
Preprocessing QBF

Horst Samulowitz, Jessica Davies, and Fahiem Bacchus

Department of Computer Science, University of Toronto, Canada.
[horst| jdavies | fbacchus]@cs.toronto.edu

Abstract. In this paper we investigate the use of preprocessing when solving
Quantified Boolean Formulas (QBF). Many different problems can be efficiently
encoded as QBF instances, and there has been a great deal of recent interest and
progress in solving such instances efficiently. Ideas from QBF have also started to
migrate to CSP with the exploration of Quantified CSPs which offer an intriguing
increase in representational power over traditional CSPs. Here we show that QBF
instances can be simplified using techniques related to those used for preprocess-
ing SAT. These simplifications can be performed in polynomial time, and are used
to preprocess the instance prior to invoking a worst case exponential algorithm
to solve it. We develop a method for preprocessing QBF instances that is empiri-
cally very effective. That is, the preprocessed formulas can be solved significantly
faster, even when we account for the time required to perform the preprocessing.
Our method significantly improves the efficiency of a range of state-of-the-art
QBF solvers. Furthermore, our method is able to completely solve some instances
just by preprocessing, including some instances that to our knowledge have never
been solved before by any QBF solver.

1 Introduction

QBF is a powerful generalization of SAT in which the variables can be universally
or existentially quantified (in SAT all variables are implicitly existentially quantified).
While any NP problem can be encoded in SAT, QBF allows us to encode any PSPACE
problem: QBF is PSPACE-complete. This increase in representational power also holds
for finite domain CSPs, with quantified CSPs being able to represent PSPACE-complete
problems not expressible as standard CSP problems [13, 19].

This opens a much wider range of potential application areas for a QBF or QCSP
solver, including problems from areas like automated planning (particularly conditional
planning), non-monotonic reasoning, electronic design automation, scheduling, model
checking and verification, see, e.g., [9, 12, 17]. However, the difficulty is that QBF and
QCSP are in practice much harder problems to solve.

Current QBF solvers are typically limited to problems that are about 1-2 orders of
magnitude smaller than the instances solvable by current SAT solvers (1000’s of vari-
ables rather than 100,000’s). A similar difference holds between current QCSP solvers
and CSP solvers. Nevertheless, both QBF and QCSP solvers continue to improve. Fur-
thermore, many problems have a much more compact encoding when quantifiers are
available, so a quantified solver can still be useful even if it can only deal with much
smaller instances than a traditional solver.

In this paper we present a new technique for improving QBF solvers. Like many
techniques used for QBF, ours is a modification of techniques already used in SAT.
Namely we preprocess the input formula, without changing its meaning, so that it be-
comes easier to solve. As we demonstrate below our technique can be extremely ef-
fective, sometimes reducing the time it takes to solve a QBF instance by orders of
magnitude. Although our technique is not immediately applicable to QCSP, it does pro-
vide insights into preprocessing that in future work could have a positive impact on the
efficiency of QCSP solvers. We discuss some of the connections to QCSP in our future
work section.

In the sequel we first present some necessary background, setting the context for
our methods. We then present further details of our approach and state some results
about its correctness. Then we provide empirical evidence of the effectiveness of our
approach, and close with a discussion of future work and some conclusions.

2 QBF

A quantified boolean formula has the form Q.F , where F is a propositional formula
expressed in CNF and Q is a sequence of quantified variables (∀x or ∃x). We require
that no variable appear twice in Q and that the set of variables in F and Q be identical
(i.e., F contains no free variables, and Q contains no extra or redundant variables).

A quantifier block qb of Q is a maximal contiguous subsequence of Q where
every variable in qb has the same quantifier type. We order the quantifier blocks by
their sequence of appearance in Q: qb

1
≤ qb2 iff qb

1
is equal to or appears before qb

2

in Q. Each variable x in F appears in some quantifier block qb(x), and the ordering of
the quantifier blocks imposes a partial order on the variables. For two variables x and
y we say that x ≤q y iff qb(x) ≤ qb(y). Note that the variables in the same quantifier
block are unordered. We also say that x is universal (existential) if its quantifier in Q

is ∀ (∃).
For example, ∃e1e2.∀u1u2.∃e3e4.(e1,¬e2, u2, e4)∧(¬u1,¬e3) is a QBF with Q =

∃e1e2.∀u1u2.∃e3e4 and F equal to the two clauses (e1,¬e2, u2, e4) and (¬u1,¬e3).
The quantifier blocks in order are ∃e1e2, ∀u1u2, and ∃e3e4, and we have, e.g., that,
e1 <q e3, u1 <q e4, u1 is universal, and e4 is existential.

A QBF instance can be reduced by assigning values to some of its variables. The
reduction of a formula Q.F by a literal ` (denoted by Q.F

∣

∣

`
) is the new formula

Q′.F ′ where F ′ is F with all clauses containing ` removed and the negation of `, ¬`,
removed from all remaining clauses, and Q′ is Q with the variable of ` and its quantifier
removed. For example, ∀xz.∃y.(¬y, x, z) ∧ (¬x, y)

∣

∣

¬x
= ∀z.∃y(¬y, z).

Semantics. A SAT model Ms of a CNF formula F is a truth assignment π to the
variables of F that satisfies every clause in F . In contrast a QBF model (Q-model)
Mq of a quantified formula Q.F is a tree of truth assignments in which the root is the
empty truth assignment, and every node n assigns a truth value to a variable of F not yet
assigned by one of n’s ancestors. The tree Mq is subject to the following conditions:

1. For every node n in Mq , n has a sibling if and only if it assigns a truth value to a
universal variable x. In this case it has exactly one sibling that assigns the opposite
truth value to x. Nodes assigning existentials have no siblings.

