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Abstract

Mechanism design has found considerable ap-
plication to the construction of agent-interaction
protocols. In the standard setting, the type (e.g.,
utility function) of an agent is not known by other
agents, nor is it known by the mechanism de-
signer. When this uncertainty is quantified prob-
abilistically, a mechanism induces a game of in-
complete information among the agents. How-
ever, in many settings, uncertainty over util-
ity functions cannot easily be quantified. We
consider the problem of incomplete information
games in which type uncertainty $$rict or un-
guantified. We propose the userninimax regret

as a decision criterion in such games, a robust
approach for dealing with type uncertainty. We
defineminimax-regret equilibriaand prove that
these exist in mixed strategies for finite games.
We also consider the problem of mechanism de-
sign in this framework by adopting minimax re-
gret as an optimization criterion for the designer
itself, and study automated optimization of such
mechanisms.
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the mechanisms through which they interact.

Mechanism desigfiL3] has played a central role in much
of this research—it can be seen to embody the algorithmic
principles of computer science within an economic context.
Key results in mechanism design, such as the revelation
principle, have had a strong influence on the direction taken
by research at the intersection of the two disciplines. How-
ever, recently, limitations of standard approaches to mech-
anism design have been identified, and are starting to be
addressed. Chief among these is the complexity of com-
putation, communication, and the “human factors” faced
by software agents. For instance, mechanisms based on
the revelation principle require agents to reveal tigie
(generally, their utility function) accurately. This presents a
problem in any of a number of different circumstances: (a)
utility functions are often defined over large, multi-attribute
spaces, and are difficult to communicate effectively and/or
hard to compute accurately; (b) even in compact domains,
obtaining precise utilities (e.g., the precise valuation for
some good) may be computationally difficult (e.g., if the
value of the good must be determined by solving a diffi-
cult optimization problem); and (c) the software agent may
need to engage the user on whose behalf it is acting in or-
der to obtain this utility, but this user may be uncomfortable
specifying utility values to the required degree of precision.

Recent research has begun to examine methods involving
limited or incremental elicitation of types to circumvent

As software agents become better able to act on behatfome of these difficulties [1, 7, 17, 18], specifically in the
of human users, organizations, and businesses, there is abntext of (single-good or combinatorial) auctions. But
increasing need to develop environments in which suchihe question of mechanism design in general settings when
agents can interact smoothly, and protocols to ensure thainly partial type information can be practically revealed
desired outcomes can be reached. For example, the miras received scant attention. Furthermore, work to date
gration of many day-to-day business transactions to onfgenerally on auctions) has focused on “classical” mech-
line market, bargaining, and negotiation systems has led tanism design, in which type uncertainty is quantified prob-
the development of more and more sophisticated softwarabilistically (with the designer and the participating agents
agents that mediate such transactions. However, since thaving a common prior over types).

interc_ests of the parties on whose behalf they _act generally, this paper, we relax the form of the prior over types.
conflict, these agents should reason strategically accorGyaiher than quantified uncertainty, we assume that uncer-
ing to the well-studied principles of game theory. Con-iainy over types istrict: all that is known about an agent

sequently, recent research in computer science and ecgy ihat its type lies within some set of possible types. This
nomics has focused on the design of economic agents and



form of uncertainty might arise when, say, we know thatof action profiles We assume a séi; of possibletypesfor

the value an agent places on some good lies within cereachi, and autility functionu; : A x ©; — R. We as-
tain bounds, but have no further probabilistic informationsume throughout that; and©, are finite (though we dis-
about the valuation. In the context of mechanism designgcuss generalizations in several places below). Intuitively,
an incremental or partial elicitation mechanism may furtherthe type of an agent captures all relevant aspects of the in-
refine these bounds by having the agent reveal additionaéraction, or game, that are private to that agent. Formally,
constraints without fully identifying its type. an agent’s type determines its utility for different action

To deal with this form of uncertainty, new solution conceptsProfiles (or game outcomes), since most forms of private
are required. In the standard formulation, a specific mechinformation can modeled in this way [13]. As such we of-
anism induces Bayesian (incomplete information) game €N speak as if an agent's tygeits utility function. Let
[13]. However, with strict type uncertainty, the nature of © = *i©: be the collection ofype profiles While each
the induced game is different. In this paper, we adopt th&dent knows its own type, it is uncertain about the types
notion of anincomplete information game with strict type Of the others. This is reflected in @mmon priorover
uncertainty(these are equivalent to gamesriformational ~ © WherePr(6) is the commonly known distribution from
form [11]). Since the expected utility of a strategy profile Which type profiles are drawn. Ageiis beliefs about the

in a strict incomplete information game cannot be definedYPe Profiled__; of other players, given its own tye, are

we propose a more qualitative decision criterioninimax ~ 9iven by the conditional distributioRr(6;|6:).

regret By analogy with Bayes-Nash equilibria, we define A (Bayesian) game of incomplete informatisnmade up

a new solution conceptwinimax-regret equilibria Intu-  of the components above: players, actions, types, utility
itively, a minimax-regret equilibrium is a strategy profile in functions, and common prior. Aixed strategyor player
which each agent minimizes its regret with respect to the is a mappingr; : 0, — A(A;), associating with each
realization of all other agent’s types. We show that suchtype 6; a distributiono;(6;) over possible action choices.
equilibria must exist in finite games. A strategy ispureif o;(6;) assigns probability 1 to a single

