
A Logic For Decidable Reasoning About Services
Yilan Gu

Dept. of Computer Science
University of Toronto

10 King’s College Road
Toronto, ON, M5S 3G4, Canada

Email: yilan@cs.toronto.edu

Mikhail Soutchanski
Department of Computer Science

Ryerson University
245 Church Street, ENG281

Toronto, ON, M5B 2K3, Canada
Email: mes@scs.ryerson.ca

Abstract

We consider a modified version of the situation calculus built
using a two-variable fragment of the first-order logic ex-
tended with counting quantifiers. We mention several addi-
tional groups of axioms that need to be introduced to capture
taxonomic reasoning. We show that the regression operator
in this framework can be defined similarly to regression in the
Reiter’s version of the situation calculus. Using this new re-
gression operator, we show that the projection problem (that
is the main reasoning task in the situation calculus) is decid-
able in the modified version. We mention possible applica-
tions of this result to formalization of Web services and to
reasoning about effects of composite Web services.

Introduction
The Semantic Web community makes significant efforts to-
ward integration of Semantic Web technology with the on-
going work on web services. These efforts include use
of semantics in the discovery, composition, and other as-
pects of web services. Web servicecompositionis related
to the task of designing a suitable combination of avail-
able component services into a composite service to sat-
isfy a client request when there is no single service that
can satisfy this request (Hull & Su 2005). This problem at-
tracted significant attention of researchers both in academia
and in industry. A major step in this direction is creation
of ontologies for web services, in particular, OWL-S that
models web services as atomic or complex actions with
preconditions and effects. An emerging industry standard
BPEL4WS (Business Process Execution Language for Web
Services) provides the basis for manually specifying com-
posite web services using a procedural language. However,
in comparison to error-prone manual service compositions,
(semi)automated service composition promises significant
flexibility in dealing with available services and also accom-
modates naturally the dynamics and openness of service-
oriented architectures. The problem of the automated com-
position of web services is often formulated in terms similar
to a planning problem in AI: given a description of a client
goal and a set of component services (that can be atomic or
complex), find a composition of services that achieves the
goal (McIlraith & Son 2002; Narayanan & McIlraith 2003;
Sirin et al. 2004). Despite that several approaches to solv-
ing this problem have already been proposed, many issues
remain to be resolved, e.g., how to give well-defined and
general characterizations of service compositions, how to
compute all effects and side-effects on the world of every ac-
tion included in composite service, and other issues. Other

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

reasoning problems, well-known in AI, that can be relevant
to service composition and discovery are executability and
projection problems. Executability problem requires deter-
mining whether preconditions of all actions included in a
composite service can be satisfied given incomplete infor-
mation about the world. Projection problem requires deter-
mining whether a certain goal condition is satisfied after the
execution of all component services given an incomplete in-
formation about the current state. In this paper we would
like to concentrate on the last problem because it is an im-
portant prerequisite for planning and execution monitoring
tasks, and for simplicity we start with sequential compo-
sitions of the atomic actions (services) only (we mention
complex actions in the last section). More specifically, fol-
lowing several previous approaches (McIlraith & Son 2002;
Narayanan & McIlraith 2003; Berardiet al. 2003; Sirinet
al. 2004; Hull & Su 2005), we choose the situation cal-
culus as an expressive formal language for specification of
actions. However, we acknowledge openness of the world
and represent incomplete information about an initial state
of the world by assuming that it is characterized by a predi-
cate logic theory in the general syntactic form.

The situation calculus is a popular and well understood
predicate logic language for reasoning about actions and
their effects (Reiter 2001). It serves as a foundation for the
Process Specification Language (PSL) that axiomatizes a set
of primitives adequate for describing the fundamental con-
cepts of manufacturing processes (PSL has been accepted
as an international standard) (Grüninger & Menzel 2003;
Grüninger 2004). It is used to provide a well-defined se-
mantics for Web services and a foundation for a high-
level programming language Golog (Berardiet al. 2003;
McIlraith & Son 2002; Narayanan & McIlraith 2003; Pis-
tore et al. 2005). However, because the situation calculus
is formulated in a general predicate logic, reasoning about
effects of sequences of actions is undecidable (unless some
restrictions are imposed on the theory that axiomatizes the
initial state of the world). The first motivation for our pa-
per is intention to overcome this difficulty. We propose to
use a two-variable fragmentFO2 of the first-order logic as
a foundation for a modified situation calculus. Because the
satisfiability problem in this fragment is known to be decid-
able (it is in NEXPTIME), we demonstrate that by reduc-
ing reasoning about effects of actions to reasoning in this
fragment, one can guarantee decidability no matter what is
the syntactic form of the theory representing the initial state
of the world. The second motivation for our paper comes
from description logics. Description Logics (DLs) (Baader
et al. 2003) are a well-known family of knowledge represen-