2. Every path π in Mq (π is the sequence of truth assignments made from the root to
a leaf of Mq) must assign the variables in an order that respects <q . That is, if n

assigns x and one of n’s ancestors assigns y then we must have that y ≤q x.
3. Every path π in Mq must be a SAT model of F . That is π must satisfy the body of

Q.F .

Thus a Q-model has a path for every possible setting of the universal variables of
Q, and each of these paths is a SAT model of F . We say that a QBF Q.F is QSAT iff it
has a Q-model. The QBF problem is to determine whether or not Q.F is QSAT.

A more standard way of defining QSAT is the recursive definition: (1) ∀xQ.F is
QSAT iff both Q.F |x and Q.F |¬x are QSAT, and (2) ∃xQ.F is QSAT iff at least one
of Q.F |x and Q.F |¬x is QSAT. By removing the quantified variables one by one we
arrive at either a QBF with an empty clause in its body F (which is not QSAT) or a QBF
with an empty body F (which is QSAT). It is not difficult to prove by induction on the
length of the quantifier sequence that the definition we provided above is equivalent to
this definition.

The advantage of our “tree-of-models” definition is that it makes two key observa-
tions more apparent. These observations can be used to prove the correctness of our
preprocessing technique.

A. If F ′ has the same satisfying assignments (SAT models) as F then Q.F will have
the same satisfying models (Q-models) as Q.F ′.
Proof: Mq is a Q-model of Q.F iff each path in Mq is a SAT model of F iff each
path is a SAT model of F ′ iff Mq is a Q-model of Q.F ′.
This observation allows us to transform F with any model preserving SAT trans-
formation. Note that the transformation must be model preserving, i.e., it must pre-
serve all SAT models of F. Simply preserving whether or not F is satisfiable is not
sufficient.

B. A Q-model preserving (but not SAT model preserving) transformation that can be
performed on Q.F is universal reduction. A universal variable u is called a tailing
universal in a clause c if for every existential variable e ∈ c we have that e <q u.
The universal reduction of a clause c is the process of removing all tailing universals
from c [10]. Universal reduction preserves the set of Q-models.
Proof: Say that v ∈ c is a tailing universal, then along any path π in any Q-Model
Mq of Q.F , c must be satisfied by π prior to v being assigned a value. Say not, then
since v is universal, the prefix of π that leads to the assignment of v must also be
the prefix of another path π′ that sets v to false: but then π′ will falsify c because at
this point c is a unit clause containing only the universal variable v. Therefore Mq

cannot be a Q-model of Q.F . Hence every path π satisfies the universal reduction
of c (and all other clauses in F), and thus Mq is also Q-model of Q.F ′ where F ′

is F with the tailing universal v removed from c. This process can be repeated to
remove all tailing universals from all clauses of F .

3 HyperBinary resolution

The foundation of our polynomial time preprocessing technique is the SAT method of
reasoning with binary clauses using hyper-resolution developed in [2, 3]. This method
reasons with CNF SAT theories using the following “HypBinRes” rule of inference:

Given a single n-ary clause c = (l1, l2, ..., ln), D a subset of c, and the set of
binary clauses {(`,¬l)|l ∈ D}, infer the new clause b = (c − D) ∪ {`} if b is
either binary or unary.

For example, from (a, b, c, d), (h,¬a), (h,¬c) and (h,¬d), we infer the new binary
clause (h, b), similarly from (a, b, c) and (b,¬a) the rule generates (b, c). The HypBinRes
rule covers the standard case of resolving two binary clauses (from (l1, l2) and (¬l1, `)
infer (`, l2)) and it can generate unit clauses (e.g., from (l1, `) and (¬l1, `) we infer
(`, `) ≡ (`)).

The advantage of HypBinRes inference is that it does not blow up the theory (it
can only add binary or unary clauses to the theory) and it can discover a lot of new
unit clauses. These unit clauses can then be used to simplify the formula by doing
unit propagation which in turn might allow more applications of HypBinRes. Applying
HypBinRes and unit propagation until closure (i.e., until nothing new can be inferred)
uncovers all failed literals. That is, in the resulting reduced theory there will be no literal
` such that forcing ` to be true followed by unit propagation results in a contradiction.
This and other results about HypBinRes are proved in the above references.

In addition to uncovering unit clauses we can use the binary clauses to perform
equality reductions. In particular, if we have two clauses (¬x, y) and (x,¬y) we can
replace all instances of y in the formula by x (and ¬y by ¬x). This might result
in some tautological clauses which can be removed, and some clauses which are re-
duced in length because of duplicate literals. This reduction might yield new binary
or unary clauses which can then enable further HypBinRes inferences. Taken together
HypBinRes and equality reduction can significantly reduce a SAT formula removing
many of its variables and clauses [3].

4 Preprocessing QBF

Given a QBF Q.F we could apply HypBinRes, unit propagation, and equality reduction
to F until closure. This would yield a new formula F ′, and the QBF Q′.F ′ where Q′ is
Q with all variables not in F ′ removed. Unfortunately, there are two problems with this
approach. One is that the new QBF Q′.F ′ might not be Q-equivalent to Q.F , so that
this method of preprocessing is not sound. The other problem is that we miss out on
some important additional inferences that can be achieved through universal reduction.
We elaborate on these two issues and show how they can be overcome.