With minimax-regret equilibria in place, we then proposeaction for eacly;; otherwise it isstrictly mixed Let >;
new criteria for mechanism design under strict type uncerde€note the set of (pure or mixed) strategies for agent=
tainty. We argue that th@echanism itseéhould minimize X% be the set of strategy profiles, and; = x;;%; be
its regret (in the social choice function), again with respecth® Set of profiles ranging over all agents exaept

to realization of the types of participants. While this no- Fixing the strategies of all other agentsdsto; € ¥_;, the
tion is applicable to direct mechanisms, we expect it will expected utility of strategy; for ¢, given its typd);, is:

be especially critical for partial or incremental revelation

mechanisms. We define novel mechanism design settings, ui(0ibi, 0-i) =
and suggest various techniques by which the noticawef Z Pr(0_4|0:)ui((0:(0:), 0_:(0_5)),0;) (1)
tomated mechanism design (AM[B) 20] can be applied 9_co_,

to mechanisms with strict type uncertainty. . _ - i )
We beain with . frel t back din’s where the utility of a mixed strategy profile is defined in
€ Degin With an overview of refevant backgrounain S€C-y, o o5 way. Aest responsor i to a strategy profile

tion 2. We then introduce strict incomplete information o anyo; that maximizes Eq. (1) for each of its types
games in Section 3, and define minimax-regret equi_libriapi__lA strateéy profiler € 3 is aéayes—Nash equilibrium
In Section 4 we address the issue of mechanism design u'Z'BNE)iff o; is a best response & ; for eachi. Intuitively,

derpartial type_re_velgtlon/vlth_m|n|max-regret equilibria, a BNE is stable in the sense that each agent is maximizing

the form of opt|m|_zat|on required for A.‘MD’ and report on its expected utility given the strategies of all other agents,

preliminary _expenments for the _spema_l case of Complet(?/vhere the expectation is taken with respect to possible re-

type revela_tlon: We conclude with a discussion of fuwrealizations of the other agents’s types.ddminant strategy

research directions. for agenti is a strategy; that maximizes Eq. (1) no mat-
ter what strategies are played by the othersdofinant

2 Background strategy equilibrium (DSEis a strategy profile consisting

of dominant strategies for each ageént
In this section we provide some brief background on the

key concepts used later in the paper, specifically, games @2 Mechanism Design

incomplete information, mechanism design, and minimax i . ) o
regret for decision making under strict uncertainty. Mechanism design deals with the problem of designing
a game—in which a collection of self-interested agents

interact—so as to optimize some objective on the part of
the designer [13]. More formally, we have a collection of
Assume a collection of playeis< N, with a set of ac- agents (e.g., potential buyers of some good) and some set
tions A; for each playei. Let A = x;A; denote the set of outcome%) (e.g., the allocation of a good to a particular

2.1 Games of Incomplete Information



agent at a specific price). As above, each agbat atype [12] study similar phenomenon in bargaining settings.

0 € ©; known only to itself and utility functiom;, where  \jych work in mechanism design deals with mechanisms
ui(0,0;) reflects the utility of outcome to agenti if its o yery specific settings. However, some general fami-
type ist;. For example, the type of the agent might dictate|ies of mechanisms have been constructed that apply rather
its valuation for the go_od _belng _auctloned, Wlt_h its utl_llty widely (e.g., the celebrated Vickery-Clarkes-Grove mecha-
for any outcome in which it obtains the good given by its  jsm) assuming certain restrictive, though reasonable con-
valuation less the price paid. ditions and social choice functions (e.g., the possibility
The mechanism designer has sosoeeial choice function of payments, quasi-linear utility, and social welfare max-
f it wishes to optimize (say, maximize), wheféo, §) de-  imization) without requiring assumptions about the spe-
notes the objective value (to the designer) of outcame cific priors. Conversely, direct optimization of the ob-
when the agent type profile ts For example, the designer jective (subject to certain constraints) in a way that ex-
may wish to maximize social welfare by ensuring the goodploits the prior can lead to a more algorithmic mathemat-
goes to the agent with the highest valuationdéterminis-  ical programming framework for mechanism design. My-
tic mechanisncomprises a set of actions for each agent erson’s [15] approach to revenue-optimal auction design is
i, and an outcome rule : A — O mapping action pro- the standard exemplar, giving rise to a class of mechanisms
files A into outcomes. Aandomized mechanisassociates that can be tailored algorithmically to any specific prior. In
each action profile with a distribution over outcomes. Asautomated mechanism desi@, 20] the specific details of
such, a mechanism induces a Bayesian game among tliee problem—outcome space, social choice function, and,
agents. A mechanisimplementsa social choice func- critically, theprior—are taken as input, and one automati-
tion f iff, in equilibrium, the outcome of the game is cally constructs a mechanism by formulating an optimiza-
o € argmax f(o,0) whenever the agents types are givention problem that maximizes the social choice function sub-
by 8. The mechanism design problem is to find a mechaject to certain constraints. These constraints specify the
nism that implementg using the desired notion of equilib- equilibrium concept to be used (BNE, DSE), various ra-
rium (most commonly, BNE of DSE), possibly subject to tionality constraints, etc. Conitzer and Sandholm [8] show
various constraints. how randomized mechanisms in finite settings (specifically,
The revelation principle makes the mechanism design those with _finite type spaces) can be optimized using linear
problem somewhat simpler by noting that if a mecha-Programming.