tation formalisms, which play an important role in providing
the formal foundations of several widely used Web ontol-
ogy languages including OWL (Horrocks, Patel-Schneider,
& van Harmelen 2003) in the area of the Semantic Web.
DLs may be viewed as syntactic fragments of first-order
logics (FOL) and offer considerable expressive power go-
ing far beyond propositional logic, while ensuring that rea-
soning is decidable (Borgida 1996). DLs have been mostly
used to describe static knowledge-base systems. Moreover,
several research groups consider formalization of actions
using DLs or extensions of DLs. Following the key idea
of (Giacomo 1995), that reasoning about complex actions
can be carried in a fragment of the propositional situation
calculus, De Giacomo et al. (Giacomoet al. 1999) give
an epistemic extension of DLs to provide a framework for
the representation of dynamic systems. However, the rep-
resentation and reasoning about actions in this framework
are strictly propositional, which reduces the representation
power of this framework. In (Baaderet al. 2005), Baader et
al. provide another proposal for integrating description log-
ics and action formalisms. They take as foundation the well
known description logicALCQIO (and its sub-languages)
and show that the complexity of executability and projection
problems coincides with the complexity of standard DL rea-
soning. However, actions (services) are represented in their
paper meta-theoretically, not as first-order terms. This can
potentially lead to some complications when specifications
of other reasoning tasks (e.g., planning) will be considered
because it is not possible to quantify over actions in their
framework. In our paper, we take a different approach and
represent actions as first-order terms, but achieve integration
of taxonomic reasoning and reasoning about actions by re-
stricting the syntax of the situation calculus. Our paper can
be considered as a direct extension of the well-known result
of Borgida (Borgida 1996) who proves that many expressive
description logics can be translated to two-variable fragment
FO2 of FOL. However, to the best of our knowledge, no-
body proposed this extension before.

The main contribution of our paper to the area of service
composition and discovery is the following. We show that
by using services that are composed from atomic services
with no more than two parameters and by using only those
properties of the world which have no more than two param-
eters (to express a goal condition), one can guarantee that the
executability and projection problems for these services can
always be solved even if information about the current state
of the world is incomplete.

Motivations
Consider online web services provided by an university.
Imagine that a system automates the department admin-
istrators by doing student management work online, for
instance, admitting new students, accepting payments of
tuition fees and doing course enrollments for students, etc.
Unlike previously proposed e-services (e.g.,the e-services
described in (Berardiet al. 2003) or in BPEL4WS)
which allow only services without parameters, we use
functional symbols to represent a class of services. For
example, variables, sayx andy, can be used to represent
any objects; the service of enrolling any studentx in any
coursey can be specified by using a functional symbol

payTuit(x,y)

student(x)~student(x)

drop(x,y)

enroll(x,y)

enrolled(x,y)~enrolled(x,y)

reset

Figure 1: Examples of transition diagrams for services.

admit(PSN1);payTuit(PSN1,5100);enroll(PSN1,CS1)

 enrolled(PSN1,CS1)
student(PSN1)
incoming(PSN1)

~student(PSN1)
~incoming(PSN1)

~ y.enrolled(PSN1,y)

Figure 2: A transition diagram for a composite web service.

enroll(x, y); and, the service of admitting any student
x can be represented as a functional symboladmit(x),
etc. The composite web services can be considered as
sequences of instantiated services. For example, a sequence
admit(PSN1); payTuit(PSN1, 5100); enroll(PSN1, CS1)
represents the following composite web service for person
PSN1: admit her as a student, take the tuition fee $5100
and enroll her in a courseCS1. The system properties are
specified by using predicates with parameters. For example,
the predicateenrolled(x, y) represents that a studentx is
enrolled in a coursey. This property becomes true when
serviceenroll(x, y) is performed and becomes false when
servicedrop(x, y) is performed for a studentx and a course
y (see Figure 1). A composite web service corresponds to
the composition of these instantiated transition diagrams
(see Figure 2). When one describes the preconditions of
the services, the effects of the services on the world, i.e.,
when one characterizes which properties of the world are
true before and after the execution of the services, given
incomplete information about the current state of the world,
the use of first-order language, such as the situation calculus
(Reiter 2001), can provide more expressive power than
propositional languages. For example, assume that a student
is considered as a qualified full time student if the tuition
fee she paid is more than 5000 dollars and she enrolls in
at least four different courses in the school. Such property
can be easily described using the first-order logic, and
checking whether or not such property can be satisfied after
execution of certain sequence of web services is equivalent
to solving a projection problem. Because FOL is compact
way of representing information about states and transitions
between states, we want to take advantage of the expressive
power of the first-order logic as much as possible to reason
about web services.

On the other hand, as we mentioned in the introduction,
we want to avoid the undecidability of the entailment prob-
lem in the general FOL. Inspired by the decidability of rea-
soning in many DLs (which are sub-languages of a syntactic
fragment of the FOL with the restriction on the number of
variables), we restrict the number of variables to at most two
in the specifications of the web services to ensure the de-
cidability of the executability and projection problems tech-
niques. At the same time, we can take the advantage of the
expressive power of quantifiers to specify compactly realis-
tic web services (such as mentioned above). Moreover, FOL
with limited number of variables, in contrast to the propo-
sitional logic, still allows us to represent and reason about
properties with infinite domains (such asweight andtime,
etc) or with large finite domains (such asmoney, person,

etc) in a very compact way. Two examples are given in the
last section to illustrate the expressive power and reasoning
about the web services.

