 64)
and for ten stages-to-go there are only 40 α-vectors (plans)
that are somewhere optimal instead of more than a million.

Thanks to the power of this abstraction it might only be
necessary to evaluate a small portion of all possible plans at
every step. However to evaluate one plan, one must consider
the whole (|S|-dimensional, continuous) belief state space,
even though potentially large regions of that space are not
reachable from the initial belief state. When the number of
states in the problem is large, solving the resulting linear
programs can take time.

Dynamic Reachability
To sum up, POMDP algorithms are able to evaluate only the
necessary plans but over an unnecessarily large space. On
the other hand, combinatorial probabilistic conformant plan-
ners like CPplan (or MAXPLAN) must evaluate all |A|n

possible plans, but the tree-search approach leads to a sig-
nificant advantage in that it performs a dynamic reachability
and local constraints analysis. In CPplan, an assignment to
all the state variables at a particular step can be considered
to be a state “node”. Once such a node has been reached
the CPplan algorithm will branch over all possible actions
(through the Ak variable) and all possible probabilistic ef-
fects of these actions (through the random variables Rk

i ) that
are locally consistent. It will thus end up instantiating only
the state nodes that are reachable and from the previous one
in one step and that are locally consistent. Therefore only
these consistent reachable nodes will be expanded in the
future search and the effects of actions on all other (non-
reachable or inconsistent) states will not be considered.

To illustrate this, consider the following GRID-10X10
problem. A robot is navigating in a 10x10 grid starting in



some fixed initial location and the goal is to reach the up-
per right corner of the grid (i.e., coordinate (9,9)). There
are 4 (probabilistic) actions, right, left, up, and down. up
and down move the robot in the designated direction with
probability 0.9 and to the left or right with probability 0.05
each. left and right “work” with probability 0.8 and move
vertically with probability 0.1 in each direction. If the robot
tries to move into a wall it bounces back and remains in its
original location.

If the robot is in a particular location, irrespective of what
the next executed action is, there are only 4 possible states
that it can end up in (corresponding to the 4 directions or 3
directions and the current state if there is a wall). We are
only interested in the values of future actions or plans in
those 4 states and not in all 100 states. The search tree in CP-
plan does exactly that: starting in an initial state, it branches
on all the 1-step reachable states. With only 4 reachable
states per step, a k-step plan search will “only” visit 4k state
nodes (in the case of full caching). Note that this is very dif-
ferent, and much more useful, than global reachability anal-
ysis. In particular, at each stage we consider only the states
reachable from the state we are currently in, rather than al-
ways considering all reachable states.

Comparison with POMDPs
We were able to solve CPP problems using a VI based
POMDP solver written by Cassandra (Cassandra 1999).
Cassandra’s code allows one to specify a finite horizon (this
fixes the number of iterations the VI algorithm performs),
give a reward of 0 to every stage except the final one, and to
set the discount factor to 1. Cassandra’s solver implements
the incremental pruning algorithm described in (Cassandra,
Littman, & Zhang 1997).

We ran CPplan and Cassandra’s implementation on
SANDCASTLE-67 (Figure 4), SLIPPERY-GRIPPER (Figure 5)
and GRID-10X10 (Figure 6) in order to compare the relative
advantages of α-vector abstraction and dynamic reachabil-
ity.

In SLIPPERY-GRIPPER, CPplan must evaluate all |A|n =
4n plans by visiting only Sreach = 8n nodes (where Sreach

is the maximum number of reachable states in one step).
POMDP is able to prune many of the possible plans but
must evaluate the remaining ones on a 16-dimensional con-
tinuous space. On GRID-10X10, CPplan must evaluate all
|A|n = 4n plans by visiting only Sn

reach
= 4n nodes,

while POMDP evaluates much fewer plans but on a 100-
dimensional continuous space. Note that CPplan runs out of
memory on SANDCASTLE-67 at 28 steps, and on SLIPPERY-
GRIPPER and GRID-10X10 after 14 steps when executed
with maximum caching capacity.

The graphs exhibit a common structure: CPplan is
faster for shorter plans but POMDP eventually “catches up”
(SANDCASTLE-67 exhibits the same structure but the inter-
section point is not plotted on Figure 4 because both algo-
rithms can compute short plans very quickly in this domain).
The position of the intersection point (where POMDP be-
comes faster than CPplan) depends on three factors

1. The ratio of dynamically reachable states at any step to the
total number of states. This ratio is 1 for SANDCASTLE-
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Figure 4: CPplan vs POMDP on SandCastle-67
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Figure 5: CPplan vs POMDP on Slippery Gripper

67, 1/2 for SLIPPERY-GRIPPER, and 1/25 for GRID-
10X10. The lower this ratio the better CPplan works.

2. The ratio of somewhere optimal α-vectors to the total
number of α-vectors. The lower this ratio the better it
is for POMDP algorithms.

3. How these two ratios compare.

Both algorithms have an exponential worst case complex-
ity. However, CPplan’s complexity is always exponential in
the plan length, with the base of the exponent being deter-
mined by Sreach , whereas, as noted above, the rate of growth
in the number of α-vectors in the POMDP algorithms tends
to slow down as plan length increases. This is partly due
to the finite precision with which the value of these vectors
is compared, in the POMDP implementation. It is because
of this slow down in growth rate that we eventually see an
intersection between the CPplan and POMDP curves.
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Conclusions and Future work
We have presented a new AI planning technique for confor-
mant probabilistic planning problems. Our algorithm works
much better than previous approaches developed in the AI
planning community. In particular, it is orders of magni-
tude faster than MAXPLAN (Majercik & Littman 1998) on
all tested problems, which in turn is much faster than pre-
vious algorithms like Buridan (Kushmerick, Hanks, & Weld
1995).

We have also compared our approach with algorithms
from decision theoretic planning, in particular value itera-
tion algorithms for POMDPs. Here the performance of our
system is less encouraging. Nevertheless, by analyzing the
behavior of these two different approaches we have identi-
fied two quite different types of structure that each algorithm
takes advantage of. Each algorithm has the advantage when
the input problem has more of one type of structure than the
other.

Most importantly, however, this analysis points out that
there may be much to gain from finding algorithmic tech-
niques that can take advantage of both types of structure si-
multaneously. In fact, it seems likely that there could be a
significant synergy between these two types of structure, as
the number of plans that are somewhere optimal on some
reachable belief state, might be considerably smaller than
either the number of reachable belief states or the number
of somewhere optimal plans (when considering all possible
belief states). We are currently working on developing such
techniques.

Finally, an area we have not discussed is the use of branch
and bound in solving CPP. Inspired by the MAXPLAN SAT
encoding as we were, Walsh has developed a generic frame-
work for CSPs involving random variables called stochastic
constraint programming (Walsh 2002). He suggests algo-
rithms based on branch and bound for solving such prob-
lems. An important future investigation would be to exam-
ine the effectiveness of these algorithms for solving CPP.
However, it is not difficult to see that without caching the
same computation can be performed exponentially many
times during the tree search even in the presence of bounds
pruning. Thus any technique for using bounds pruning will

have to integrate well with a caching scheme.
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