A Logic For Decidable Reasoning About Services

Yilan Gu Mikhail Soutchanski
Dept. of Computer Science Department of Computer Science
University of Toronto Ryerson University
10 King's College Road 245 Church Street, ENG281
Toronto, ON, M5S 3G4, Canada Toronto, ON, M5B 2K3, Canada
Email: yilan@cs.toronto.edu Email: mes@scs.ryerson.ca
Abstract reasoning problems, well-known in Al, that can be relevant

We consider a modified version of the situation calculustbuil to service composition and discovery are executability and
using a two-variable fragment of the first-order logic ex- projection problems. Exequtablllty probllem requires d{_ate

tended with counting quantifiers. We mention several addi- ~ Mining whether preconditions of all actions included in a
tional groups of axioms that need to be introduced to capture ~ COMPposite service can be satisfied given incomplete infor-
taxonomic reasoning. We show that the regression operator ~mation about the world. Projection problem requires deter-

in this framework can be defined similarly to regression & th mining whether a certain goal condition is satisfied after th

Reiter’s version of the situation calculus. Using this new r execution of all component services given an incomplete in-
gression operator, we show that the projection problent (tha formation about the current state. In this paper we would
is the main reasoning task in the situation calculus) isdieci like to concentrate on the last prob|em because it is an im-

bl n e o uerion, Ve menten Rosshle appica: portant prerequisi for planning and execion monigrn
. . . tasks, and for simplicity we start with sequential compo-
reasoning about effects of composite Web services. sitions of the atomic actions (services) only (we mention
Introduction complex actions in the last section). More specifically; fol

.) lowi I i hes (Mcllraith 2002;
The Semantic Web community makes significant efforts to- No;\/rlggasni/ﬁ E I\ﬁﬁ\:ﬁ#ﬁ;@gggg;gf& ;L r§1(|)038f gi?ir;]eto 0

ward integration of Semantic Web technology with the on- 5" 5004 Hull & Su 2005), we choose the situation cal-

9]9'”9 Woi.k on Vt"ﬁb dserwces. These $_ﬁorts w&cllﬁe US€ culus as an expressive formal language for specification of
0 stem?n 'Cg In the |s<i/?/v%ry, composi! 'qtr." an (I)tedr as- actions. However, we acknowledge openness of the world
pects or web services. VVeb servicempositionis relate and represent incomplete information about an initialestat

to the task of designing a suitable combination of avail- - ot the world by assuming that it is characterized by a predi-
able component services into a composite service to sat- cate Jogic theory in the general syntactic form.

isfy a client request when there is no single service that
can satisfy this request (Hull & Su 2005). This problem at- Thg sjtuation calculus is a popular and well understood
tractgd .S|gn|f|cant attention of resea_rchers b_oth in acwlem predicate logic language for reasoning about actions and
and in industry. A major step in this direction is creation e effects (Reiter 2001). It serves as a foundation fer th
of ontologies for web services, in particular, OWL-S that prgcess Specification Language (PSL) that axiomatizes a set
models web services as atomic or complex actions with o hrimitives adequate for describing the fundamental con-

preconditions an.d effects. An emergilng industry standard cepts of manufacturing processes (PSL has been accepted
BPEL4WS (Business Process Execution Language for Web 55" an international standard) (Grininger & Menzel 2003;
Services) provides the basis for manually specifying com- Grijninger 2004). It is used to provide a well-defined se-
posite web services using a procedural language. However, mantics for Web services and a foundation for a high-
in comparison to error-prone manual service compositions, |eye| programming language Golog (Berartial. 2003;
(semi)automated service composition promises significant \c|irajth & Son 2002; Narayanan & Mcllraith 2003; Pis-
flexibility in dealing with available services and also a0 e et al. 2005). However, because the situation calculus
modates naturally the dynamics and openness of service-is formulated in a general predicate logic, reasoning about
oriented architectures. The problem of the automated com- effects of sequences of actions is undecidable (unless some
position of web services is often formulated in terms simila restrictions are imposed on the theory that axiomatizes the
to a planning problem in Al: given a description of a client injtia| state of the world). The first motivation for our pa-
goal and a set of component services (that can be atomic or per i intention to overcome this difficulty. We propose to
complex), find a composition of services that achieves the use a two-variable fragmeO? of the first-order logic as
g(i)r?r! ('\,[/'Clllrg'(t)%f‘ SS” 2(i):)2£th1ra)</ar:aln & l\:lc”l’%lth %OOS’IV_ a foundation for a modified situation calculus. Because the

>Irn et al.). Despite that several approaches to Solv- isianility problem in this fragment is known to be decid-
ing this problem have already been proposed, many issues) ja (it is in NEXPTIME), we demonstrate that by reduc-

remain to be resolved, e.g., how to give well-defined and ing reasoning about effects of actions to reasoning in this

general characterizations of service compositions, hOW 10 faoment one can guarantee decidability no matter what is
compute all effects and side-effects on the world of every ac the syntactic form of the theory representing the initiatest

tion included in composite service, and other issues. Other of the world. The second motivation for our paper comes

Copyright © 2006, American Association for Artificial Intelli- from description logics. Description Logics (DLs) (Baader
gence (www.aaai.org). All rights reserved. et al. 2003) are a well-known family of knowledge represen-

tation formalisms, which play an important role in provigin

the formal foundations of several widely used Web ontol-

ogy languages including OWL (Horrocks, Patel-Schneider,
& van Harmelen 2003) in the area of the Semantic Web.
DLs may be viewed as syntactic fragments of first-order
logics (FOL) and offer considerable expressive power go-
ing far beyond propositional logic, while ensuring that-rea

soning is decidable (Borgida 1996). DLs have been mostly

used to describe static knowledge-base systems. Moreover,

several research groups consider formalization of actions
using DLs or extensions of DLs. Following the key idea
of (Giacomo 1995), that reasoning about complex actions
can be carried in a fragment of the propositional situation
calculus, De Giacomo et al. (Giaconab al. 1999) give

an epistemic extension of DLs to provide a framework for
the representation of dynamic systems. However, the rep-
resentation and reasoning about actions in this framework
are strictly propositional, which reduces the represenat
power of this framework. In (Baadet al. 2005), Baader et

al. provide another proposal for integrating descriptimg |

ics and action formalisms. They take as foundation the well
known description logicACOIO (and its sub-languages)
and show that the complexity of executability and projattio
problems coincides with the complexity of standard DL rea-
soning. However, actions (services) are represented in the
paper meta-theoretically, not as first-order terms. This ca
potentially lead to some complications when specifications
of other reasoning tasks (e.g., planning) will be considere
because it is not possible to quantify over actions in their
framework. In our paper, we take a different approach and
represent actions as first-order terms, but achieve irtiegra

of taxonomic reasoning and reasoning about actions by re-
stricting the syntax of the situation calculus. Our paper ca
be considered as a direct extension of the well-known result
of Borgida (Borgida 1996) who proves that many expressive
description logics can be translated to two-variable fragm
FO? of FOL. However, to the best of our knowledge, no-
body proposed this extension before.

The main contribution of our paper to the area of service
composition and discovery is the following. We show that
by using services that are composed from atomic services
with no more than two parameters and by using only those
properties of the world which have no more than two param-
eters (to express a goal condition), one can guaranteédthat t
executability and projection problems for these serviees ¢
always be solved even if information about the current state
of the world is incomplete.