The Situation Calculus
The situation calculus (SC)Lsc is a first-order (FO) lan-
guage for axiomatizing dynamic systems. In recent years,
it has been extended to include procedures, concurrency,
time, stochastic actions, etc (Reiter 2001). Nevertheless,
all dialects of the SCLsc include three disjoint sorts (ac-
tions, situationsandobjects). Actions are first-order terms
consisting of an action function symbol and its arguments.
Actions change the world.Situations are first-order terms
which denote possible world histories. A distinguished con-
stantS0 is used to denote theinitial situation, and func-
tion do(a, s) denotes the situation that results from per-
forming action a in situation s. Every situation corre-
sponds uniquely to a sequence of actions. Moreover, no-
tation s′ � s means that either situations′ is a subse-
quence of situations or s = s′.1 Objects are first-order
terms other than actions and situations that depend on the
domain of application.Fluents are relations or functions
whose values may vary from one situation to the next. Nor-
mally, a fluent is denoted by a predicate or function symbol
whose last argument has the sort situation. For example,
F (~x, do([α1, · · · , αn], S0) represents a relational fluent in
the situationdo(αn, do(· · · , do(α1, S0) · · ·) resulting from
execution of ground action termsα1, · · · , αn in S0. We do
not consider functional fluents in this paper.

The SC includes the distinguished predicatePoss(a, s)
to characterize actionsa that are possible to execute ins.
For any SC formulaφ and a terms of sort situation, we
sayφ is a formulauniform in s iff it does not mention the
predicatesPoss or ≺, it does not quantify over variables of
sort situation, it does not mention equality on situations,and
whenever it mentions a term of sort situation in the situa-
tion argument position of a fluent, then that term iss (see
(Reiter 2001)). Ifφ(s) is a uniform formula and the situa-
tion argument is clear from the context, sometimes we sup-
press the situation argument and write this formula simply
asφ. Moreover, for any predicate with the situation argu-
ment, such as a fluentF or Poss, we introduce an opera-
tion of restoring a situation arguments back to the corre-
sponding atomic formula without situation argument, i.e.,

F (~x)[s]
def
= F (~x, s) andPoss(A)[s]

def
= Poss(A, s) for

any action termA and object vector~x. By the recursive def-
inition, such notation can be easily extended toφ[s] for any
first-order formulaφ, in which the situation arguments of all
fluents andPoss predicates are left out, to represent the SC
formula obtained by restoring situations back to all the flu-
ents and/orPoss predicates (if any) inφ. It is obvious that
φ[s] is uniform ins.

A basic action theory(BAT) D in the SC is a set of
axioms written inLsc with the following five classes of
axioms to model actions and their effects (Reiter 2001).

1Reiter (Reiter 2001) uses the notations′ ⊑ s, but we use
s′ � s to avoid confusion with the inclusion relation< that is
commonly used in description logic literature. In this paper, we
use< to denote the inclusion relation between concepts or roles.

Action precondition axioms Dap: For each action func-
tion A(~x), there is one axiom of the formPoss(A(~x), s) ≡
ΠA(~x, s). ΠA(~x, s) is a formula uniform ins with free
variables among~x ands, which characterizes the precondi-
tions of actionA. Successor state axiomsDss: For each
relational fluentF (~x, s), there is one axiom of the form
F (~x, do(a, s)) ≡ ΦF (~x, a, s), whereΦF (~x, a, s) is a for-
mula uniform ins with free variables among~x, a ands. The
successor state axiom (SSA) for fluentF completely char-
acterizes the value of fluentF in the next situationdo(a, s)
in terms of the current situations. Initial theory DS0

: It
is a set of first-order formulas whose only situation term is
S0. It specifies the values of all fluents in the initial state.
It also describes all the facts that are not changeable by any
actions in the domain.Unique name axioms for actions
Duna: Includes axioms specifying that two actions are dif-
ferent if their action names are different, and identical ac-
tions have identical arguments2. Fundamental axioms for
situationsΣ: The axioms for situations which characterize
the basic properties of situations. These axioms are domain
independent. They are included in the axiomatization of any
dynamic systems in the SC (see (Reiter 2001) for details).