nism exists that implementg, then a direct, incentive-

compatible mechanism exists féras well. In other words, 2.3 Minimax Regret

we let strategies correspond to types (hence agents direCﬂ?’he problems of utility elicitation facing direct mecha-

reveal their types), and in equilibrium, each agent will " bvious| o7 trateqic decisi ki
truthfully reveal its type. The revelation principle has led to NISMS ODVIOUSly arnse in non-strategic decision making
contexts as well. Research on preference elicitation for

an almost exclusive focus on direct, incentive-compatible”, . .
mechanisms single-agent decision making must often address the prob-

) . . _lem of making decisions with incompletely or imprecisely
As mentioned above, the use of direct mechanisms in respecified utility functions. Whileninimax regreis a com-
alistic domains faces the problem that revelation of util-mon criterion for decision making under strict uncertainty
ity functions is quite often impractical. For example, in [21, 10, 2], only recently has it been proposed as a means
large, multi-attribute outcome spaces, simply communicatsq, dealing with imprecisely specified utility [3, 19]. We

ing a utility function may be problematic unless it has con-piefly overview the notion as applied to imprecise utility.

siderable structure. Recent work on preference elicitation

addresses this issue in the context of combinatorial aucl'c 2SSume a set of possible decisiéhom which a spe-

tions [7]. Even when utility functions are compactly repre- cific decision must b(ta)taken OF ber][alé ?jf’ or _recomr?ende(i
sentable, computing precise values, or eliciting these fro 0. Some user (say, by an automated decision system).

humans, may prove problematic. The problem of meCh_utility function u associates an exp_ected utilityd) with ,

anism design under such circumstances has recently begﬁ"?hd € D Howevgr, the SySte”".' IS unsure of the users

addressed in the context of auctions. Blumrosen and NisaHt'my function, knowing only that it lies in some feasible

[1] propose a model for limited-precision bids in auctions sety. For e'xam_plle, the sygtem may have elicited bounds

that is designed to deal with communication complexity,On the users u““_ty for various outc_omes, ?‘ﬂ“ repre-

and devise dominant strategy mechanisms in which agemsﬁe_n_ts the set of utility fu_nctlons consistent with the bounds

(implicitly) reveal upper and lower bounds on their valu- elicited thus far. We define thegretof d w.r.t. u to be

ations. Parkes [18] addresses the problem of agents with ,

uncertain valuations facing the decision of whether to pay R(d,u) = rhax u(d’) — u(d).

the computational cost of refining their utility estimates

when participating in an auction. Larson and SandholmThis reflects the loss experienced by taking decigiamn-
stead of acting optimally when the true utility function is



u. Themax regretof d w.r.t. U is 3.2 Minimax-regret Equilibrium

MR(d,U) = max R(d, u), The expectgd utility of a fixed_strategm as defined in

u€lU Eqg. (1) requires some distribution over the possible types
of other agents. Without distributional information, we
must adopt some qualitative decision criterion to evaluate
and compare strategies. Here we propose the use of the
minimax-regret decision criterion.

reflecting the worst-case regretdshould an adversary be
allowed to choose the user’s utility function from feasible
setU. Finally, theminimax optimal decisiow.r.t. U is that

d with minimal max regret:

Definition 1 Theregretof strategys; for agent; with type

dyy = argmin MR(d, U). 0, given strategy profiler_; and type profiled_; of the

deD .
other agents, is
While conceptually straightforward, direct computation of Ri(00;,0_i,0_;) =
minimax regret is often not feasible, because of the com- ,
plexity of the decision and utility spaces. As a conse- ores, [wi({0;(0:), 0-i(0-0)), 0:)
guence, when applied to practical problems, care must be —wi({05(6:), 0—s(0-0)), 0,)] @)

taken to exploit computationally whatever structure (e.g.,

conditional utility independence, graphical action models,The max regretof strategyo; w.r.t. prior 7', givend; and
etc.) exists in the problem (see [4, 5, 6, 24] for further mo-o_; is

tivation and discussion of computational issues).
MRZ(02|92; :Zj7 O',i) = p Helé%)((a) Rz(gz|92; 971', O',i). (3)

3 Games with Strict Type Uncertainty Finally, aminimax best respons# agent; to o_; w.r.t. T

. . L : . is any strategy ;" satisfying, for alld; € ©,:
In this section we define incomplete information games y 9y fying ! !

with strictly uncertain priors. We propose the use of min- o} € argmin MR;(0;(0;,T,0_;). (4)
imax regret as a decision criterion for participants in such o1 €0
a game, define minimax-regret equilibria, and prove tha

e S 2o . Entuitively, if we fix the behavior and types of all other
minimax-regret equilibria exist in mixed strategies.

agents, the regret of agehtvith type 6, for playingo; is

the lossi experiences by playing; rather than acting op-
timally. Of course, agentdoes not know the true types of
An incomplete information game with strict type uncer- the other agents. The max regrewgfgiven priorT is the
tainty consists of the same components as a (Bayesian) if10Sté could regret playing; (against the fixed strategies
complete information game, but hagjaalitativeor strict ~ Of the others) should an adversary choose its opponents’s
prior rather than a probabilistic prior. Specifically, we as- tyPes in a manner consistent with its beliefs. Finally, a
sume an action set;, type space;, and utility function ~ Minimax best response is any strategy that minimizes this
u; for each agent. We assume atrict prior 7 C © repre-  Worst case loss in the face of such an adversary. Note that
senting (common) beliefs about possible type profiles heldhis strategy requires a minimax optimal choice for every
by the agents in the game. Intuitively, denotes the set Possible type ageritcould possess.