Motivations

Consider online web services provided by an university.
Imagine that a system automates the department admin-
istrators by doing student management work online, for
instance, admitting new students, accepting payments of
tuition fees and doing course enrolliments for students, etc
Unlike previously proposed e-services (e.g.,the e-sesvic
described in (Berardet al. 2003) or in BPEL4WS)
which allow only services without parameters, we use
functional symbols to represent a class of services. For
example, variables, say andy, can be used to represent
any objects; the service of enrolling any studenn any
coursey can be specified by using a functional symbol

payTuit(x,y)

drop(x

en

Figure 1: Examples of transition diagrams for services.

:Qﬁag{'&sgﬁ?ﬂ admit(PSN1);payTuit(PSN1,5100);enroll(PSN1,CS! ‘chm":(gégﬁ?y{)”
studen
~3 y.enrolled(PSN1, enrolled(PSN1,CS1.

Figure 2: A transition diagram for a composite web service.

enroll(z,y); and, the service of admitting any student
x can be represented as a functional symbétnit(x),

etc. The composite web services can be considered as
sequences of instantiated services. For example, a seguenc
admit(PSN1); payTuit(PSN1,5100); enroll(PSNi,CSt)
represents the following composite web service for person
PSNi: admit her as a student, take the tuition fee $5100
and enroll her in a cours€S;. The system properties are
specified by using predicates with parameters. For example,
the predicateenrolled(z,y) represents that a studentis
enrolled in a coursg. This property becomes true when
serviceenroll(z,y) is performed and becomes false when
servicedrop(z, y) is performed for a studentand a course

y (see Figure 1). A composite web service corresponds to
the composition of these instantiated transition diagrams
(see Figure 2). When one describes the preconditions of
the services, the effects of the services on the world, i.e.,
when one characterizes which properties of the world are
true before and after the execution of the services, given
incomplete information about the current state of the world
the use of first-order language, such as the situation eecul
(Reiter 2001), can provide more expressive power than
propositional languages. For example, assume that a gtuden
is considered as a qualified full time student if the tuition
fee she paid is more than 5000 dollars and she enrolls in
at least four different courses in the school. Such property
can be easily described using the first-order logic, and
checking whether or not such property can be satisfied after
execution of certain sequence of web services is equivalent
to solving a projection problem. Because FOL is compact
way of representing information about states and tramsitio
between states, we want to take advantage of the expressive
power of the first-order logic as much as possible to reason
about web services.

On the other hand, as we mentioned in the introduction,
we want to avoid the undecidability of the entailment prob-
lem in the general FOL. Inspired by the decidability of rea-
soning in many DLs (which are sub-languages of a syntactic
fragment of the FOL with the restriction on the number of
variables), we restrict the number of variables to at most tw
in the specifications of the web services to ensure the de-
cidability of the executability and projection problemstie
nigues. At the same time, we can take the advantage of the
expressive power of quantifiers to specify compactly realis
tic web services (such as mentioned above). Moreover, FOL
with limited number of variables, in contrast to the propo-
sitional logic, still allows us to represent and reason abou
properties with infinite domains (such asight andtime,
etc) or with large finite domains (such asoney, person,

etc) in a very compact way. Two examples are given in the Action precondition axioms D,,: For each action func-
last section to illustrate the expressive power and reagoni tion A(Z), there is one axiom of the formoss(A(%), s) =

about the web services. a(%,s). I1a(Z,s) is a formula uniform ins with free
. . variables among@ ands, which characterizes the precondi-

The Situation Calculus tions of actionA. Successor state axiom®,,: For each
The situation calculus (SCI,. is a first-order (FO) lan- relational fluentF(Z, s), there is one axiom of the form

guage for axiomatizing dynamic systems. In recent years, I'(7;do(a,s)) = ®r(Z,a,s), where®p(7, a, s) is a for-

it has been extended to include procedures, concurrency, Mula uniform ins with free variables among, a ands. The
time, stochastic actions, etc (Reiter 2001). Nevertheless SUCCESSOr state axiom (SSA) for flugntcompletely char-
all dialects of the SCZ,.. include three disjoint sortsa¢- acterizes the value of fluedt in the next situationlo(a, s)
tions situationsandobjecty. Actions are first-order terms N terms of the current situation Initial theory Ds,: It
consisting of an action function symbol and its arguments. S @ Set of first-order formulas whose only situation term is

Actions change the worldSituations are first-order terms 0+ It specifies the values of all fluents in the initial state.
which denote possible world histories. A distinguished-con !t /S0 describes all the facts that are not changeable by any

stant S, is used to denote thimitial situation, and func- actions in the domainUnique name axioms for actions
tion do(a, s) denotes the situation that results from per- DPuna’ Includes axioms specifying that two actions are dif-
forming actiona in situation s. Every situation corre- ferentif their action names are different, and identical ac
sponds uniquely to a sequence of actions. Moreover, no- ions have identical argumerfisFundamental axioms for
tation s < s means that either situatiosi is a subse- situations ¥: The axioms for situations which characterize

quence of situatios or s — .1 Objects are first-order the basic properties of situations. These axioms are domain

terms other than actions and situations that depend on the iNdeépendent. They are included in the axiomatization of any
domain of application.Fluents are relations or functions ~ dynamic systems in the SC (see (Reiter 2001) for details).

whose values may vary from one situation to the next. Nor- . Suppose thaD = Dyp, U Ds, U Dap U Dy U X
mally, a fluent is denoted by a predicate or function symbol 1S @ BAT, ai,---,ay, is a sequence of ground ac-
whose last argument has the sort situation. For example, tion terms, andG(s) is a uniform formula with one
F(Z,do([a, - ,], So) represents a relational fluent in free variables. One of the most important reason-
the situationdo(cv,, do(- - -, do(a, Sp) - - -) resulting from ing tasks in the SC is the projection problem, that is,
execution of ground action terms, - - - , a,, in So. We do to determine whetheD | G(do([ar, -, an],S0)).
not consider functional fluents in this paper. Another basic reasoning task is the executabil-
. S) ity problem. Let ezecutable(do([aa,- - , an), So))
The SC includes the distinguished predic&tess(a, s) be an abbreviation of the formulaPoss(ai,So) A
to characterize actions that are possible to execute in V7, Poss(ai,do([ax, -+, ai—1], So)). Then, the
For any SC formulaj and a terms of sort situation, we executability problem is to determine whether
say ¢ is a formulauniformin s iff it does not mention the D = executable(do([o, - -, an], So)). Planning
predicatesPoss or <, it does not quantify over variables of and high-level program execution are two important sesting
sort situation, it does not mention equality on situaticms] where the executability and projection problems arise
whenever it mentions a term of sort situation in the situa- naturally. Regressionis a central computational mecha-
tion argument position of a fluent, then that ternsigsee nism that forms the basis for automated solution to the