Suppose thatD = Duna ∪ DS0
∪ Dap ∪ Dss ∪ Σ

is a BAT, α1, · · · , αn is a sequence of ground ac-
tion terms, andG(s) is a uniform formula with one
free variable s. One of the most important reason-
ing tasks in the SC is the projection problem, that is,
to determine whetherD |= G(do([α1, · · · , αn], S0)).
Another basic reasoning task is the executabil-
ity problem. Let executable(do([α1, · · · , αn], S0))
be an abbreviation of the formulaPoss(α1, S0) ∧Wn

i=2 Poss(αi, do([α1, · · · , αi−1], S0)). Then, the
executability problem is to determine whether
D |= executable(do([α1, · · · , αn], S0)). Planning
and high-level program execution are two important settings
where the executability and projection problems arise
naturally. Regressionis a central computational mecha-
nism that forms the basis for automated solution to the
executability and projection tasks in the SC (Reiter 2001).
A recursive definition of the regression operatorR on
any regressable formulaφ is given in (Reiter 2001); we
use notationR[φ] to denote the formula that results from
eliminatingPoss atoms in favor of their definitions as given
by action precondition axioms and replacing fluent atoms
about do(α, s) by logically equivalent expressions about
s as given by SSAs repeatedly until it cannot make such
replacement any further. A formulaW of Lsc is regressable
iff (1) every term of sort situation inW is starting from
S0 and has the syntactic formdo([α1, · · · , αn], S0) where
eachαi is of sort action; (2) for every atom of the form
Poss(α, σ) in W , α has the syntactic formA(t1, · · · , tn)
for somen-ary function symbolA of Lsc; and (3)W
does not quantify over situations, and does not mention the
relation symbols “≺” or “=” between terms of situation
sort. The formulaG(do([α1, · · · , αn], S0)) is a particularly
simple example of a regressable formula because it is
uniform in do([α1, · · · , αn], S0)), but in the general case,
regressable formulas can mention several different ground

2For the second type of axioms, we use the form
A(x1, · · · , xn) = A(y1, · · · , yn) ≡ x1 = y1 ∧ · · · ∧ xn = yn

situation terms. Roughly speaking, the regression of a
regressable formulaφ through an actiona is a formulaφ′

that holds prior toa being performed iffφ holds aftera.
Both precondition and SSAs support regression in a natural
way and are no longer needed when regression terminates.
The regression theorem (Reiter 2001) shows that one can
reduce the evaluation of a regressable formulaW to a
first-order theorem proving task in the initial theory together
with unique names axioms for actions:

D |= W if DS0
∪Duna |= R[W].

This fact is the key result for our paper. It demonstrates
that an executability or a projection task can be reduced
to a theorem proving task that does not use precondition,
successor state, and foundational axioms. This is one of
the reasons why the SC provides a natural and easy way
to representation and reasoning about dynamic systems.
However, becauseDS0

is an arbitrary first-order theory,
this type of reasoning in the SC is undecidable. One of the
common ways to overcome this difficulty is to introduce
the closed world assumption that amounts to assuming
that DS0

is a relational theory and all statements that are
not known to be true explicitly, are assumed to be false.
However, in many application domains this assumption is
unrealistic. For this reason, we would like to consider a
version of the SC formulated inFO2, a syntactic fragment
of the first-order logic that is known to be decidable, or in
C2 an extension ofFO2 (see below), where the satisfiability
problem is still decidable.

Description Logics and Two-variable FO
Logics

In this section we review a few popular expressive descrip-
tion logics and related fragments of the FO logic. We start
with logic ALCHQI. Let NC = {C1, C2, . . .} be a set of
atomicconcept namesandNR = {R1, R2, . . .} be a set of
atomicrole names. A ALCHQI role is either someR ∈ NR

or an inverse roleR− for R ∈ NR. A ALCHQI role hier-
archy (RBox) RH is a finite set of role inclusion axioms
R1 ⊑ R2, whereR1, R2 areALCHQI roles. ForR ∈ NR,
we defineInv(R) = R− andInv(R−) = R, and assume that
R1 ⊑ R2 ∈ RH impliesInv(R1) ⊑ Inv(R2) ∈ RH.

The set ofALCHQI concepts is the minimal set built
inductively fromNC andALCHQI roles using the following
rules: allA ∈ NC are concepts, and, ifC, C1, andC2

are ALCHQI concepts,R is a simple role andn ∈ N,
then also¬C, C1 ⊓ C2, and (∃>nR.C) are ALCHQI
concepts. We use also some abbreviations for concepts:
C1 ⊔ C2

def
= ¬(¬C1 ⊓ ¬C2) (∃6nR.C)

def
= ¬(∃>(n+1)R.C)

C1 ⊃ C2
def
= ¬C1 ⊔ C2 (∃nR.C)

def
= (∃6nR.C) ⊓ (∃>nR.C)

∃R.C
def
= (∃>1R.C) ⊤

def
= A ⊔ ¬A for someA ∈ NC

∀R.C
def
= ∃<1R.¬C ⊥

def
= ¬⊤

Concepts that are not concept names are calledcomplex.
A literal concept is a possibly negated concept name.
A TBox T is a finite set ofequality axiomsC1 ≡ C2

(sometimes,general inclusion axiomsof the formC1 ⊑ C2

are also allowed, whereC1, C2 are complex concepts).
An equality with an atomic concept in the left-hand side
is a conceptdefinition. In the sequel, we always consider
TBox axioms setT that is a terminology, a finite set of

concept definition formulas with unique left-hand sides. We
say that adefinedconcept nameC1 directly usesa concept
nameC2 w.r.t. T if C1 is defined by a concept definition
axiom inT with C2 occurring in the right-hand side of the
axiom. Letusesbe the transitive closure of directly uses,
and a TBox axioms setT is acyclicif no concept name uses
itself w.r.t. T . An ABox A is a finite set of axiomsC(a),
R(a, b), and (in)equalitiesa ≈ b anda 6≈ b.