of possible types from a “structural” perspective, whille  Unlike standard best responses, minimax best responses re-
denotes what is believed: only type profites 7" are con-  quire agents to adopt a cautious stance with respect to pos-
sidered to be possible given the information possessed hbsible realizations of opponent types. Without probabilistic
the participants. While we could simply tre@titself as  information quantifying type uncertainty, minimax regret
the set of credible types, when we discuss partial and inseems like the most natural decision criterion that could be
cremental revelation mechanisms, this distinction will beadopted by such agents.

useful. Stric;t incomplete information games are equivalen(Ne define the notion of minimax-regret equilibriunfor a

to games irinformational form[11]. strict incomplete information game by analogy with Bayes-
As in the standard setting, we assume each agent knows ikgash equilibrium.

own type. Its beliefs about the types of other agents, given

3.1 Definition

its typed;, is given by the set Definition 2 A strategy profiler is aminimax-regret equi-
librium iff o; is a minimax best response to ; for all
T0;) ={0_;:(0;,0_;) €T} agents.

(i.e., those type profiles consistent with its own knownWe note that other notions of qualitative equilibria have
type). Strategies are defined in the usual way as mappindseen proposed, but none have the same flavor as minimax-
from types to (mixed) action choices. regret equilibria. Tennenholtz [23] describes qualitative



equilibria for complete information games that rely on of obvious interest. We expect that similar characteriza-
maximin strategies; but these do not have a clear extertions for Bayesian games might be applicable with suitable
sion to incomplete information games with type uncer-modifications [14].

tainty. Work onuncertainty aversiorcan be viewed as  gecause dominant strategies in Bayesian games do not rely

incorporating some form of strict type uncertainty, but in o, the precise form on the prior, but only the set of possible
a very different way. Rather than truly qualitative uncer- types, we have (not surprisingly):

tainty, each agent is assumed to hawsetof probabilistic

priors (thus combining qualitative and quantitative uncer-proposition 1 Strategy profiler is a minimax-DSE for a
tainty) [22]. Recently, equilibrium analysis of various auc- strict incomplete information game with pri@t C © iff it
tions has been considered using this notion [9, 16]. Analyis 3 DSE for Bayesian game with type %t

sis of games in informational form naturally bears the clos-
est relation to our work; however, to date, oek/postequi-
libria have been proposed for such games [11], which are

considerably stronger thgn minimax-regret equilibria, andpe now consider the setting in which a mechanism de-
are not guaranteed to exist. signer is faced with a mechanism design problem in which
Dominant strategies for strict incomplete information prior information over types available to the designer and
games can be defined in a similar way: we sgyis  the participants cannot be characterized probabilistically.
minimax-dominanif it is a minimax best response for In other words, type uncertainty is strict. There are many
any strategiesr_; adopted by other playetsA minimax-  cases in which probabilistic priors over types may be diffi-
dominant strategy equilibrium (minimax-DSE)any strat-  cult or inconvenientto assess, whereas qualitative informa-
egy profile consisting of minimax-dominant strategies.  tion may be relatively easy to obtain. For example, when
requesting valuation information in an auction, it may be
3.3 Existence of Equilibria much more natural to maintain upper and lower bounds
than distributional information. Since the mechanism de-
Not surprisingly, pure strategy minimax-regret equilibria signer is faced with the same strict uncertainty as the par-
for strict incomplete information games do not always eX-ticipants, the mechanism cannot be realized by optimizing
ist (as is the case for BNE in Bayesian games). Howevefye social choice function using tieepected valumduced
we can show that mixed-strategy minimax-regret equilibriapy the mechanism with respect to realization of participant
exist for any finite game. types. We instead propose to view the mechanism designer
as a regret minimizer as well.

Theorem 1 A mixed strategy minimax-regret equilibrium f e restrict our attention in the typical fashion to di-
exists for any strictincomplete information game with finite g o mechanisms, then—even with strict type uncertainty—
agent, action, and type spaces. some generarior independenimechanisms such as VCG
can be applied when the setting allows (e.g., if we allow
Proof sketchThe result can be proved using a similar strat-payments and are interested in maximizing social welfare).
egy to classic proofs of the existence of (Bayes) Nash equBut notice that approaches that optimize with respect to
libria for finite games. We use Kakutani's fixed point the- specific (families of) probabilistic priors [15, 8] cannot be
orem to show that the minimax-best-response corresporpplied in the case of strict type uncertainty. Even though
dence (i.e., the mapping from any strategy profile to thehe mechanism may be able to induce participants to reveal
set of profiles obtained by composing individual best retheir typesd truthfully, it may not be able to simply maxi-
sponses to it) has a fixed point—this, by definition, is amize f (o, #) without violating constraints such as incentive
minimax equilibrium. To apply the theorem, we show thatcompatability. Thus the designer may regret the choice of
minimax-best-response set for any profile is convex, an@éne incentive compatible mechanism relative to another de-
that the correspondence is upper-hemicontinuous. This rgyending on the specific realization of agent types. Rather
lies on the piecewise-linear, convex nature of the max regrahan maximizing the expected value p$ubject to the typ-
function itself (thus having a rather different character tharcal constraints, we approach the problem by minimizing
best response correspondences based on expected utilitthe max regret of the mechanism.
We provide full details in a longer version of the paper.