(Reiter 2001)). If¢(s) is a uniform formula and the situa- executability and projection tasks in the SC (Reiter 2001).
tion argument is clear from the context, sometimes we sup- A recursive definition of the regression operatBr on
press the situation argument_and Wr.ite this fprmL_JIa simply any regressable formulay is given in (Reiter 2001); we
as¢. Moreover, for any predicate with the situation argu- yse notatioriR[¢] to denote the formula that results from
ment, such as a fluet or Poss, we introduce an opera- eliminatingPoss atoms in favor of their definitions as given

tion of restoring a situation argumentback to the corre- py action precondition axioms and replacing fluent atoms
sponding atomic formula without situation argument, i.e., aboutdo(a, s) by logically equivalent expressions about
F(@)[s] ¢ F(z,s) and Poss(A)[s] 2 Poss(A, s) for s as given by SSAs repeatedly until it cannot make such
any action tern¥ and object vectoF. By the recursive def- replacementany further. A formuld of £,. is regressable
inition, such notation can be easily extendedfs| for any iff (1) every term of sort situation iV is starting from
first-order formulap, in which the situation argumentsofall ~ So and has the syntactic forab([a, - - -, o], So) where
fluents andPoss predicates are left out, to represent the SC €acha; is of sort action; (2) for every atom of the form
formula obtained by restoring situatiarback to all the flu- ~ Poss(a, o) in W, « has the syntactic forma(ty,- -, ¢,)
ents and/oPoss predicates (if any) ir. It is obviousthat ~ for somen-ary function symbol4 of L..; and (3) W
¢[s] is uniform ins. does not quantify over situations, and does not mention the
A basic action theory(BAT) D in the SC is a set of relation symbols <" or “=" between terms of situation
axioms written inZ,. with the following five classes of ~ SOrt. The formulaG(do([a, - -, anl, So)) is a particularly
axioms to model actions and their effects (Reiter 2001). Simple example of a regressable formula because it is
uniform in do([a1, - - - , o], So)), but in the general case,
1Reiter (Reiter 2001) uses the notatish C s, but we use regressable formulas can mention several different ground
s’ < s to avoid confusion with the inclusion relatian that is -
commonly used in description logic literature. In this papee 2For the second type of axioms, we use the form

user_ to denote the inclusion relation between concepts or roles. A(z1, - ,2n) = A(y1, ,Yn) ET1 = Y1 A ATn = Yn

situation terms. Roughly speaking, the regression of a
regressable formula through an actiom is a formula¢’
that holds prior toa being performed iff¢ holds aftera.
Both precondition and SSAs support regression in a natural

way and are no longer needed when regression terminates.

The regression theorem (Reiter 2001) shows that one can
reduce the evaluation of a regressable formifato a
first-order theorem proving task in the initial theory tdggt
with unique names axioms for actions:

DEW if Ds, UDyna E R[W].
This fact is the key result for our paper. It demonstrates
that an executability or a projection task can be reduced
to a theorem proving task that does not use precondition,
successor state, and foundational axioms. This is one of

concept definition formulas with unique left-hand sides. We
say that adefinedconcept namé&’; directly usesa concept
nameC, w.r.t. 7 if C is defined by a concept definition
axiom in7 with Cs occurring in the right-hand side of the
axiom. Letusesbe the transitive closure of directly uses,
and a TBox axioms séf is acyclicif no concept name uses
itself w.r.t. 7. An ABox A is a finite set of axiom&'(a),
R(a,b), and (in)equalities, ~ b anda % b.

The logic AZCQL is obtained by disallowing RBox .
A more expressive logicACCOL (L, 11, -, |,id) is obtained
from ALCOT by introducing identity roleid (relating each
individual with itself) and allowing complex role expres-
sions: if Ry, Ry are ALCQL (L, 11, —, |, id) roles andC' is a
concept, therR; U Ry, Ry M Ry, =Ry, R; andRy|¢ are

the reasons why the SC provides a natural and easy way ACCOZ (L, 11, -, |,id) roles too® These complex roles can be

to representation and reasoning about dynamic systems.

However, becaus®g, is an arbitrary first-order theory,
this type of reasoning in the SC is undecidable. One of the
common ways to overcome this difficulty is to introduce
the closed world assumption that amounts to assuming
that Dg, is a relational theory and all statements that are
not known to be true explicitly, are assumed to be false.
However, in many application domains this assumption is
unrealistic. For this reason, we would like to consider a
version of the SC formulated iRO?, a syntactic fragment

of the first-order logic that is known to be decidable, or in
C? an extension oFO? (see below), where the satisfiability
problem is still decidable.

Description Logics and Two-variable FO
Logics

In this section we review a few popular expressive descrip-
tion logics and related fragments of the FO logic. We start
with logic ACCHOL. Let No = {C4,C5,...} be a set of
atomicconcept nameand Ny = {Ry, Ra, ...} be a set of
atomicrole namesA ACHQOL role is either somé? € Ny

or aninverse roleR~ for R € Nr. A ALCHOL role hier-
archy (RBox) RH is a finite set of role inclusion axioms
Ry T Rs, whereRy, Ry are ALCHOT roles. ForR € Ng,

we defindnv(R) = R~ andinv(R™) = R, and assume that
R; C Ry € RH impliesinv(R;) C Inv(Ry) € RH.

The set of ALCHOL concepts is the minimal set built
inductively fromN¢ and ACCHOT roles using the following
rules: allA € N¢ are concepts, and, i, C;, andCs
are ALCHQL concepts,R is a simple role anch € N,
then also-C, C; M C,, and (3" R.C) are ACHOT
concepts. We use also some abbreviations for concepts:

CLUCY ~(~crn=Cy) (3" R.O)Y (3> R.O)
Ci oG- 3" R.C0)Y 3" R.O)N (I R.O)
IRCY (3 R.O) T AU-A forsomeA e Ne
VR.CY3<' g ~C 1% T
Concepts that are not concept names are caltadplex
A literal concept is a possibly negated concept name.
A TBox 7 is a finite set ofequality axiomsC; = C»
(sometimesgeneral inclusion axiomgf the formC; C Cs
are also allowed, wher€',,C> are complex concepts).
An equality with an atomic concept in the left-hand side
is a conceptefinition In the sequel, we always consider
TBox axioms set7 that is aterminology a finite set of

used in TBox (in the right-hand sides of definitions). Subse-
guently, we call a rol&r primitiveif it is either R € Ny or
itis aninverse roleR~ for R € Ng. Two-variable FO logic

72(A) A(z) for A € N
TI(T)défm =z Te (J_)d:f—'(w =1z)

72 (2C)E r (C) 7(C)E 1 (O) [/y, y/2)
72(C1 1 C2) 7 (C1) A 72(C2)

T (P R.CYE Iy (1,4 (R) ATy (C))

72(VR.O) vy (10.4(R) D 7,(C))

Tay(id)E z =y Toy(2R) = =7, (R)
Toy(Rl0) E 10y (R) Ay (C) ay(RT)E 1y 0 (R)

oy (R1 M R2) & 10y (R1) A 7oy (R2)

oy (R U Ro) sy (R1) V 7oy (R2)

oy (R)Z R(z,y) for R € Ng
7.0 (R)E R(y, z) for R € Ng

FO? is the fragment of ordinary FO logic (with equality),
whose formulas only use no more than two variable sym-
bols 2 andy (free or bound).Two-variable FO logic with
countingC? extendsFO? by allowing FO counting quan-
tifiers 32™ and3<™ for all m > 1. Borgida in (Borgida
1996) defines an expressive description lo§iand shows
that each sentence in the langu#without transitive roles
and role-composition operator can be translated to a sen-
tence inC? with the same meaning, and vice versa, i.e.,
these two languages aegually expressive A knowledge
baseK B is a triple (R, 7,.A). The semantics of{ B is
given by translating it into FO logic with countir@? by the
operatorr (see the table above, in which € {>, <} and
x/y means replace with y). Borgida’s logicB includes alll
concept and role constructors MCOZ (L, 1, —, |, id) and,

in addition, it includes a special purpose construgiad-

uct that allows to build the role”; x Cy from two con-
ceptsC; and C,. This construct has a simple semantics

Tz,y(C1 x C2) def 7(C1) A 7y (C2) , and makes the trans-
lation fromC? into 3 rather straightforward. Although con-
structorproductis not a standard role constructor, we can
use restriction constructéiin addition withl, 1, — and in-

verse role to represent it. That is, for any conceptsand

3These standard roles constructors and their semanticsecan b
found in (?).