The logic ALCQI is obtained by disallowing RBox .
A more expressive logicALCQI(⊔,⊓,¬, |, id) is obtained
from ALCQI by introducing identity roleid (relating each
individual with itself) and allowing complex role expres-
sions: ifR1, R2 areALCQI(⊔,⊓,¬, |, id) roles andC is a
concept, thenR1 ⊔ R2, R1 ⊓ R2, ¬R1, R−

1 andR1|C are
ALCQI(⊔,⊓,¬, |, id) roles too.3 These complex roles can be
used in TBox (in the right-hand sides of definitions). Subse-
quently, we call a roleR primitive if it is eitherR ∈ NR or
it is an inverse roleR− forR ∈ NR. Two-variable FO logic

τx(A)
def
= A(x) for A ∈ NC

τx(⊤)
def
= x = x τx(⊥)

def
= ¬(x = x)

τx(¬C)
def
= ¬τx(C) τy(C)

def
= τx(C)[x/y, y/x]

τx(C1 ⊓ C2)
def
= τx(C1) ∧ τx(C2)

τx(∃⊲⊳nR.C)
def
= ∃⊲⊳ny.(τx,y(R) ∧ τy(C))

τx(∀R.C)
def
= ∀y.(τx,y(R) ⊃ τy(C))

τx,y(id)
def
= x = y τx,y(¬R)

def
= ¬τx,y(R)

τx,y(R|C)
def
= τx,y(R) ∧ τy(C) τx,y(R−)

def
= τy,x(R)

τx,y(R1 ⊓ R2)
def
= τx,y(R1) ∧ τx,y(R2)

τx,y(R1 ⊔ R2)
def
= τx,y(R1) ∨ τx,y(R2)

τx,y(R)
def
= R(x, y) for R ∈ NR

τy,x(R)
def
= R(y, x) for R ∈ NR

FO2 is the fragment of ordinary FO logic (with equality),
whose formulas only use no more than two variable sym-
bolsx andy (free or bound).Two-variable FO logic with
countingC2 extendsFO2 by allowing FO counting quan-
tifiers ∃≥m and∃≤m for all m ≥ 1. Borgida in (Borgida
1996) defines an expressive description logicB and shows
that each sentence in the languageB without transitive roles
and role-composition operator can be translated to a sen-
tence inC2 with the same meaning, and vice versa, i.e.,
these two languages areequally expressive. A knowledge
baseKB is a triple (R, T ,A). The semantics ofKB is
given by translating it into FO logic with countingC2 by the
operatorτ (see the table above, in which⊲⊳ ∈ {>,6} and
x/y means replacex with y). Borgida’s logicB includes all
concept and role constructors inALCQI(⊔,⊓,¬, |, id) and,
in addition, it includes a special purpose constructorprod-
uct that allows to build the roleC1 × C2 from two con-
ceptsC1 andC2. This construct has a simple semantics

τx,y(C1 × C2)
def
= τx(C1) ∧ τy(C2) , and makes the trans-

lation fromC2 intoB rather straightforward. Although con-
structorproduct is not a standard role constructor, we can
use restriction constructor| in addition with⊔,⊓,¬ and in-
verse role to represent it. That is, for any conceptsC1 and

3These standard roles constructors and their semantics can be
found in (?).

C2, C1 × C2 = (R ⊔ ¬R)|C2
⊓ ((R ⊔ ¬R)|C1

)−,

whereR can be any role name. Consequently, product can
be eliminated. Therefore, the following statement is a direct
consequence of the theorems proved in (Borgida 1996).

Theorem 1 The description logicALCQI(⊔,⊓,¬, |, id) and
C2 are equally expressive (i.e., each sentence in language
ALCQI(⊔,⊓,¬, |, id) can be translated to a sentence inC2,
and vice versa). In addition, translation in both directions
leads to no more than linear increase of the size of the trans-
lated formula.
This statement has an important consequence. Gradel et.
al.(Grädel, Otto, & Rosen 1997) and Pacholski et al (Pachol-
ski, Szwast, & Tendera 1997) show that satisfiability prob-
lem forC2 is decidable. Hence, the satisfiability and/or sub-
sumption problems of concepts w.r.t. an acyclic or empty
TBox in description logicALCQI(⊔,⊓,¬, |, id) is also de-
cidable.4 In the next section we take advantage of this and
useC2 as a foundation for a modified SC.