Minimax-based Mechanisms

The importance of minimax-regret equilibria can be appre-
The characterization of conditions under which minimax-ciated more fully when considering mechanism design set-
regret equilibria exist when type spaces are continuous ifings in which full types cannot be practically revealed. In
TP — ) ) ) ___such a case, the mechanism is forced to optinfizeith-
_One could alternatively define dominant strategies in a “prior gt fy| type information; without a probabilistic prior it
independent” way by requiring that regret be defined wanty t tati ¢ . th tial inf
type vector in®_;. This would be somewhat more consistent canno use gxpec atons over. ypes given ‘_':' partial infor-
with the typical definition in Bayesian games. This version will mation obtained. To emphasize the added importance of

prove useful later. regret minimization on the part of the mechanism, in this



section we describe strict mechanism design problems an@nce again, though, strict type uncertainty along with par-
how a mechanism might handbartial revelationof types. tial revelation prevent the mechanism designer from max-
imizing the expectedvalue of f. Instead, we can con-
4.1 Strict Mechanism Design Problems sider the regret of the mechanism designer: the designer
wishes to find a mechanism that, in equilibrium, minimizes
A strict mechanism desigoroblem is a mechanism design regret overf with respect to possible realizations of the
problem—comprising agents< N, outcomes), types  agents’s types. Note that we now consider both the regret
@i, utilities U; and social choice funCtiOfl—in which the of the agents participating in the mechanism_agents con-
prior T C © reflects strict uncertainty. A mechanism sjder the regret of their actions w.r.t. their own expected
M = (A, g) is defined in the standard way, as a set actjlity and adopt a minimax-regret equilibrium (or DSE)
tions A; for each player and outcome functign A — O gjven the rules of the mechanism—and of the designer—it
if the mechanism is deterministic, gr: A — A(O) ifit  adopts a mechanism that minimizes regret w.r.t. the value
is randomized. Note that a mechanigthinduces a strict of the social choice function, assuming the agents p|ay a
incomplete information game. minimax-regret equilibrium (or DSE).
We sayM implementsf if, given any type profiled, the
only action profiles: taken (with positive probability) in 4.2 Automated Mechanism Design

e%llullbngm ?rf SUCT t.h@t(a) Et a#%mgzoeoﬂj;(q, z)’ POS” In the spirit of AMD, we provide a formulation of the op-
sIbly subject 1o certain constraims.since M INAUCES & iz ation problem for a finite-type, finite-outcome, strict

strict incomplete information game, we can't use BNE 3Smechanism design problem in which the goal is to find an

our implen_‘n_en_tation solution concept; but both minimaX'incentive compatible DPR mechanism satisfying ex-post
regret equilibria and DSE can be adopted. rationality® Again, we emphasize that direct mechanisms
When restricting attention to direct mechanisms, the actiorre a special case of DPR mechanisms; and these may still
space is simplyd; = ;. each agent reports its type (pos- require regret minimization due to constraints imposed on
sibly untruthfully) to the mechanism. Incentive compati- the mechanism.

bility of a strict mechanism can be defined in the standar
way. More interesting is the case where we don’t rely o
full type revelation. We define direct, partial revelation
(DPR)mechanism as follows: we assume an actionSset
for each agent, with eachs; € S; a subset; C ©; of pos-

q_etT C © be a common prior over type profiles. L&tbe
the set of possible “partial types” (or subsetspan reveal,
with § = x;5;. We'll assume for ease of presentation
that the distinct reports for eachare mutually exclusive
(i.e.,s; N s, = () for any two different reports). Given this

sible typ(_as. Intuitively,z"ss taking action_sl- IS interprefced fixed action space, any mechanism can be specified by a
as a “claim” thatf; € s;.° Note that direct mechanisms collection of parameter? : o € O,s € S), wherep®

are a special case of DPR mec'ha'mlsms. we wil genera”&enotes the probability of outconaebeing realized when
assume thatls; = ;. .When' this is the case, we can de- partial-type profiles is revealed. LeT'(s) be the collection
fine truthful ;trateg|es. agemt(_)nly takes a_CF'Om’ when of type profiles inl" consistent with the partial-type profile
0i € si. An incentive-compatible mechanismthe DPR s; define©(s) similarly. Conversely, letS(T") be the set
case is one in which all agents act truthfully in equilibrium. of partial-type profiles that correspond to some element of
In rich settings with a sufficiently sparse action space (i.e.7" (similarly for S(©)), and lets(6) be the unique partial-
severe restrictions on the amount of revelation), it will nottype profile consistent with. The notatiori}(s;), S;(0;),
generally be possible to maximizg (subject to relevant s,(4;), etc. is defined in an analogous fashion.
constraints). Instead of insisting on a faithful implemen-

tation of # (i.e., ensuring that we always obtain an out-4.2.1 Formulation of Mechanism Optimization

comeo € argmax f (o, ) whenever the type vector &, Restricting attention to incentive compatible mechanisms

we might mstgad require that we maximize &oepectgd (a restriction that must be enforced via constraints on the