The reason why the straightforward application of HypBinRes, unit propagation
and equality reduction to the body of a QBF is unsound, is that the resulting formula
F ′ does not have exactly the same SAT models as F , as is required by condition A
above. In particular, the models of F ′ do not make assignments to variables that have
been removed by unit propagation and equality reduction. Hence, a Q-model of Q′.F ′

might not extendable to a Q-model of Q.F . For example, if unit propagation forced a
universal variable in F , then Q′.F ′ might be QSAT, but Q.F is not (no Q-model of
Q.F can exist since the paths that set the forced universal to its opposite value will
not be SAT models of F). This situation occurs in the following example. Consider
the QBF Q.F = ∃abc∀x∃yz(x,¬y)(x, z)(¬z, y)(a, b, c). We can see that Q.F is not
QSAT since when x is false, ¬y and z must be true, falsifying the clause (¬z, y). If we

apply HypBinRes and unit propagation to F , we obtain F ′ = (a, b, c). Note that the
universal variable x has been unit propagated. As anticipated, Q′.F ′ = ∃abc(a, b, c) is
QSAT, so this reduction of F has not preserved the QSAT status of the original formula.
However, it is easy to fix this problem. Making unit propagation sound for QBF simply
requires that we regard the unit propagation of a universal variable as equivalent to the
derivation of the empty clause. This fact is well known and applied in all search-based
QBF solvers.

Ensuring that equality reduction is sound for QBF is a bit more subtle. Consider
a formula F in which we have the two clauses (x,¬y) and (¬x, y). Since every path
in any Q-model satisfies F , this means that along any path x and y must have the
same truth value. However, in order to soundly replace all instances of one of these
variables by the other in F , we must respect the quantifier ordering. In particular, if
x <q y then we must replace y by x. It would be unsound to do the replacement
in the other direction. For example, say that x appears in quantifier block 3 while y

appears in quantifier block 5 with both x and y being existentially quantified. The above
binary clauses will enforce the constraint that along any path of any Q-model once x

is assigned y must get the same value. In particular, y will be invariant as we change
the assignments to the universal variables in quantifier block 4. This constraint will
continue to hold if we replace y by x in all of the clauses of F . However, if we perform
the opposite replacement, we would be able to make y vary as we vary the assignments
to the universal variables of quantifier block 4: i.e., the opposite replacement would
weaken the theory perhaps changing its QSAT status. The same reasoning holds if x is
universal and y is existential. However, if y is universal, the two binary clauses imply
that we will never have the freedom to assign y its two different truth values. That is, in
this case the QBF is UNQSAT, and we can again treat this case as if the empty clause
has been derived.

Therefore a sound version of equality reduction must respect the variable ordering.
We call this (<q preferred) equality reduction. That is, if we detect that x and y are
equivalent and x <q y then we always remove y from the theory replacing it by x. With
this restriction on equality reduction we have the following result:

Proposition 1 Let F ′ be the result of applying HypBinRes, unit propagation, and (<q

preferred) equality reduction to F until closure. If F ′ has the same set of universal
variables as F (i.e., no universal variable was removed by unit propagation or equality
reduction), then the Q-models of Q′.F ′ are in 1-1 correspondence with the Q-models
of Q.F . In particular, Q.F is QSAT iff Q′.F ′ is QSAT. On the other hand, if F ′ has
fewer universal variables than F then Q.F is UNQSAT.

The idea behind the proof is that we can map any SAT model of F ′ to a SAT model
of F by assigning all forced variables their forced value, and assigning all equality
reduced variables a value derived from the variable they are equivalent to. That is, if x

was removed because it was equivalent to ¬y/y, we assign x the opposite/same value
assigned to y in F ′’s SAT model. In the other direction any SAT model of F can be
mapped to a SAT model of F ′ by simply omitting the assignments of variables not in F ′.
Given this relationship between the SAT models, we can then show that any Q-model of
F can be transformed to a unique Q-model of F ′ (by splicing out the nodes that assign
variables not in F ′) and vice versa (by splicing in nodes to assign the variables not in

F ′). This gives us that the number of Q-models of each formula are equal and that the
transformation must be a 1-1 mapping.

This proposition tells us that we can use a SAT based reduction of F as a way of
preprocessing a QBF, as long as we ensure that equality reduction respects the quantifier
ordering and check for the removal of universals. This approach, however, does not
fully utilize the power of universal reduction (condition B above). So instead we use a
more powerful approach that is based on the following modification of HypBinRes that
“folds” universal reduction into the inference rule. We call this rule “HypBinRes+UR”:

Given a single n-ary clause c = (l1, l2, ..., ln), D a subset of c, and the set
of binary clauses {(`,¬l)|l ∈ D}, infer the universal reduction of the clause
(c \ D) ∪ {`} if this reduction is either binary or unary.

For example, from c = (u1, e3, u4, e5, u6, e7), (e2,¬e7), (e2,¬e5) and (e2,¬e3) we
infer the new binary clause (u1, e2) when u1 ≤q e2 ≤q e3 ≤q u4 ≤q e5 ≤q u6 ≤q e7.
Note that without universal reduction, HypBinRes would need 5 binary clauses in order
to reduce c, while with universal reduction, 2 fewer binary clauses are required. This ex-
ample also shows that HypBinRes+UR is able to derive clauses that HypBinRes cannot.
Since clearly HypBinRes+UR can derive anything HypBinRes can, HypBinRes+UR is
a more powerful rule of inference.