Modeling Dynamic Systems in a Modified
Situation Calculus

In this section, we consider dynamic systems formulated in
a minor modification of the language of the SC so that it can
be considered as an extension toC2 language (with situa-
tion argument for unary and binary fluents). The key idea is
to consider a syntactic modification of the SC such that the
executability and projection problems are guaranteed to be
decidable as a consequence of theC2 property of being de-
cidable.5 Moreover, since the modified SC has a very strong
connections with description logics, which will be explained
in detail below, we will denote this language asLDL

sc .
First of all, the three sorts inLDL

sc (i.e., actions, situations
and objects) are the same as those inLsc, except that they
obey the following restrictions: (1) all terms of sortobject
are variables (x andy) or constants, i.e., functional symbols
are not allowed; (2) all action functions include no more than
two arguments. Each argument of any term of sortaction is
either a constant or anobjectvariable (x or y); (3) variable
symbola of sortactionand variable symbols of sortsitua-
tion are the only additional variable symbols being allowed
in D − Σ −Duna in addition to variable symbolsx andy.

Second, any fluent inLDL
sc is a predicate either with two

or with three arguments including the one of sort situation.
We call fluents with two arguments, one is of sort object and
the other is of sort situation,(dynamic) concepts, and call
fluents with three arguments, first two of sort object and the
last of sort situation,(dynamic) roles. Intuitively, each (dy-
namic) concept inLDL

sc , sayF (x, s) with variablesx ands
only, can be considered as a changeable conceptF in a dy-
namic system specified inLDL

sc ; the truth value ofF (x, s)

4In (Baaderet al. 2003) it is shown that the satisfiability prob-
lems of concepts and subsumption problems of concepts can be
reduced to each other; moreover, if a TBoxT is acyclic, the rea-
soning problems w.r.t.T can always be reduced to problems w.r.t.
the empty TBox.

5The reason that we call it a ”modified” rather than a ”re-
stricted” is that we not only restrict the number of variables that
can be mentioned in the theories, but we also extend the SC with
other features, such as introducing counting quantifiers and adding
acyclic TBox axioms to basic action theories.

could vary from one situation to another. Similarly, each
(dynamic) role inLDL

sc , sayR(x, y, s) with variablesx, y
ands, can be considered as a changeable roleR in a dy-
namic system specified inLDL

sc ; the truth value ofR(x, y, s)
could vary from one situation to another. InLDL

sc , (static)
concepts(i.e., unary predicates with no situation argument)
and (static) roles(i.e., binary predicates with no situation
argument), if any, are considered as eternal facts and their
truth values never change. They represent unchangeable tax-
onomic properties and unchangeable classes of an applica-
tion domain. Moreover, each concept (static or dynamic)
can be eitherprimitive or defined. For each primitive dy-
namic concept, an SSA must be provided in the basic action
theory formalized for the given system. Because defined dy-
namic concepts are expressed in terms of primitive concepts
by axioms similar to TBox , SSAs for them are not provided.
In addition, SSAs are provided for dynamic primitive roles.

Third, apart from standard first-order logical symbols∧,
∨ and∃, with the usual definition of a full set of connectives
and quantifiers,LDL

sc also includes counting quantifiers∃≥m

and∃≤m for all m ≥ 1.
The dynamic systems we are dealing with here satisfy the

open world assumption(OWA): what is not stated explic-
itly is currently unknown rather than false. In this paper,
the dynamic systems we are interested in can be formalized
as abasic action theory(BAT) D using the following seven
groups of axioms inLDL

sc : D = Σ ∪ Dap ∪ Dss ∪ DT ∪
DR ∪ Duna ∪ DS0

. Five of them (Σ,Dap,Dss,Duna,DS0
)

are similar to those groups in a BAT inLsc, and the other
two (DT ,DR) are introduced to axiomatize description logic
related facts and properties (see below). However, because
LDL

sc allows only two object variables, all axioms must con-
form to the following additional requirements.
Action precondition axioms Dap: For each actionA in
LDL

sc , there is one axiom of the form
Poss(A, s) ≡ ΠA[s] (orPoss(A(x), s) ≡ ΠA(x)[s],
orPoss(A(x, y), s) ≡ ΠA(x, y)[s], respectively),

if A is an action constant (or unary, or binary action term, re-
spectively), whereΠA (orΠA(x), orΠA(x, y), respectively)
is aC2 formula with no free variables (or with at mostx,
or with at mostx, y as the only free variables, respectively).
These axioms characterize the preconditions of all actions.
Successor state axiomsDss: For each primitive dy-
namic conceptF (x, s) in LDL

sc , an SSA is specified for
F (x, do(a, s)). According to the general syntactic form of
the SSAs provided in (Reiter 2001), without loss of general-
ity, we assume the axiom is of the form

F (x, do(a, s)) ≡ ψF (x, a, s), (1)

where the general structure ofψF (x, a, s) is
(
Wm0

i=1[∃x][∃y](a=A+
i (~x(i,0,+)) ∧ φ

+
i (~x(i,1,+))[s])) ∨ F (x, s)

∧¬((
Wm1

j=1[∃x][∃y](a=A−
j (~x(j,0,−)) ∧ φ

−
j (~x(j,1,−))[s]))),

where each variable vector~x(i,n,b) (or ~x(j,n,b) respectively)
(i=1..m0, j=1..m1, n ∈ {0, 1}, b ∈ {+,−}) represents a
list of object variables, which can be empty,x, y, 〈x, y〉 or
〈y, x〉. Moreover,[∃x] or [∃y] represents that the quantifier
included in[] is optional; and eachφ+

i (~x(i,1,+)), i=1..m0

(φ−i (~x(j,1,−)), j = 1..m0, respectively), is aC2 formula
with variables amongx andy.