Ca, C1x Co=(RU=R)|c, T((RU-R)|c,)™,

where R can be any role name. Consequently, product can
be eliminated. Therefore, the following statement is aaire
consequence of the theorems proved in (Borgida 1996).

Theorem 1 The description logicACCOZ (LI, 1, —, |, id) and

C? are equally expressive (i.e., each sentence in language
ALCOL (1,1, —, |, id) can be translated to a sentencedi,

and vice versa). In addition, translation in both directfon
leads to no more than linear increase of the size of the trans-
lated formula.

This statement has an important consequence. Gradel et.
al.(Gréadel, Otto, & Rosen 1997) and Pacholski et al (Pachol
ski, Szwast, & Tendera 1997) show that satisfiability prob-
lem for C? is decidable. Hence, the satisfiability and/or sub-
sumption problems of concepts w.r.t. an acyclic or empty
TBox in description logicACOZ (U, M, —, |, id) is also de-
cidable? In the next section we take advantage of this and
useC? as a foundation for a modified SC.

Modeling Dynamic Systems in a Modified
Situation Calculus

In this section, we consider dynamic systems formulated in
a minor modification of the language of the SC so that it can
be considered as an extension(1é language (with situa-
tion argument for unary and binary fluents). The key idea is
to consider a syntactic modification of the SC such that the
executability and projection problems are guaranteed to be
decidable as a consequence of @feproperty of being de-
cidable® Moreover, since the modified SC has a very strong
connections with description logics, which will be explkaih

in detail below, we will denote this language 88~.

First of all, the three sorts if 27 (i.e., actions, situations
and objects) are the same as thos& ip, except that they
obey the following restrictions: (1) all terms of sarject
are variables£ andy) or constants, i.e., functional symbols
are not allowed; (2) all action functions include no moretha
two arguments. Each argument of any term of sgtionis
either a constant or avbjectvariable ¢ or y); (3) variable
symbola of sortactionand variable symbai of sortsitua-
tion are the only additional variable symbols being allowed
in D — % — Dyy, in addition to variable symbols andy.

Second, any fluent it~ is a predicate either with two
or with three arguments including the one of sort situation.
We call fluents with two arguments, one is of sort object and
the other is of sort situatior{dynamic) conceptsand call
fluents with three arguments, first two of sort object and the
last of sort situation(dynamic) roles Intuitively, each (dy-
namic) concept iCL, sayF(z, s) with variablesr ands
only, can be considered as a changeable conEepta dy-
namic system specified id2L; the truth value off'(z, s)

sc !

“In (Baaderet al. 2003) it is shown that the satisfiability prob-
lems of concepts and subsumption problems of concepts can be
reduced to each other; moreover, if a TBbxs acyclic, the rea-
soning problems w.r.t7 can always be reduced to problems w.r.t.
the empty TBox.

5The reason that we call it a "modified” rather than a "re-
stricted” is that we not only restrict the number of variabtbat
can be mentioned in the theories, but we also extend the SC wit
other features, such as introducing counting quantifietisaaiding
acyclic TBox axioms to basic action theories.

could vary from one situation to another. Similarly, each
(dynamic) role in£PL, say R(x,y, s) with variablesz, y
ands, can be considered as a changeable ®lm a dy-
namic system specified ii2%; the truth value of?(x, y, s)
could vary from one situation to another. 4, (static)
conceptqi.e., unary predicates with no situation argument)
and (static) roles(i.e., binary predicates with no situation
argument), if any, are considered as eternal facts and their
truth values never change. They represent unchangeable tax
onomic properties and unchangeable classes of an applica-
tion domain. Moreover, each concept (static or dynamic)
can be eitheprimitive or defined For each primitive dy-
namic concept, an SSA must be provided in the basic action
theory formalized for the given system. Because defined dy-
namic concepts are expressed in terms of primitive concepts
by axioms similar to TBox , SSAs for them are not provided.
In addition, SSAs are provided for dynamic primitive roles.
Third, apart from standard first-order logical symbals
Vv andd, with the usual definition of a full set of connectives
and quantifiers£ 2% also includes counting quantifiets™
and3<™ forallm > 1.
The dynamic systems we are dealing with here satisfy the
open world assumptiofOWA): what is not stated explic-
itly is currently unknown rather than false. In this paper,
the dynamic systems we are interested in can be formalized
as abasic action theoryBAT) D using the following seven
groups of axioms iC?L: D = ¥ U D, U Dys U Dr U
Dr U Dype UDg,. Five of them E, Dy, Dss, Dynga, Ds,)
are similar to those groups in a BAT if),., and the other
two (D1, Dg) are introduced to axiomatize description logic
related facts and properties (see below). However, because
LPL allows only two object variables, all axioms must con-
form to the following additional requirements.
Action precondition axioms D,,,: For each actiom4 in

LPL there is one axiom of the form

Poss(A, s) =114]s] (or Poss(A(x), s) = a(x)[s],

or Poss(A(z,y),s) = Ha(z,y)[s], respectively),
if Aisan action constant (or unary, or binary action term, re-
spectively), wherél 4 (orIl4(z), orlla(x,y), respectively)
is aC? formula with no free variables (or with at mast
or with at moste, y as the only free variables, respectively).
These axioms characterize the preconditions of all actions
Successor state axiomsD,;: For each primitive dy-
namic conceptF'(x,s) in L2F, an SSA is specified for
F(z,do(a,s)). According to the general syntactic form of
the SSAs provided in (Reiter 2001), without loss of general-
ity, we assume the axiom is of the form

Yr(z,a,s),

where the general structure of-(z, a, s) is

(Vi Bz]Byl(a= A (Zi,0,4)) A &7 (Fia,)IsD) V Fz,5)

A=((Vi2 B2]Byl(a= AT (Z(.0,-) A b5 (£(5.1,-))1s))),
where each variable vectay; ,, ;) (Or Z(; ,) respectively)
(t=1..mg,j=1..my,n € {0,1},b € {+,—}) represents a
list of object variables, which can be empty,y, (z,y) or
(y, x). Moreover,[3z] or [Jy] represents that the quantifier
included in[] is optional; and each; (Z(; 1 4)),i=1..mo
(¢; (Z(j1,—)),7 = 1..mg, respectively), is a2 formula
with variables among andy.