In addition to using universal reduction inside of HypBinRes we must also use it
when unit propagation is used. For example, from the two clauses (e1, u2, u3, u4,¬e5)
and (e5) (with e1 <q ui) unit propagation by itself can only derive (e1, u2, u3, u4), but
unit propagation with universal reduction can derive (e1).

It turns out that in addition to gaining more inferential power, universal reduction
also allows us to obtain the unconditionally sound preprocessing we would like to have.

Proposition 2 Let F ′ be the result of applying HypBinRes+UR, unit propagation, uni-
versal reduction and (<q preferred) equality reduction to F until closure, where we
always apply universal reduction before unit propagation. Then the Q-models of Q′.F ′

are in 1-1 correspondence with the Q-models of Q.F .

This result can be proved by showing that universal reduction generates the empty
clause whenever a universal variable is to be unit propagated or removed via equal-
ity reduction. For example, for a universal u to be forced it must first appear in a unit
clause (u), but then universal reduction would generate the empty clause (given that
we apply universal reduction before unit propagation). Similarly, to make a universal
variable u equivalent to an existential variable e with e ≤q u we would first have to gen-
erate the two binary clauses (e,¬u) and (¬e, u) which after universal reduction would
yield (e) and (¬e) which after unit propagation would yield the empty clause. Thus the
cases where Proposition 1 fails to preserve Q-models are directly detected through the
generation of an UNQSAT Q′.F ′. In this case we still preserve the Q-models—neither
formula has any.

Proposition 3 Applying HypBinRes+UR, unit propagation, universal reduction and
(<q preferred) equality reduction to Q.F until we reach closure can be done in time
polynomial in the size of F .

This result can be proved by making three observations: (1) F can never become larger
than |F |2 since we are only adding binary clauses, (2) there are at most a polynomial

number of rule applications possible before closure since each rule either reduces a
clause, removes a variable or adds a binary clause, and (3) at each stage detecting if
another rule can be applied requires only time polynomial in the current size of the
theory.

Our QBF preprocessor modifies Q.F exactly as described in Proposition 2. It ap-
plies HypBinRes+UR, unit propagation, universal reduction, and (<q preferred) equal-
ity reduction to F until it reaches closure. It then outputs the new formula Q′.F ′.
Proposition 2 shows that this modification of the formula is sound. In particular, this
preprocessing does not change the QSAT status of the formula.

To implement the preprocessor we adapted the algorithm presented in [3] which
exploits a close connection between HypBinRes and unit propagation. In particular,
this algorithm uses trial unit propagations to detect new HypBinRes inferences. The
main changes required to make this algorithm work for QBF were adding universal
reduction, modifying the unit propagator so that it performs universal reduction prior
to any unit propagation step, and modifying equality reduction to ensure it respects the
quantifier ordering.

To understand how trial unit propagation is used to detect HypBinRes+UR infer-
ences, consider the example above of inferring (u1, e2) from (u1, e3, u4, e5, u6, e7),
(e2,¬e7), (e2,¬e5) and (e2,¬e3). If we perform a trial unit propagation of ¬e2, dy-
namically performing universal reduction we obtain the unit clause (u1). Because the
trial propagation started with ¬e2 this unit clause actually corresponds to the binary
clause (u1, e2) (i.e., ¬e2 → u1). The trial unit propagation has to keep track of the
“root” of the propagation so that it does not erroneously apply universal reduction (ev-
ery clause reduced during this process implicitly contains e2).

5 Empirical Results

We considered all of the non-random benchmark instances from QBFLib (2005) [14]
(508 instances in total). We discarded the instances from the benchmark families von
Neumann and Z since these are all very quickly solved by any state of the art QBF
solver (less than 10 sec. for the entire suite of instances). We also discarded the instances
coming from the benchmark families Jmc, and Jmc-squaring. None of these instances
(with or without preprocessing) can be solved within our time bounds by any of the
QBF solvers we tested. This left us with 468 remaining instances from 19 different
benchmark families. We tested our approach on all of these instances.

All tests were run on a Pentium 4 3.60GHz CPU with 6GB of memory. The time
limit for each run of any of the solvers or the preprocessor was set to 5,000 seconds.

5.1 Performance of the Preprocessor

We first examine the time required to preprocess the QBF formulas by looking at the
runtime behaviour of the preprocessor on the given set of benchmark families. On the
vast majority of benchmarks the preprocessing time is negligible. In particular, the pre-
processing time for even the largest instances in the benchmarks Adder, Chain, Connect,
Counter, FlipFlop, Lut, Mutex, Qshifter, Toilet, Tree, and Uclid is less than one second.

10
1

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Input Variables

P
re

pr
oc

es
si

ng
 T

im
e(

s)

C
EV−lg
EV−s
K (subset)
S
Szymanski
Blocks

Fig. 1. Logarithmic scale comparison between the number of input variables and the preprocess-
ing time in seconds on a selected set of benchmark families.

For example, the instance Adder-16-s with ≈ 22,000 variables and ≈ 25,000 clauses is
preprocessed in 0.3 seconds.

The benchmarks that require more effort to preprocess are C, EVPursade, S, Szy-
manski, and Blocks and a subset of the K benchmark:1 k-branch-n, k-branch-p, k-lin-n,
k-ph-n, and k-ph-p. To examine the runtime behaviour on the these benchmark families
we plot the number of input variables of each instance against the time required for
preprocessing (Figure 1), clustering all of the K-subfamilies into one group. Both axis
of the plot are drawn in logarithmic scale.