Similarly, an SSA for a dynamic primitive roleR(x, y, s)
is provided as a formula of the form

R(x, y, do(a, s)) ≡ ψR(x, y, a, s). (2)

Moreover, without loss of generality, the general structure
of ψR(x, y, a, s) is
(
Wm2

i=1[∃x][∃y](a=A+
i (~x(i,0,+)) ∧ φ

+
i (~x(i,1,+))[s])) ∨R(x, y, s)

∧¬((
Wm3

j=1[∃x][∃y](a=A−
j (~x(j,0,−)) ∧ φ

−
j (~x(j,1,−))[s]))),

where each variable vector~x(i,n,b) (or ~x(j,n,b) respectively)
(i = 1..m2, j = 1..m3, n ∈ {0, 1}, b ∈ {+,−}) rep-
resents a vector of free variables, which can be either
empty, x, y, 〈x, y〉 or 〈y, x〉. Moreover, [∃x] or [∃y]
represents that the quantifier included in[] is optional;
and eachφ+

i (~x(i,1,+)), i= 1..m2 (φ−j (~x(j,1,−)), j = 1..m3,
respectively), is aC2 formula with variables (both free
and quantified) amongx and y. Note that whenm0 (or
m1,m2,m3, respectively) is equal to0, the corresponding
disjunctive subformula is equivalent tofalse.
Acyclic TBox axiomsDT : Similar to the TBox axioms in
DL, we may define new concepts using TBox axioms. Any
group of TBox axiomsDT may include two sub-classes:
static TBoxDT,st and dynamic TBoxDT,dyn. Every for-
mula in static TBox is aconcept definitionformula of the
form G(x) ≡ φG(x), whereG is a unary predicate sym-
bol andφG(x) is a C2 formula in the domain with free
variablex, and there is no fluent in it. Every formula in
dynamic TBox is aconcept definitionformula of the form
G(x, s) ≡ φG(x)[s], whereφG(x) is aC2 formula with free
variablex, and there is at least one dynamic concept or dy-
namic role in it. All the concepts appeared in the left-hand
side of TBox axioms are calleddefinedconcepts. We also
require that the set of TBox axioms must be acyclic.
RBox axiomsDR: Similar to the idea of RBox in DL, we
may also specify a group of axioms, called RBox axioms be-
low, to support a role taxonomy. Each role inclusion axiom
is represented asR1(x, y)[s] ⊃ R2(x, y)[s] whereR1 and
R2 are primitive roles (either static or dynamic). If these
axioms are included in the BATD, then it is assumed that
D is specified correctly in the sense that the meaning of
any RBox axiom included in the theory is correctly com-
piled into SSAs. That is, one can prove by induction that
D |= ∀s.R1(x, y)[s] ⊃ R2(x, y)[s]. Although RBox axioms
are not used by the regression operator, they are used for
taxonomic reasoning in the initial theory.
Initial theory DS0

: It is a finite set ofC2 sentences (as-
suming that we suppress the only situation termS0 in all
fluents). It specifies the incomplete information about the
initial problem state and also describes all the facts that are
not changeable over time in the domain of an application.
In particular, it includes static TBox axiomsDT,st as well
as RBox axioms in the initial situationS0 (if any). In addi-
tion, DS0

also includes all unique name axioms for object
constants.

The remaining two classes (foundational axioms for situ-
ationsΣ and unique name axioms for actionsDuna) are the
same as those in the BATs of the usual SC. Note that these
axioms (as well asDap andDss) use more than two vari-
ables (e.g.,Dss use action and situation variables in addition
to object variables), but we will see in the next section, that
these axioms will be eliminated in the process of regressing

a formula to a sentence that will use no more than two object
variables and no other variables.

Extending Regression with Lazy Unfolding
After giving the definition of the BAT inLDL

sc , we turn our
attention to the reasoning tasks. There are various kinds of
reasoning problems we could think of. For example, if we
are considering a planning problem, we are looking for a
ground situation starting from the initial situation such that
it is executableand a given goal (formalized as a logic for-
mula w.r.t. this situation) can be entailed byD. However,
below we focus on two sub-problems of the planning prob-
lem (executability and projection), because they are the most
essential for solving the planning (composition) problem.