F(z,do(a, s)) «h)

Similarly, an SSA for a dynamic primitive rolB(x, y, s)
is provided as a formula of the form

R(z,y,do(a, s)) = ¥Yr(x,y,a,s). 2)

Moreover, without loss of generality, the general struetur
(V2 BelByl(a= A7 (Zi0,0) A 67 (Z1,4))[8) V Rl@,y, 5)
A= (V52 B2]Byl(a= A5 (Z.0,-) A 65 (Fi.a,-))[s]),
where each variable vectay; ,, ;) (or Z(; ,, ») respectively)
(i = l.ma,j = l.ms,n € {0,1},b € {+,—}) rep-
resents a vector of free variables, which can be either
empty, z, y, (x,y) or (y,z). Moreover, [3z] or [y]
represents that the quantifier included|in is optional;
and eaCMj(f(i71,+)), 1=1..mo (¢j_(f(j,1-,—))7j =1..mgs,
respectively), is aC? formula with variables (both free
and quantified) among andy. Note that whenmn, (or
my, me, M3, respectively) is equal t6, the corresponding
disjunctive subformula is equivalent false.
Acyclic TBox axiomsDr: Similar to the TBox axioms in
DL, we may define new concepts using TBox axioms. Any
group of TBox axiomsDr may include two sub-classes:
static TBoxDr ,, and dynamic TBoXDr 4y,. Every for-
mula in static TBox is aoncept definitiorformula of the
form G(z) = ¢¢(x), whereG is a unary predicate sym-
bol and ¢ () is a C? formula in the domain with free
variablez, and there is no fluent in it. Every formula in
dynamic TBox is aconcept definitioformula of the form
G(z,5) = ¢c(z)[s], wherepg(x) is aC? formula with free
variablez, and there is at least one dynamic concept or dy-
namic role in it. All the concepts appeared in the left-hand
side of TBox axioms are calledefinedconcepts. We also
require that the set of TBox axioms must be acyclic.
RBox axiomsDg: Similar to the idea of RBox in DL, we
may also specify a group of axioms, called RBox axioms be-
low, to support a role taxonomy. Each role inclusion axiom
is represented aB; (z, y)[s] D Ra(x,y)[s] whereR; and
R5 are primitive roles (either static or dynamic). If these
axioms are included in the BAD, then it is assumed that
D is specified correctly in the sense that the meaning of
any RBox axiom included in the theory is correctly com-
piled into SSAs. That is, one can prove by induction that
D = Vs.Ri(z,y)[s] D Ra(z,y)[s]. Although RBox axioms

are not used by the regression operator, they are used for

taxonomic reasoning in the initial theory.
Initial theory Dg,: It is a finite set ofC? sentences (as-
suming that we suppress the only situation tefgmin all
fluents). It specifies the incomplete information about the
initial problem state and also describes all the facts that a
not changeable over time in the domain of an application.
In particular, it includes static TBox axion8r ,; as well
as RBox axioms in the initial situatiasl, (if any). In addi-
tion, Dg, also includes all unique name axioms for object
constants.

The remaining two classes (foundational axioms for situ-
ationsX and unique name axioms for actioPg,,,) are the

a formula to a sentence that will use no more than two object
variables and no other variables.

Extending Regression with Lazy Unfolding
After giving the definition of the BAT inC2L, we turn our

sc !

attention to the reasoning tasks. There are various kinds of
reasoning problems we could think of. For example, if we
are considering a planning problem, we are looking for a
ground situation starting from the initial situation sublatt
it is executableand a given goal (formalized as a logic for-
mula w.r.t. this situation) can be entailed By However,
below we focus on two sub-problems of the planning prob-
lem (executability and projection), because they are thetmo
essential for solving the planning (composition) problem.

Consider a BATD of L5 specified as in the previous
section for some dynamic system with OWA. Given a for-
mulaW of £LPL in the domairD, the definition ofi¥’ being
regressable (called2l regressablebelow) is slightly dif-
ferent from the definition ofi” being regressable ifi. (see
Section) by adding the following additional conditions) (4
any variable (free or bounded) W is eitherz or y; (5) ev-
ery term of sort situation ifil’ is ground. Moreover, it -
we have to be more careful with the definition of the regres-
sion operatofR for two main reasons. First, to deal with
TBox we have to extend regression. For&’ regress-
able formulalW, we extendbelow the regression operator
defined in (Reiter 2001) with thiazy unfolding technique
(see (Baadeet al. 2003)) and still denote such operator as
R. Second£PF uses only two object variables and we have
to make sure that after regressing a fluent atom we still get a
LDL formula, i.e., that we never need to introduce new (free
or bound) object variables. To deal with the two-variable
restriction, we modify our regression operafoin compar-
ison to the conventional operator defined in (Reiter 2001)
as follows, wherer denotes the term of sort situation, amd
denotes the term of sort action.

o If W is not atomic, i.e. W is of the formW; v W,
Wi A Wa, =W, Qu.W’ where@ represents a quantifier
(including counting quantifiers) andrepresents a variable
symbol, then
RIWL VW] = RWA|VR[W:], R[-W']=-R[W’],
RIWi A Wa] = R[Wi| A R[Wa], R[Qu.W'] = Qu.R[W].
e Otherwise W is atom. There are several cases.
(a) If W is of the form

Al ({) A2 (F)v (3)

then by using axioms if®,,,,,®, we define the regression of
W as

1 if A; # Ao,
RIWE = { /\Iﬂ t; =1t otherv;iise
i=1"t —
If W is situation independent atom (including equality
between object constants or variables)iotis a concept or
role uniform inSy, thenR[W] = W.
(b) If W is a regressablé’oss atom, so it has the form

same as those in the BATs of the usual SC. Note that these ps5(A(#), o), for terms of sort action and situation respec-

axioms (as well a®,, andD,,) use more than two vari-
ables (e.g.D,, use action and situation variables in addition
to object variables), but we will see in the next sectiont tha

tively in £PL. Then there must be an action precondition

5Notice that the action functions with different number ajar

these axioms will be eliminated in the process of regressing ments always use different function symbols (i.e., differeames).

axiom for A of the form Poss(A(Z),s) = a(7,s), where
the argumenf’ of sort object can either be empty (i.e4,
is an action constant), a single variableor two-variable
vector(zr, y). Because of the syntactic restrictions@f’,

each term int can only be a variable, y or a constant.

Then,

R[By)(z =y Aa(w,y,0))] = (),
R{Gﬂﬂ()gy ; z Alla(z,y,0))] e:Se i;g: (v, y),
R[a(t,o elseift = x or
RW] = ! {'= (x,y)or
= (z,C),
R[TA(f, 0)] otherwise,

whereC represents a constant apdienotes alual formula
for formula ¢ obtained by replacing every variable symbol
x (free or quantified) with variable symbgland replacing
every variable symbo} (free or quantified) with variable
symbolz in ¢, i.e.,¢ = oz /y,y/x].

(c) If W is a defined dynamic concept, so it has the
form G(t,o) for some object termt and situation term
o, and there must be a TBox axiom fé# of the form
G(z,s) = ¢a(z,s). Because of the restrictions of the
languageL2F, term ¢ can only be a variable, y or a

sc !

constant. Then, we use lazy unfolding technique as follows:
Rloa(t,o)] if tis not variabley,
RIW] = { Rléc(y,0)] otherwise
(d) If W is a primitive concept (a primitive role, re-
spectively), so it has the fornk'(¢1, do(a, o)) (the form
R(t1,ts,do(c, o)), respectively) for some termg (and
to) of sort object, ternw of sort action and terra of sort
situation. There must be an SSA fBr(for R, respectively)
such as Eq. 1 (such as E%
restriction of the languagg?’*, the term¢; andt, can only
be a variabler, y or a constan€ anda can only an action
function with no more than two arguments of sort object.
Then, whenlV is a concept,
Rlyr(t1,a,0)]
RWI={ Ry aeo)
and, wherlV is a role,
R[(Jy)(z =y AYr(z,y, o, 0))]
R[(Fz)(y = = A Yr(2,y, 0, 0))]

[wR(th l2, o, U)]

R
Rr(t1, t2, o, 0)]

if ¢1 is not variabley,
otherwise

ift1 =x,t2 =

if t1 =y,t2 = y;

if t1 = y,tg =,

ort; =y, ta = C,
otherwise.

RIW] =

Based on the above definition, we are able to prove the
following theorems.

Theorem 2 SupposéV is a LPL regressable formula, then
the regressiorR[W] defined above terminates in a finite
number of steps.