Figure 1 shows that for all of these harder benchmarks the relationship between the
number of input variables and preprocessing time is approximately linear on the loglog-
plot. This is not surprising since Proposition 3 showed that the preprocessor runs in
worst-case polynomial time. Any polynomial function is linear in a loglog scale with
the slope increasing with the degree of the polynomial. Fitting a linear function to each
benchmark family enables a more detailed estimate of the runtime, since the slope of the
fitted linear function determines the relationship between the number of input variables
and preprocessing time. For instance, a slope of one indicates a linear runtime, a slope
of two indicates quadratic behaviour, etc. Except for the benchmarks ‘k-ph-n’ and ‘k-

1 This benchmark family is divided into sub-families.

Solver Skizzo Quantor Quaffle Qube SQBF

no-pre pre no-pre pre no-pre pre no-pre pre no-pre pre

Instances 311 351 262 312 226 238 213 243 205 239
Time on common instances 9,748 9,595 10,384 2,244 36,382 20,188 41,107 23,196 46,147 25,554
Time on new instances - 12,756 - 16,829 - 9,579 - 9,707 - 2,421

Table 1. Summary of results reported in Tables 2 and 3. For each solver we show its number of
solved instances among all tested benchmark families with and without preprocessing, the total
CPU time (in seconds) required to solve the preprocessed and un-preprocessed instances taken
over the “common” instances (instances solved in both preprocessed and un-preprocessed form),
and the total CPU time required by the solvers to solve the “new” instances (instances that can
only be solved in preprocessed form).

ph-p’ the slope of the fitted linear function ranges between 1.3 (Szymanski) and 2.3
(Blocks) which indicates a linear to quadratic behaviour of the preprocessor. The two
K-subfamilies ‘k-ph-n’ and ‘k-ph-p’ display worse behaviour, on them preprocessing
time is almost cubic (slope of 2.9).

The graph also shows that on some of the larger problems the preprocessor can take
thousands of seconds. However, this is not a practical limitation. In particular out of the
468 instances only 23 took more than 100 seconds to preprocess. Of these 18 could not
be solved by any of our solvers, either in preprocessed form or unpreprocessed form.
That is, these problems are so hard that we have no way of evaluating the effect of
preprocessing them. Of the other 5 instances that were solved by some solver there exist
in total 25 pairs of instances and solvers. Among these there exist only 13 pairs where
some solver succeeded either on the preprocessed instance only or on both versions
of the instance. On 62% of these 13 successful runs, the preprocessor yielded a net
speedup. Furthermore, despite being a net slowdown on the other 38% of runs, another
38% of the runs were cases where the solver was only able to solve the preprocessed
instance. So our conclusion is that except for a few instances, preprocessing is not a
significant added computational burden.

5.2 Impact of Preprocessing

Now we examine how effective the preprocessor is. Is it able to improve the perfor-
mance of state of the art QBF solvers, even when we consider the time it takes to run?
To answer this question we studied the effect preprocessing has on the performance of
five state of the art QBF solvers Quaffle [20] (version as of Feb. 2005), Quantor [8]
(version as of 2004), Qube (release 1.3) [15], Skizzo (v0.82, r355) [4] and SQBF [18].
Quaffle, Qube and SQBF are based on search, whereas Quantor is based on variable
elimination. Skizzo uses mainly a combination of variable elimination and search, but
it also applies a variety of other kinds of reasoning on the symbolic and the ground
representations of the instances.

A summary of our results is presented in Table 1. The second row of the table shows
the total time required by each solver to solve the instances that could be solved in both
preprocessed and unpreprocessed form (the “common instances”). The data demon-
strates that preprocessing provides a speedup for every solver. Note that the times for

the preprocessed instances include the time taken by the preprocessor. On these com-
mon instances Quantor was 4.6 times faster with preprocessing, while Quaffle, Qube
and SQBF were all approximately 1.8 times faster with preprocessing. Skizzo is only
slightly faster on the preprocessed benchmarks (that it could already solve).

The first row of Table 1 shows the number of instances that can be solved within
the 5000 sec. time bound. It demonstrates that in addition to speeding up the solvers on
problems they can already solve, preprocessing also extends the reach of each solver,
allowing it to solve problems that it could not solve before (within our time and memory
bounds). In particular, the first row shows that the number of solved instances for each
solver is significantly larger when preprocessing is applied. The increase in the number
of solved instances is 13% for Skizzo, 19% for Quantor, 5% for Quaffle, 14% for Qube
and 17% for SQBF.

The time required by the solvers on these new instances is shown in row 3. For ex-
ample, we see that SQBF was able to solve 34 new instances. None of these instances
could previously be solved in 5,000 sec. each. That is, 170,000 CPU seconds were ex-
pended in 34 failed attempts. With preprocessing all of these instances could be solved
in 2,421 sec. Similarly, Quantor expended 250,000 sec. in 50 failed attempts, which
with preprocessing could all solved in 16,829 sec. Skizzo expended 200,000 sec. in 40
failed attempts which with preprocessing could all be solved in 12,756 seconds. Quaf-
fle expended 60,000 sec. in 12 failed attempts, which with preprocessing could all be
solved in 9,579 sec. And Qube expended 150,000 sec. in 30 failed attempts, which with
preprocessing could all be solved in 9,707 seconds.