://va(-zluvsic; fhf t(r)e[lfllg\ég toort? ?A\éerr:];V:ha;ﬁ\ilser;'?éug'vfni%?;t\: a;'r(l:)smoptimization), we define the pairwise regret of mechanism
I — (] 1 — o

patibility, limited revelation, etc.). This is similar in spirit © (pc) w.r.t. mechanisny = (gz) to be

to “prior-specific” mathematical programming approaches MR(p,q) = max (qg(e) _ pZ(g))f(a 0) (5)

[15, 8], where the goal is to produce a mechanism that max- 0ET &

imizes f subject to certain constrairtts. Intuitively, the regret of mechanism relative toq is the

2If 4 is randomized, then we require theiiz, o) > 0 only if o maximal loss inf incurred by adopting, allowing an ad-

is a maximizing outcome. sense that the general mechanism “template” is instantiated to
3Thus,S; can be viewed (indirectly) asquery languagg18], produce a different concrete mechanism by plugging in any spe-
though we do not consider incremental querying in this paper.  cific prior.
“None of these approaches consider partial revelation. As dis- °With the possibility of payments, the outcome space is no
cussed above, the Myerson auction is prior-specific only in thdonger finite; but this can be dealt with separately (see below).



versary to choose the agents’s tygeand their (truthful)
reportss.® Mechanismp is minimax optimalf it satisfies

p € argminmax MR(p, q). (6)
P q

The optimization in Eg. (6) can be formulated in differen
ways by imposing different constraints on the mechanism .,
in question. For instance, we might insist that our chosefU!lY
mechanism$ andq be incentive compatible and satis
ex post rationality we formulate this next. But other re-

strictions are possible, and one could even formulate regr
using different restrictions op andq (e.g., by allowing the

adversary to consider a wider space of mechanigth&n

the designer can fop, or even allowing it to make “per-

fect” outcome choices, thus giving it more power still).

which is the pairwise regret of agenhshould it reports;
instead ofs; in mechanisnp when its true type ig; and
others have typé_; (and truthfully reports_;(6_;)). The
right-hand side of the constraint refers to alternative (ran-
domized) reporting strategids= A(S;) thati could adopt,
tand their maximum regret in mechanigm(we address
ghis below). By quantifying over all type; that “truth-
correspond to the reported partial typg, we en-

fy Sure that agents have incentive to report truthfully (i.e., the

max regret of reporting truthful partial type w.r.t. p is

&o greater than the max regret of any randomized strategy).
Notice that this defines the value of truthful reporting in
a minimax-regret equilibrium. It is possible to insist on a
minimax-DSE in an entirely analogous fashion.

The EPR-constraintg9) enforceex post rationality each

Converting the minimax program that encodes Eq. (6) intd Wil Participate inp even knowing the true types of the

a minimization leads to the following formulation:

min §
5,p

st (@0 —p)f(0,0) <6 Va,5,0 €0(s)  (7)

Ri(s;,8;]60;,0_i,p) < dEHAli(Iéi) MR;(d|0;,T_;,p)

Vi, Si, S;, GZ S Ti(si); 971' el _; (8)
Zpgui(o, 07) >0 Vi, Si, 91 S Tt(st) (9)
Zpg’ =1 Vs (10)
pe >0 Vs, 0 (11)

The variables in this program are parametgfsof the

other players, since its expected utility for participating is
non-negative (we assume a baseline utility of zero for non-
participation). These IC and EPR constraint sets are analo-
gous to those proposed in [8], with expected utility replaced
by regret minimization.

Given this formulation, there are two key practical difficul-
ties in solving this optimization problem. First, the set of
regret constraints (7) is infinite, preventing us from direct
optimization as a finite mathematical program. Second, the
IC-constraints (8) are nonlinear due to the presence of the
minimization on the RHS of each of the constraints. Note
however that all other constraints are linear. We address
each of these two problems in turn, resulting in an algo-
rithm for regret-based mechanism design involving only
the solution of linear, mixed-integer programs.

mechanisnp being optimized (constrained by the obvious 4.2.2  Constraint Generation

simplex constraints (10) and (11)), add measuring the Practically,

minimax regret op. The aim then is to minimizé subject

to the constraints above. We now describe the role of eac

of the constraint sets (7-9) in turn.

The (infinite) collection ofregret constrainty7) ensures

we deal with the infinite number of regret con-
traints by constraint generation. Specifically, we solve a
laxed version of the program by considering only a fi-
nite subset of the constraints and linearizing any IC con-
straints (see below). Given a relaxed solutignd), we

that the regret op, from the mechanism designer’s per- then find the maximally violated regret constraint by find-

spective with respect to any alternative mechanigms

ing the mechanism parameteysand partial type report

less thany. This therefore “definesd as the max regret and type profile that maximize the regret gf. Thisis a

of p. This effectively replaces the maximization owgm

mixed integer quadratic program:

Eg. (6) by universal quantification. We will see below how

constraints on the space of “adverarial” mechanignase
taken into account.