Proof: Immediately follows from acyclicity of the TBox
axioms, and from the assumption th&Box axioms are
compiled into the SSAs and consequently do not participate
in regression.

Moreover, it is easy to see that afy’” regressable for-
mula has no more than two variablesgndy), and the fol-
lowing theorem holds.

Theorem 3 SupposéV is a LPL regressable formula with

the background basic action theof. Then,R[W] is a

LPE formula uniform inSy with no more than two variables
(x andy). MoreoverD =W = R[W], and

DEW iff Dg, = R[W].

Moreover, we can also obtain the following corollary
about decidability of the projection problem f&2% re-
gressable formuldV (particularly, whenW is of form
executable(S) for some ground situatiofi, it becomes the

executability problem).

Corollary 1 SupposéV is a LPL regressable formula with
the background basic action theof). Then, the problem
whetherD = W is decidable.

Proof: According to Theorem 3D = W iff Dg,
R[W], whereW, and the axioms irDg, areC? formulas.
Therefore, the problem wheth@& = W is equivalent to
whetherDg, A —=R[W] is unsatisfiable or not, which is a de-
cidable problem, according to the fact that the satisfigbili
problem inC? is decidable. So, the corollary is proved]

Examples

In this section, we give some examples to illustrate thedbasi
ideas described in the previous sections. First, we give the
formal specification for the web services of an imaginary
university described informally in the second section.

Example 1 Consider a university that provides on the Web
student administration and management services, such as
admitting students, paying tuition fees, enrolling or drop
ping courses and entering grades.

Notice that although the number of object arguments in

2, respectively). Because of thethe predicates can be at most two, sometimes, we are still

able to handle those features that require more than two
arguments. For example, the gradef a studentz in a
coursey may be represented as a predicatede(x, y, z)
in the general FOL. Because the number of distinct grades
is finite and they can be easily enumerated as "A", "B”,
"C” or "D”, we can handlegrade(z,y, z) by replacing it
with a finite number of extra predicates, saywide A(x, y),
gradeB(x,y), gradeC(z,y) and gradeD(z,y) such that
they all have two variables only. However, the restriction
on the number of variables limits the expressive power of
the language if more than two arguments vary over infinite
domains. Despite that, we conjecture that lots of the web
services still can be represented with two variables eltlger
introducing extra predicates (just like we did for the predi
categrade) or by grounding some of the arguments if their
domains are finite and relatively small. Intuitively, it se®
that most of the dynamic systems can be specified by us-
ing properties and actions with small arities, hence thie-tec
niques for arity reductions mentioned above require no more
than polynomial increase in the number of axioms.

The high-level features of our example are specified as the
following concepts and roles:

e Static primitive conceptsperson(z) (z is a person);
course(z) (x is a course provided by the university).

e Dynamic primitive conceptsincoming(x,s) (x is an
incoming student in the situationtrue whenx was admit-
ted); student(zx, s) (z is an eligible student in the situation
s when an incoming studentpays the tuition fee).

e Dynamic defined conceptsligFull(x, s) (z is eligi-

ble to be a full-time student by paying more than 5000 dol-
lars tuition fee);eligPart(x, s) (x is eligible to be a part-
time student by paying no more than 5000 dollars tuition);

incoming(x, do(a, s)) = a = admit(z) V incoming(zx, s),
student(z, do(a, s)) = (y)(a = payTuit(x,y))V
student(z) A a # reset,
tuit Paid(z,y, do(a, s)) = a = payTuit(z,y)V
tuit Paid(z,y, s) \ a # reset,

qual Full(z,s) (z is a qualified full-time student if he or
she pays full time tuition fee and takes at least 4 courses);
qualPart(x, s) (x is a part-time student if he or she pays
part-time tuition and takes 2 or 3 courses).

e Static role: preReq(z,y) (coursex is a prerequisite of
coursey).

e Dynamic roles: tuitPaid(z,y, s) (x pays tuition fee
y in the situations); enrolled(z,y,s) (z is enrolled in
coursey in the situations); completed(x,y,s) (x com-
pletes coursey in the situations); hadGrade(z,y,s) (x
had a grade for coursgin the situatiors); gradeA(zx, y, s);
gradeB(z,y,s); gradeC(z,y, s); gradeD(x,y, s).

enrolled(x,y, do(a, s)) = a = enroll(z,y) V enrolled(x,y, s)
A=(a = drop(z,y) V a = enter A(x,y) V a = enter B(z,y)
Va = enterC(z,y) V a = enterD(z,y)),
completed(z,y,do(a, s)) = a = enter A(z,y) V a = enter B(x,y)
Va = enterC(z,y) V a = enterD(z,y)V
completed(z,y, s) A a # enroll(x,y),
gradeA(z,y,do(a, s)) = a = enter A(z,y)V
gradeA(z,y,s) A =(a = enter B(z,y)
Va = enterC(z,y) V a = enterD(z,y)),
and the SSAs for fluergradeB(z,y, s), gradeC(z,y, s)
andgradeD(z,y, s) are very similar to the one for fluent
gradeA(z,y, s), which ensures that for each student and
each course no more than one grade is assigned.
Acyclic TBox Axioms:
= (Jy)(tuit Paid(z,y, s) Ay > 5000),
= (Jy) (tuit Paid(z,y,s) Ay < 5000),
= eligFull(z, s) A (32%y)enrolled(x,y, s),
= eligPart(zx, s) A (322y)enrolled(z,y, s)
AN3=3enrolled(z,y, s)).
An initial theory Dg, may be the conjunctions of the
following sentences: (Vz)-student(z, So);
person(PSN1), person(PSN3), - -, person(PSNpy,),
(Va)incoming(z,So) D x = PSNy Vz = PSNs,
preReq(CS1,CS4) V preReq(CSs,CSy),
(Vx)z # CSy D —(Jy).prePeq(y, x).

Web services are specified as actionsset (at the be-
ginning of each academic year, the system is being re-
set so that students need to pay tuition fee again to be-
come eligible)admit(x) (the university admits studem);
payTuit(x,y) (x pays tuition fee with the amount af);
enroll(x,y) (x enrolls in coursey); drop(z,y) (x drops
coursey); enterA(z,y) (enter grade "A” for student in
coursey); enterB(z,y); enterC(z,y); enterD(x, y).

eligFull(x, s
eligPart(x, s
qual Full(z, s
qualPart(z, s

N

N

The basic action theory is as follows (most of the axioms
are self-explanatory).

Precondition Axioms:
Poss(admit(z),s) = person(z) A —incoming(z, s),
Poss(payTuit(x,y),s) = incoming(z, s) A ~student(x, s),
Poss(drop(z,y),s) = enrolled(z,y, s) A ~completed(z,y, s),
Poss(enter A(z,y), s) = enrolled(z,y, s),

and similar to enterA(z,y), the precondition for

enterB(z,y) (enterC(z,y) and enterB(z,y) re-

spectively) at any situatiors is also enrolled(x,y, s).

Moreover, in the traditional SC, the precondition for antio

enroll(x,y) would be equivalent to
student(x) A (Vz)(preReq(z,y) A completed(x, z, s)
A-gradeD(z, z, s)) A course(y).