These results demonstrate quite convincingly that our preprocessor technique offers
robust improvements to all of these different solvers, even though some of them are
utilizing completely different solving techniques.

Tables 2 and 3 provide a more detailed breakdown of the data. Table 2 gives a family
by family breakdown of the common instances (instances that can be solved in both pre-
processed and unpreprocessed form). Specifically, the table shows for each benchmark
family and solver (a) the percentage of instances that are solvable in both preprocessed
and unpreprocessed form, (b) the total time required by the solvable instances when no
preprocessing is used, and (c) the total time required with preprocessing (i.e., solving
as well as preprocessing time).

Table 2 shows that the benefit of preprocessing varies among the benchmark fami-
lies and, to a lesser extent, among the solvers. Nevertheless, the data demonstrates that
among these benchmarks, preprocessing almost never causes a significant increase in
the total time required to solve a set of instances. On the other hand, each solver has at
least 2 benchmark families in which preprocessing yields more than an order of magni-
tude improvement in solving time. There are only two cases (Skizzo on Mutex, SQBF
on the toilet benchmark) where preprocessing causes a slowdown that is as much as an
order of magnitude (from 0 to 102 seconds and from 395 to 3,060 seconds).

Table 3 provides more information about the instances that were solvable only af-
ter preprocessing. In particular, it shows the percentage of each benchmark family that
can be solved by each solver before and after preprocessing (for those families where
this percentage changes). From this table we can see that for each solver there exist
benchmark families where preprocessing increases the number of instances that can be

Benchmark Skizzo Quantor Quaffle Qube SQBF

(# instances)
Succ.
%

time
no-
pre

time
pre

Succ.
%

time
no-
pre

time
pre

Succ.
%

time
no-
pre

time
pre

Succ.
%

time
no-
pre

time
pre

Succ.
%

time
no-
pre

time
pre

ADDER (16) 50% 954 792 25% 24 25 25% 1 1 13% 72 27 13% 3 1

adder (16) 44% 455 550 25% 29 27 42% 5 4 44% 0 1 38% 2,678 2,229

Blocks (16) 56% 108 11 100% 308 79 75% 1,284 762 69% 1774 242 75% 7,042 1,486

C (24) 25% 1,070 1,272 21% 140 32 21% 5,356 14 8% 3 5 17% 4 0

Chain (12) 100% 1 0 100% 0 0 67% 6,075 0 83% 4,990 0 58% 4,192 0

Connect (60) 68% 802 5 67% 14 7 70% 253 5 75% 7,013 7 67% 0 5

Counter (24) 54% 1,036 731 50% 217 141 38% 5 5 33% 2 1 38 9 20

EVPursade (38) 29% 1,450 1,765 3% 73 82 26% 1,962 1,960 18% 4,402 2,537 32% 4,759 4,508

FlipFlop (10) 100% 6 4 100% 3 4 100% 0 4 100% 1 4 80% 5,027 1

K (107) 88% 1,972 2,228 63% 3,839 39 35% 21,675 17,083 37% 21,801 19,203 33% 5,563 5,197

Lut (5) 100% 9 9 100% 3 3 100% 1 1 100% 3 6 100% 1,247 66

Mutex (7) 100% 0 102 43% 0 1 29% 43 49 43% 64 71 43% 1 6

Qshifter (6) 100% 8 9 100% 26 29 17% 0 0 33% 29 29 33 1,107 2,103

S (52) 27% 644 1,886 25% 910 1,530 2% 0 0 4% 401 451 2% 0 0

Szymanski (12) 42% 1,147 179 25% 7 0 0% 0 0 8% 0 200 0% 0 0

TOILET (8) 100% 1 25 100% 4,135 3 75% 61 84 63% 496 325 100% 1,307 621

toilet (38) 100% 84 50 100% 684 243 97% 115 207 100% 58 90 97% 395 3,060

Tree (14) 100% 0 0 100% 0 0 100% 37 9 100% 0 1 93% 1,051 1,251

Table 2. Benchmark family specific information about commonly solved instances. Shown are
the percentage of instances that are solved in both preprocessed and unpreprocessed form and
the total time in CPU seconds taken to solve these instances within each family with and without
preprocessing. Best times shown in bold.

solved. It is interesting to note that preprocessing improves different solvers on differ-
ent families. That is, the effect of preprocessing is solver-specific. Nevertheless, pre-
processing allows every solver to solve more instances. It can also be noted that the
different solvers have distinct coverage, with or without preprocessing. That is, even
when a solver is solving a larger percentage of a benchmark it can still be the case
that it is failing to solve particular instances that are solved by another solver with a
much lower success percentage on that benchmark. Preprocessing does not eliminate
this variability.