The (nonlinear)C-constraints(8) ensure incentive com-

patibility of the mechanisnp. Here we define
Ri(si) 8”077 9—i7 p) =
Z(p;’;,s,i(e,i) =P8, s i(6_0)wil0,0:)

o

(IEZ;,)E; (QS(Q) - p;’(e))faf(o, 0)
s.t.IC, EPR and simplex constraints gn (12)
(13)

=1
0

where thel, are boolean variables indicating which type
profile # (and therefore whick) is chosen. Here the con-
straints are either linear or can be linearized (see below)

bIf we allow “overlapping” reports in which several reports - e ) i e
correspond to the same type, we can extend this definition by (adoUt the objective is quadratic. This optimization can be
versarially) maximizing oves € S(6). reformulated as a mixed integknear program (MIP) as



follows: money can be encoded within the outcome spgacelow-
o 0 ever, this will render the outcome space infinite and make
(Ieﬁé}f(ygo) ZY9 f(o,6) the finite optimization above impossible (at least in this
? explicit form). However, under the assumption of quasi-
linear utility, we can treat payments separately from the
I 1b<Yy <Ip-ub Vo,0 (14)  outcome space itself, as is standard in mechanism design.
Yy < (qg(e) — Pg(e)) —1b-(1—1Iy) The method above can then easily be adapted by including
variables for payments that are separate from the outcome

s.t.IC, EPR and simplex constraints

) vo,0 wheref(o, 90) 20 ) (15) variables. In such settings, optimization criteria such as
Yy > ub- (1 1) — (qs(e) - Ps(a)) revenue maximization can be considered, as can constraints
Yo, 0 wheref(0,6) < 0 (16)  suchas budget balance or no deficit.

wherelb andub are bounds on the value ng(e) — pg(e))
(i.e.,—1andl). The trick here is to introduce new variables
(Yy) to replace the product in the quadratic objective and tolMe have experimented with this approach to automated
add constraints that force those variables tbthey don’t  strict mechanism design in the special case of direct mech-
correspond to the chosén(14) or to the true value of the anisms (i.e., complete revelation) with IC and EPR. We
original product if they do (15 and 16). consider two objective functions—social welfare and rev-

If the regret induced by; exceedss, then this regret con- enue (when payments are permitted)—and two types of
straint is violated at the proposed solution, so we add th@dversaries—an “omniscient” adversary that can pick the
constraint (7) corresponding tg s, andd. The optimiza- OPtimal outcome for each revealed type vector without re-
tion solved to generate mechanisptan involve the same gard to whether the players would actually reveal truthfully,

restrictions (e.g., IC, EPR) as those faror we may relax ~ OF & “constrained” adversary that picks, for each possible

4.3 Experimental Results

these to give the adversary more power_ type VeCtOI’, an IC, EPR mechanism that maXimiZeS the
objective function. In the case of mechanisms with pay-
4.2.3 Constraint Linearization ments, we have experimented with various payment con-

I . . . straints: budget balance (sum is zero), no deficit (sum is
We adopt a similar strategy for dealing with the nonlin- non-negative) or unconstrained.

ear IC constraints. The min on the right-hand side of con-
straint (8) cannot be expressed linearly. So given the curI he first problem we consider is a strictly uncertain variant
rent solutionp, we compute the stochastic repafor each ~ 0f the simple two-player, two-type “Divorce Settlement”
agent;, and each feasible tygg, that has minimax regret problem [20], in which an arbitrator decides among one of
in mechanisnp given thati has type;. This can be solved four options for dealing with a jointly owned painting in
using a straightforward linear minimization if we enumer- & divorce: the husband gets the painting; the wife gets it;
ate all types (or we can use constraint generation to pret iS hung in a museum; or it is burned. The husband and
vent doing so0). To determine whether any of the IC con-Wife each have two possible types, low (less attached to the
straints fori, ¢; are violated, we can either explicitly com- Painting) and high (more attached). The utility function of
pute R;(s;, s,|0:,0_;,p) for s; = s;(6;), and all s, and the low type is: 2 (getit), O (othe_rgets it); 1 (museum); -10
6_;, or we can simply maximize?; (as an LP). Finally, ~(burn). For the high type, utility is 100, 0, 50 -10.

we can test whether any of these constraints is violated bfigure 1 shows the max-regret minimizing mechanism un-
comparing the maximunk; value obtained with the value der social welfare (with no payments). This mechanism is
of the solution of the min on the right-hand side of the con-identical for “omniscient” and “constrained” adversarfes.
straint. If a violation exists, we add the maximally violated The max regret of this mechanism3Jg.7. Note that this
constraint (or all constraints corresponding to the agent anghechanism, unlike those derived in [20], is symmetric,
type in question) to tighten the master LP. treating the husband and wife equally.