However, in the modified SC, we only allow at most two

variables (including free or quantified) other than the

situation variables and action variable. Fortunately, the

Poss(reset, s) = true,

Suppose we denote above basic action theofy.aSiven
goal G, for example3z.eligPart(x), and a composite
web service starting from the initial situation, for exampl
do([admit(PSNy), payTuit(PSNy,3000)], Sp) (we de-
note the corresponding resulting situation $9, we can
check if the goal is satisfied after the execution of this
composite web service by solving the projection prob-
lem whetherD = G[S,]. In our example, this cor-
responds to solving whethed = 3x.eligPart(x,S,).
We may also check if a given (ground) composite web
service Aj; Aq;--- 3 A, IS possible to execute starting
from the initial state by solving the executability prob-
lem whetherD = executable(do([A1, As, -+, Ay, So)).

For example, we can check if composite web service
number of the courses offered in a university is limited admit(PSN1); payTwit(PSNy,3000) is possible to be ex-
(finite and relatively small) and relatively stable overggea ecuted from the starting state by solving whetfier |~
(if we manage the students in a coliege-wise range or ezecutable(S;).
department-wise range, the number of courses may be even
smaller). Therefore, we can specify the precondition fer th
actionenroll(x,y) for each instance of. That is, assume
that the set of courses{€' 54, - - - , CS,, }, the precondition
axiom for eactCS; (i = 1..n) is

Poss(enroll(z,CS;), s) = student(x) A (Vy)(preReq(y,CS;)

Ncompleted(x,y, s) A gradeD(z,y, s)).

Example 2 Consider a web service dynamic system in
which clients are able to buy CDs and books online with
credit cards. The system high-level features of this exampl
are specified as concepts and roles.

e Static primitive concept(s)person(z) (x is a person);
cd(z) (x is a CD);book(z) (x is a book)creditCard(x) (x

is a credit card).

On the other hand, when we do this transformation, e Static defined concept(s)lient(z) (z is a client).

we can omit the statement®urse(z) for each course e Dynamic primitive concept(s):instore(z,s) (z is in

available at the university in the initial theory. store in situatiors).

e Dynamic defined concept(s)alCust(z, s) (z is valu-

able customer in).

Successor State Axioms e Static role(s)has(z,y) (x hasy).

e Dynamic role(s)boughtCD(zx,y, s) (x bought CDy in
situations); bought Book(z,y, s) (x bought booky in situ-
ations); bought(x,y, s) (x boughty in situations).

Web services are specified as actionsuyCD(z,y)
(x buys CD vy); buyBook(xz,y) (x buys book y);
returnCD(z,y) (x returns CDy); returnBook(z,y) (z
returns booky); order(z) (the web service agent ordets
from the publisher).

The basic action theory is as follows (most of the axioms
are self-explanatory).

Precondition Axioms:
Poss(buyCD(z,y), s) = client(x) A cd(y) A instore(y, s),
Poss(buyBook(x,y), s) = client(x) A book(y) A instore(y, s),
Poss(returnCD(z,y), s) = boughtCD(z, vy, s),
Poss(returnBook(z,y), s) = bought Book(x,y, s),
Poss(order(z),s) = book(x) V cd(x).
Successor State Axioms
instore(x,do(a, s)) = (Jy)(a=returnCD(y,z))V
(3y) (a=returnBook(y,x)) V a=order(x) V instore(z, s)
A=((3y)(a=buyCD(y,z)) V (Jy)(a=buyBook(y,z))),
boughtCD(z,y,s) = a=buyCD(z,y)V
boughtCD(z,y,s) A a # returnCD(z,y),
boughtBook(x,y, s) = a=buyBook(x,y)V
boughtBook(x,y, s) A a # returnBook(z,y),
bought(x,y,s) = a=buyCD(z,y) V a=buyBook(x,y)V
bought(z,y, s) A —(cd(y) A a=returnCD(z,y)
Vbook(y) A a=returnBook(z,y)).

Acyclic TBox Axioms: (both dynamic and static)

valCust(z, s) = person(z) A 3=3y.(bought(z,y, s)).

client(z) = person(x) A (Fy)(has(z,y) A CreditCard(y)).
RBox Axioms. boughtCD(z,y,s) D bought(x,y, s),

boughtBook(x,y, s) D bought(z,y,s).
We also provide below some examples&ifX regress-

able formulas and the regression of some of these formulas.

executable(S1), (Iz)valCust(x,S1), where

S1=do([buyCD(Tom, BackStreetBoys),
buy Book(Tom, HarryPotter),buyBook(T om, TheFirm)], So)

Here is an example of the regression.
R[(Fz)valCust(x,S1)]
= (3z)(person(x) A 323y R[bought(z,y,51)]) = ---
= (3z)(person(x) A IZ3y.(x = Tom Ay = TheFirmV
z=Tom Ay = HarryPotterVv
x = Tom Ay = BackStreetBoys V bought(z,y, S0))),
which is true given thaDg, is the conjunction of the fol-
lowing sentences.
person(Tom), cd(SpiceGirls), person(Sam),
creditCard(Visa), creditCard(MasterCard),
book(TheFirm), book(Java), book(HarryPotter),
has(Tom,Visa) V has(Tom, MasterCard),
has(Sam,Visa) V has(Same, MasterCard),
Vz(instore(x,So) V = Java), cd(BackStreet Boys).

Discussion and Future Work

The major consequence of the results proved above for the
problem of service composition is the following. If both
atomic services and properties of the world that can be af-

fected by these services have no more than two parame-

ters, then we are guaranteed that even in the state of in-
complete information about the world, one can always deter-

and whether this composite service will achieve a desired
effect. The previously proposed approaches made differ-
ent assumptions: (Mcllraith & Son 2002) assumes that the
complete information is available about the world when ef-
fects of a composite service are computed, and (Begdrdi
al. 2003) considers the propositional fragment of the SC.

As we mentioned in Introduction, (Mcllraith & Son 2002;
Narayanan & Mcllraith 2003) propose to use Golog for com-
position of Semantic Web services. Because our primitive
actions correspond to elementary services, it is desirable
to define Golog in our modified SC too. It is surprisingly
straightforward to define almost all Golog operators stgrti
from our C? based SC. The only restriction in comparison
with the original Golog (Reiter 2001) is that we cannot de-
fine the operatofrz)d(z), non-deterministic choice of an
action argument, becaugg’” regressable formulas cannot
have occurrences of non-ground action terms in situation
terms. In the original Golog this is allowed, because the
regression operator is defined for a larger class of regress-
able formulas. However, everything else from the original
Golog specifications remain in force, no modifications are
required. In addition to providing a well-defined semantics
for Web services, our approach also guarantees that evalua-
tion of tests in Golog programs is decidable (w.r.t. arlpjtra
theoryDg,) that is missing in other approaches (unless one
can make the closed world assumption or impose another
restriction to regain decidability).

The most important direction for future research is an ef-
ficient implementation of a decision procedure for solving
the executability and projection problems. This procedure
should handle the modifie@2~ regression and do efficient
reasoning inDg,. It should be straightforward to modify
existing implementations of the regression operator far ou
purposes, but it is less obvious which reasoner will work ef-
ficiently on practical problems. There are several differen
directions that we are going to explore. First, according to
(Borgida 1996) and Theorem 2, there exists an efficient al-
gorithm for translating”>? formulas taACCQZ (L, 1, =, |, id)
formulas. Consequently, we can use any resolution-based
description logic reasoners that can handf€Qr (LI, M, -, |
,id) (e.g., MSPASS). Alternatively, we can try to use ap-
propriately adapted tableaux-based description logie rea
soners, such as FaCT++, for (un)satisfiability checking in
ACQI (U, M, —,],id). Second, we can try to avoid any
translation fromC? to ACCOZ (LI, M, =, |, id) and adapt reso-
lution based automated theorem provers for our purposes.