Some instances are actually solved by the preprocessor itself. There are two bench-
mark families that are completely solved by preprocessing: FlipFlop and Connect.
While the first family is rather easy to solve the second one is considered to be hard.
In fact, ≈ 25% of the Connect benchmarks could not be solved by any QBF solver in
the 2005 QBF evaluation [16]. Our preprocessor solves the complete benchmark fam-
ily in less than 10 seconds. In addition, a few benchmarks from the hard S benchmark
family can be solved by the preprocessor. Again these instances could not be solved
by any of the QBF solvers we tested within our time bounds. In total, the preprocessor
can completely solve 18 instances that were unsolvable by any of the solvers we tested
(in our time bounds). The Chain benchmark is another interesting case (its instances
have 2 quantifier alternations ∃∀∃). The instances in this family are reduced to ordinary
SAT instances by preprocessing. The preprocessor was able to eliminate all existential

Benchmark Skizzo Quantor Quaffle Qube SQBF

no-pre pre no-pre pre no-pre pre no-pre pre no-pre pre

Blocks 69% 88% 100% 100% 75% 88% 69% 69% 75% 81%

C 25% 29% 21% 30% 21% 25% 8% 21% 17% 25%

Chain 100% 100% 100% 100% 67% 100% 83% 100% 58% 100%

Connect 68% 100% 67% 100% 70% 100% 75% 100% 58% 100%

FlipFlop 100% 100% 100% 100% 100% 100% 100% 100% 80% 100%

K 89% 91% 63% 83% 35% 36% 37% 42% 33% 35%

S 27% 37% 25% 31% 2% 8% 4% 8% 2% 8%

Szymanski 42% 75% 25% 50% 0% 0% 8% 25% 8% 0%

toilet 100% 100% 100% 100% 97% 100% 100% 100% 97% 97%

Uclid 0% 67% 0% 0% 0% 0% 0% 0% 0% 0%

Table 3. Benchmark families where preprocessing changes the percentage of solved instances
(within our 5,000 sec. time bound). The table shows the percentage of each families’ instances
that can be solved with and without preprocessing.

variables from the innermost quantifier block and consequently remove all universals
by universal reduction. The resulting SAT instance is trivial to solve (it is smaller than
the original QBF instance). In all of these cases the extended reasoning applied in the
preprocessor exploits the structure of the instances very effectively. Note that the pre-
processing cannot blow up the body of the QBF since it can only add binary clauses to
the body. Thus, any time the preprocessor converts a QBF instance to a SAT instance,
the SAT instance cannot be much larger that the original QBF.

There were only five cases where for a particular solver preprocessing changed
a solvable instance to be unsolvable (Quaffle on one instance in the K benchmarks,
SQBF on one instance in the Szymanski benchmarks, Skizzo on two instances in the
Blocks benchmark and on one instance in the K benchmark). This is not apparent from
Table 3 since both Quaffle and Skizzo can still solve more instances of the K and Blocks
benchmarks respectively, with preprocessing than without. However, we can see that the
percentage of solved instances for SQBF on the Szymanski benchmark falls to 0% after
preprocessing. This simply represents the fact that SQBF can solve one instance of
Szymanski before preprocessing and none after. That is, we have found very few cases
when preprocessing is detrimental.

In total, these results indicate that preprocessing is very effective for each of the
tested solvers across almost all of the benchmark families.

6 Related Work

In this section we review the similarities between our preprocessor and the methods
applied in existing QBF solvers. We conclude that HypBinRes has not been previously
lifted to the QBF setting, although equality reduction and binary clause reasoning have
been used in some state-of-the-art QBF solvers. Our experimental results support this,
since our preprocessor aids the performance and reach of even the solvers that employ
binary clause reasoning and equality reduction.

Skizzo applies equality reduction as part of its symbolic reasoning phase [4]. [4]
makes the claim that Skizzo’s SHBR rule performs a symbolic version of hyper binary

200

210

220

230

240

250

260

270

280

290

300

310

320

1 10 100 1000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Time (seconds)

"Quantor-Preprocessed"
"Skizzo"

"Quantor"

Fig. 2. Logarithmic time scale comparison of Quantor and Skizzo on the original and Quantor
on the preprocessed benchmarks. Shown is the time in seconds versus the number of instances
solved.

resolution. However, a close reading of the papers [4, 6, 5, 7] suggests that in fact the
SHBR rule is a strictly weaker form of inference than HypBinRes. SHBR traverses the
binary implication graph of the theory, where each binary clause (x, y) corresponds
to an edge ¬x → y in the graph. It detects when there is a path from a literal l

to its negation ¬l, and in this case, unit propagates ¬l. This process will not achieve
HypBinRes. Consider the following example where HypBinRes is applied to the the-
ory {(a, b, c, d), (x,¬a), (x,¬b), (x,¬c)}. HypBinRes is able to infer the binary clause
(x, d). Yet the binary implication graph does not contain any path from a literal to its
negation, so Skizzo’s method will not infer any new clauses. In fact, the process of
searching the implication graph is well known to be equivalent to ordinary resolution
over binary clauses [1]. On the other hand, HypBinRes can infer anything that SHBR is
able to since it captures binary clause resolution as a special case. Therefore SHBR is
strictly weaker than HypBinRes. This conclusion is also supported by our experimental
results, which show, e.g., that our preprocessor is able to completely solve the Connect
Benchmark where as Skizzo is only able to solve 68% of these instances.

The variable elimination algorithm of Quantor also bears some resemblance to hy-
per binary resolution, in that variables are eliminated by performing all resolutions in-
volving that variable in order to remove it from the theory. General resolution among
n-ary clauses is a stronger rule of inference than HypBinRes, but it is difficult to use as
a preprocessing technique due to its time and space complexity (however see [11]).