Once the maximally violated (regret and IC) constraintswhen maximizing social welfare with payments (regard-
have been added to the LP, we re-solve the tightened LRss of payment constraints) a zero-regret mechanism can
to obtain a new solutiop. When we get to a point where be derived (in the no deficit case this is not surprising since
no violated constraints are found, we are assured that the VCG mechanism would optimize welfare). The mecha-
minimax optimal mechanism has been computed. Thisism always gives the painting to the husband, except when
approach reduces the entire optimization problem to a sethe wife’s utility for it is strictly higher; and if a party with
guence of LPs and MIPs. -

"Our formulation is generalized as in AMD [8].
4.2.4 Payments 8n all problems described here, these two cases lead to the

. same result: for each type vector, there is an IC-EPR mechanism
If one allows payments among participants (one couldyith the same objective value as the optimal outcome choice of
hardly design an auction without payments), the transfer ofhe omniscient adversary.
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I 0.5/0.5 .2273/.7273 I .1549/.1549 0/1

0/0 0/.0455 0/.6901 0/0

H 12737.2273 .4545/.4545 H 1/0 0/1

0/.0455 0/.0909 0/0 0/0
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Figure 1:Regret-minimizing mechanism for the Divorce Settle- L | —6.5915/ — 6.5915 0/84.8169
ment problem (social welfare, no payments). Each cell shows the g 84.8169/0 0/84.8169

probability of each of the four outcomes as a function of the re-

port of the husband (row) and wife (column): husband/wife at theFigure 3: Divorce Settlement (max revenue, payments, deficit

top and museum/burn at the bottom of each cell.

allowed). Top matrix shows outcome probabilities, the bottom
matrix payments.

Low High ;
.4545/.4545 0/1 Social Welfare| Revenue
L 0/.0909 0/0 Auction-5 0 0.3264
7 1/0 0/1 Auction-3 0 0.1797
0/0 0/0
Low High Table 1:Regret for the five- and three-type auctions using social
L 0/0 0/55.4545 welfare and revenue maximization (under No Deficit constraint).
H | 55.4545/0 0/55.4545

Figure 2: Divorce Settlement (max revenue, payments, no
deficit). Top matrix shows outcome probabilities, the bottom ma-
trix payments.

A number of approaches to scaling the automated optimiza-
tion of mechanisms in settings of strict uncertainty could be
adopted. The optimization needed is more complex than in
standard AMD because of the minimax optimization crite-

high type receives the painting, it must pay the designeFion: Further empirical study is needed to gauge 'the com-
just enough to remove any incentive to lie. When max_plexny and convergence properties of the constraint gener-

imizing revenue, the adversary is always able to extracftion process. Apart from that, however, the scaling issues

payments equal to the highest utility of the agents. Thdacing strict_AMD are similar to those facing A_MD in_the
mechanism designer however cannot do as well (with agxpected utility context; and many of the solutions will be
IC-EPR mechanism) as the adversary, but it is interesting°’im”ar' We discuss some of these issues in the next section.

to note that being allowed to run a deficit actually helps

reduce regret. Figures 2 and 3 show the mechanisms f& Concluding Remarks

both the No Deficit and Deficit Allowed cases. In the for-

mer, the designer can extract a paymenb®@i545 from  We have introduced strict incomplete information games
the party receiving the painting, except when both have lowas a variant of Bayesian games in which type uncertainty is
types, in which case no payment is required. In the lattestrict. We proposed minimizing max regret with respect
case, taking the risk of giving money to both agents in theo possible realizations of other agent types as a natural
Low/Low profile enables the designer to extract a highemoptimization criterion for players in such games, and de-
payment when at least one has high type. The regret dined minimax equilibria. We also argued that strict un-
44.546 in the No Deficit case is significantly reduced to certainty is natural in many mechanism design settings;
15.183 by allowing a deficit. and that mechanisms themselves, especially when forced
We have also experimented with our approach with onel0 "ely on partial type revelation, must deal with strict type
item, two-agent auctions, with a finite set of possible val-uncertainty when deciding on outcomes. We showed how

uations. We experimented with five types per agent (withh® minimax regret optimization of mechanisms can be re-
valuations0, 0.25, 0.5, 0.75 and 1) following the exam- duced to a series of LPs and MIPs in certain circumstances.

ple of [20]; and also with three types (with valuations This work forms a starting point for further investigation
of 0.25, 0.5 or 0.75), a subset of the original five types. into mechanism design with incremental or partial type rev-
The minimax regret levels are summarized in Table 1 forelation. As argued earlier, in these settings semi-qualitative
mechanisms with payments and a No Deficit constraintdecision criteria such as minimax regret will often be most
against a “constrained” adversary. Naturally, the regret ohppropriate from the perspective of mechanism optimiza-
the three-type mechanisms are lower since there is “leson. A number of interesting directions remain to be pur-
uncertainty”. Note that regret reduction strongly suggestsued. We are interested in developing more general mech-
how incremental type elicitation could be used in the de-anisms (like VCG) involving partial or incremental elici-
sign of mechanisms. When optimizing for social welfare, atation under strict type uncertainty. The specific proposals
zero-regret mechanism is achieved (not surprisingly, sincéor strict AMD suggested here need to be further explored
a second-price auction can maximize social welfare withempirically. Along these lines, we hope to explore the ap-
dominant strategies). proximate optimization of mechanisms.



Of interest also are issues that face (and are being addressdé] Vincent Conitzer and Tuomas Sandholm. Complexity of
in) classical AMD, for example, exploiting structure in the

action space, outcome space, and type spaces of agents

for computational benefit. Dealing with continuous type
spaces is critical for practical problems, since utility func-
tions are usually continuously parameterized. Notice that
finite message mechanisms can deal with continuous typ
spaces effectively through partial revelation (e.g., using th
kinds of partial-type mappings suggested here). It shoul
be relatively straightforward to extend our approach to min-
imax mechanism optimization to such settings. Within this
context, we might also consider methods for optimizing the

“meaning” of reported partial types, sequential revelation12]
of types, and the means to address the tradeoff between

communication cost and mechanism value.
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