The recent paper by (Baadsral. 2005) proposes integra-
tion of description logicsACQIO (and its sub-languages)
with an action formalism for reasoning about Web services.
This paper starts with a description logic and then defines
services (actions) meta-theoretically: an atomic serisce
defined as the triple of sets of description logic formulas. T
solve the executability and projection problems this paper
introduces an approach similar to regression, and reduces
this problem to description logic reasoning. The main aim
is to show how executability of sequences of actions and
solution of the executability and projection problems can
be computed, and how complexity of these problems de-
pend on the chosen description logic. In the full version

mine whether a sequentially composed service is executable of (Baaderet al. 2005), there is a detailed embedding of

the proposed framework into the syntactic fragment of the
Reiter's SC. It is shown that solutions of their executabil-
ity and projection problems correspond to solutions oféhes
problems w.r.t. the Reiter’s basic action theories in thagf
ment for appropriately translated formulas. To achievs thi
correspondence, one needs to eliminate TBox by unfolding
(this operation can result potentially in exponential blopv

of the theory). Despite that our paper and (Baaglteal.
2005) have common goals, our developments start differ-
ently and proceed in the different directions. We start from
the syntactically restricted first-order language (thatigs
nificantly more expressive tha#’CQ70), use it to construct
the modified SC (where actions are terms), define basic ac-
tion theories in this language and show that by augmenting
(appropriately modified) regression with lazy unfoldingeon
can reduce the executability and projection problems to the
satisfiability problem inC? that is decidable. Furthermore,
C? formulas can be translated t&COZ (LI, 1M, -, |, id), if
desired. Because our regression operator unfolds fluents “o
demand” and uses only relevant part of the (potentially huge
TBox , we avoid potential computational problems that may
occur if the TBox were eliminated in advance. The advan-
tage of (Baadeet al. 2005) is that all reasoning is reduced
to reasoning in description logics (and, consequentlybean
efficiently implemented especially for less expressivg{ra
ments of ALCQIO). Our advantages are two-fold: the con-

venience of representing actions as terms, and the expres-

sive power of£DL. Because”? and ACCOZ (U, M, —, |, id)
are equally expressive, there are some (situation sumgaess
formulas in our SC that cannot be expresseddGozO (that
does not allow complex roles).

An interesting paper (Liu & Levesque 2005) aims to
achieve computational tractability of solving projectimd
progression problems by following an alternative diremtio
to the approach chosen here. The theory of the initial state
is assumed to be in the so-callpabper formand the query
used in the projection problem is expected to be in a certain
normal form In addition, (Liu & Levesque 2005) considers
a general SC and impose no restriction on arity of fluents.
Because of these significant differences in our approaches,
it is not possible to compare them.

There are several other proposals to capture the dynamics

of the world in the framework of description logics and/or
its slight extensions. Instead of dealing with actions doed t

References
Artale, A., and Franconi, E. 2001. A survey of temporal exten
sions of description logicsAnnals of Mathematics and Artificial
Intelligence30(1-4).
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; ardlPa
Schneider, P. F., eds. 2003’he Descrlptlon Logic Handbook
Theory, Implementatlon and Applicatior@ambridge Un. Press.
Baader, F.; Lutz, C.; Milicic, M.; Sattler, U.; and WolteF.
2005. Integrating description logics and action formalism
First results. InProceedings of the Twentieth National Confer-
ence on Artificial Intelllgl_ence (AAAI-05572-577. extended
version is available as LTCS-Report-05-02 from http:/ittdittu-
dresden.de/research/reports.html.
Berardi, D.; Calvanese, D.; Giacomo, G. D.; Lenzerini, Mida
Mecella, M. 2003. e-service composition by descriptiorideg
based reasoning. In Calvanese, D.; de Giacomo, G.; and Fran-
coni, E., eds.Proceedings of the 2003 International Workshop in
Descrlptlon Logics (DL-2003)
Borgida, A. 1996. On the relative expressiveness of detsonip
logics and predicate logic#rtif. Intell. 82(1-2):353-367.
Giacomo, G. D.; locchi, L.; Nardi, D.; and Rosati, R. 1999. A
theory and implementation of cognitive mobile robalsurnal of
Logic and Computatio®(5):759—785.

Giacomo, G. D. 1995 Decidability of Class-Based Knowledge
Representation Formalism&oma, Italy: Dipartimento di Infor-
matica e Sistemistica Universita di Roma "La Sapienza”.

Gil, Y. 2005. Description logics and planningAl Magazine
26(2):73-84.

Gradel, E.; Otto, M.; and Rosen, E. 1997. Two-variabledagth
counting is decidable. IRroceedings of the 12th Annual IEEE
Symposium on Logic in Computer Science (LICS'905-317.
Griuninger, M., and Menzel, C. 2003. The process specificati
language (PSL): Theory and applicatioA$ Magazine24(3):63—
74.

Gruninger, M. 2004. Ontology of the process specificatam |
guage. In Staab, S., and Studer, R., edandbook on Ontolo-
gies 575-592. Springer.

Horrocks, |.; Patel-Schneider, P.; and van Harmelen, F.3200
From SHIQ and RDF to OWL: The making of a web ontology
language.Journal of Web Semantidg1):7-26.

Hull, R., and Su, J. 2005. Tools for composite web services: a
short overview.SIGMOD Recor®4(2):86—95.

Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with i
complete first-order knowledge in dynamic systems with exint
dependent actions. Broc. IJCAI-05

Mcllraith, S., and Son, T. 2002. Adapting Golog for compiosit
of semantic web services. In Fensel, D.; Giunchiglia, F.GJm-
ness, D.; and Williams, M.-A., edsProceedings of the Eighth
Internatlonal Conference on Knowledge RepresentationReat
soning (KR2002)482-493. Toulouse, Ei:rance

Narayanan, S., and Mcllraith, S. 2003. Analysis and sinat

changes caused by actions, some of the approaches turned of web servicesComputer Networkd2:675-693.

to extensions of description logic with temporal logics to
capture the changes of the world over time (Artale & Fran-
coni 2001; Baadeet al. 2003), and some others combined
planning techniques with description logics to reason abou
tasks, plans and goals and exploit descriptions of actions,
plans, and goals during plan generation, plan recognition,
plan evaluation (Gil 2005). Both (Artale & Franconi 2001)
and (Gil 2005) review several other related papers. In (Be-
rardi et al. 2003), Berardi et al. specify all the actions of
e-services as constants, all the fluents have only situation
argument, and translate the basic action theory under such
assumption into description logic framework. It has a lim-
ited expressive power without using arguments of objects
for actions and/or fluents: this may cause a blow-up of the
knowledge base.

Pacholski, L.; Szwast, W.; and Tendera, L. 1997. Complexity
of two-variable logic with counting. IfProceedings of the 12th
Annual IEEE Symposium on LOEIC in Computer Science (LICS-
97), 318-327. Warsaw, Poland: A journal version: SIAM Journal
on Computing, v 29(4), 1999, p. 1083-1117.

Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 200&-
tomated composition of web services by planning at the knowl
edge level. IrProc. of the Nineteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI051252-1259. Edinburgh,
Scotland, UK: http://ijcai.org/papers/1428.pdf.

Reiter, R. 2001. Knowledge in Action: Logical Foundations

l;g)r Describing and Implementing Dynamical Systeribe MIT
ress.

Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 200FNH

pIannlng for web service composmon usmg SHOR2urnal of

Web Semantic(4):377-396.