7 Future Work

Additional techniques for preprocessing remain to be investigated. Based on the data we
have gathered with our preprocessor, we can conclude that a very effective technique
would be to run our preprocessor followed by running Quantor for a short period of time
(10-20 seconds). This technique is capable of solving a surprising number of instances.
As shown in Figure 2 the combination of the preprocessor and Quantor is in fact able
to solve more instances than Skizzo [4]. Hence, by simply employing hyper resolution
and variable elimination it is possible to gain an advantage over such sophisticated QBF
solvers as Skizzo. Furthermore, this technique solves a number of instances that are
particularly problematic for search based solvers. Figure 2 shows that this technique
(the “Quantor-Preprocessed” line) can solve approximately 285 instances within 10
seconds. Yet if we continue to run Quantor for another 5000 seconds very few additional
problems are solved (about 25 more instances). We have also found that search based
solvers can solve a larger number of these “left-over” instances than Quantor.

This suggests the strategy of first running the preprocessor, then running Quantor,
and then a search based solver if Quantor is unable to solve the instance quickly. Even
more interesting would be to investigate obtaining the partially eliminated theory from
Quantor after it has run for a few seconds, and then seeing if it could be further prepro-
cessed or fed directly into a search based solver. The Skizzo solver [4] attempts to mix
variable elimination with search in a related way, but it does not employ the extended
preprocessing reasoning we have suggested here.

Another important direction for future work is to investigate how some of these
ideas can be used to preprocess QCSP problems. Unfortunately although preprocess-
ing is common in CSPs (achieving some level of local consistency prior to search),
our particular technique of HypBinRes has no immediate analog in CSP. HypBinRes
takes advantage of the fact that binary clauses form a tractable subtheory of SAT, how-
ever binary constraints are not a tractable subtheory in CSPs unless we also have bi-
nary valued domains. Nevertheless, what our work does indicate is that it might be
worth investigating the usefulness of achieving higher levels of local consistency prior
to search in QCSPs than might be sensible for standard CSPs. This is because QCSPs
require more extensive search: all values of every universal variable have to be solved.
So effort expended prior to search can be amortized over a larger search space. Note
that HypBinRes+UR is a more powerful form of inference than what most of the QBF
solvers are applying during search.

8 Conclusions

We have shown that preprocessing can be very effective for QBF and have presented
substantial and significant empirical results to verify this claim. Nearly all of the pub-
licly available instances are taken into account, and five different state of the art solvers
are compared. The proposed method of preprocessing offers robust improvements across
the different solvers among all tested benchmark families. The achieved improvement
also includes almost 20 instances that to our knowledge have never been solved before.

References

1. B. Aspvall, M. Plass, and R. Tarjan. A linear-time algorithms for testing the truth of certain
quantified boolean formulas. Information Processing Letters, 8:121–123, 1979.

2. Fahiem Bacchus. Enhancing Davis Putnam with extended binary clause reasoning. In Eigh-
teenth national conference on Artificial intelligence, pages 613–619, 2002.

3. Fahiem Bacchus and J. Winter. Effective preprocessing with hyper-resolution and equality
reduction. In Sixth International Conference on Theory and Applications of Satisfiability
Testing (SAT 2003), Lecture Notes in Computer Science 2919, pages 341–355, 2003.

4. M. Benedetti. sKizzo: a QBF decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report TR04-11-03, 2004.

5. M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In Proc. of the 11th In-
ternational Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR04), number 3452 in LNCS. Springer, 2005.

6. M. Benedetti. Extracting Certificates from Quantified Boolean Formulas. In Proc. of 9th
International Joint Conference on Artificial Intelligence (IJCAI05), 2005.

7. M. Benedetti. Quantifier Trees for QBFs. In Proc. of the Eighth International Conference
on Theory and Applications of Satisfiability Testing (SAT05), 2005.

8. A. Biere. Resolve and expand. In Seventh International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), pages 238–246, 2004.

9. R. Bryant, S. Lahiri, and S. Seshia. Convergence testing in term-level bounded model check-
ing. Technical Report CMU-CS-03-156, Carnegie Mellon University, 2003.

10. H. K. Büning, M. Karpinski, and A. Flügel. Resolution for quantified boolean formulas. Inf.
Comput., 117(1):12–18, 1995.

11. N. Een and A. Biere. Effective Preprocessing in SAT through Variable and Clause Elimina-
tion. In In Proc. 8th Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT’05),
number 3569 in LNCS. Springer, 2005.

12. Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solving advanced reasoning
tasks using quantified boolean formulas. In AAAI/IAAI, pages 417–422, 2000.

13. Ian P. Gent, Peter Nightingale, and Kostas Stergiou. Qcsp-solve: A solver for quantified
constraint satisfaction problems. In Proceedings of the International Joint Conference on
Artifical Intelligence (IJCAI), pages 138–143, 2005.

14. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas satisfiability
library (QBFLIB), 2001. www.qbflib.org.

15. E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A system for deciding quantified
boolean formulas satisfiability. In International Joint Conference on Automated Reasoning
(IJCAR), pages 364–369, 2001.

16. M. Narizzano and A. Tacchella. QBF evaluation, 2005. http://www.qbflib.org/qbfeval/2005.
17. Jussi Rintanen. Constructing conditional plans by a theorem-prover. Journal of Artificial

Intelligence Research, 10:323–352, 1999.
18. H. Samulowitz and F. Bacchus. Using SAT in QBF. In Principles and Practice of Constraint

Programming. Springer-Verlag, New York, 2005.
19. Kostas Stergiou. Repair-based methods for quantified csps. In Principles and Practice of

Constraint Programming, pages 652–666, 2005.
20. L. Zhang and S. Malik. Towards symmetric treatment of conflicts and satisfaction in quan-

tified boolean satisfiability solver. In Principles and Practice of Constraint Programming
(CP2002), pages 185–199, 2002.