Consider a BATD of LDL
sc specified as in the previous

section for some dynamic system with OWA. Given a for-
mulaW of LDL

sc in the domainD, the definition ofW being
regressable (calledLDL

sc regressablebelow) is slightly dif-
ferent from the definition ofW being regressable inLsc (see
Section) by adding the following additional conditions: (4)
any variable (free or bounded) inW is eitherx or y; (5) ev-
ery term of sort situation inW is ground. Moreover, inLDL

sc

we have to be more careful with the definition of the regres-
sion operatorR for two main reasons. First, to deal with
TBox we have to extend regression. For aLDL

sc regress-
able formulaW , we extendbelow the regression operator
defined in (Reiter 2001) with thelazy unfolding technique
(see (Baaderet al. 2003)) and still denote such operator as
R. Second,LDL

sc uses only two object variables and we have
to make sure that after regressing a fluent atom we still get a
LDL

sc formula, i.e., that we never need to introduce new (free
or bound) object variables. To deal with the two-variable
restriction, we modify our regression operatorR in compar-
ison to the conventional operator defined in (Reiter 2001)
as follows, whereσ denotes the term of sort situation, andα
denotes the term of sort action.
• If W is not atomic, i.e. W is of the formW1 ∨ W2,
W1 ∧ W2, ¬W ′, Qv.W ′ whereQ represents a quantifier
(including counting quantifiers) andv represents a variable
symbol, then
R[W1 ∨W2] = R[W1] ∨R[W2], R[¬W ′] = ¬R[W ′],
R[W1 ∧W2] = R[W1] ∧R[W2],R[Qv.W ′] = Qv.R[W ′].

• Otherwise,W is atom. There are several cases.
(a) If W is of the form

A1(~t) = A2(~t
′), (3)

then by using axioms inDuna
6, we define the regression of

W as

R[W] =

{
⊥ if A1 6= A2,∧|~t|

i=1 ti = t′i otherwise.
If W is situation independent atom (including equality
between object constants or variables), orW is a concept or
role uniform inS0, thenR[W] = W.
(b) If W is a regressablePoss atom, so it has the form
Poss(A(~t), σ), for terms of sort action and situation respec-
tively in LDL

sc . Then there must be an action precondition

6Notice that the action functions with different number of argu-
ments always use different function symbols (i.e., different names).

axiom forA of the formPoss(A(~x), s) ≡ ΠA(~x, s), where
the argument~x of sort object can either be empty (i.e.,A
is an action constant), a single variablex or two-variable
vector〈x, y〉. Because of the syntactic restrictions ofLDL

sc ,
each term in~t can only be a variablex, y or a constantC.
Then,

R[W] =

8
>>>>>><
>>>>>>:

R[(∃y)(x = y ∧ ΠA(x, y, σ))] if ~t = 〈x, x〉,
R[(∃x)(y = x ∧ ΠA(x, y, σ))] else if~t = 〈y, y〉,
R[ΠA(~t, σ)] else if~t = x or

~t = 〈x, y〉 or
~t = 〈x,C〉,

R[fΠA(~t, σ)] otherwise,

whereC represents a constant andφ̃ denotes adual formula
for formulaφ obtained by replacing every variable symbol
x (free or quantified) with variable symboly and replacing
every variable symboly (free or quantified) with variable
symbolx in φ, i.e.,φ̃ = φ[x/y, y/x].
(c) If W is a defined dynamic concept, so it has the
form G(t, σ) for some object term~t and situation term
σ, and there must be a TBox axiom forG of the form
G(x, s) ≡ φG(x, s). Because of the restrictions of the
languageLDL

sc , term t can only be a variablex, y or a
constant. Then, we use lazy unfolding technique as follows:

R[W] =


R[φG(t, σ)] if t is not variabley,
R[fφG(y, σ)] otherwise.

(d) If W is a primitive concept (a primitive role, re-
spectively), so it has the formF (t1, do(α, σ)) (the form
R(t1, t2, do(α, σ)), respectively) for some termst1 (and
t2) of sort object, termα of sort action and termσ of sort
situation. There must be an SSA forF (for R, respectively)
such as Eq. 1 (such as Eq. 2, respectively). Because of the
restriction of the languageLDL

sc , the termt1 andt2 can only
be a variablex, y or a constantC andα can only an action
function with no more than two arguments of sort object.
Then, whenW is a concept,

R[W] =


R[ψF (t1, α, σ)] if t1 is not variabley,
R[fψF (y,α, σ)] otherwise;

and, whenW is a role,

R[W] =

8
>>><
>>>:

R[(∃y)(x = y ∧ ψR(x, y, α, σ))] if t1 = x, t2 = x;
R[(∃x)(y = x ∧ ψR(x, y, α, σ))] if t1 = y, t2 = y;

R[fψR(t1, t2, α, σ)] if t1 = y, t2 = x,
or t1 = y, t2 = C;

R[ψR(t1, t2, α, σ)] otherwise.

Based on the above definition, we are able to prove the
following theorems.

Theorem 2 SupposeW is aLDL
sc regressable formula, then

the regressionR[W] defined above terminates in a finite
number of steps.

Proof: Immediately follows from acyclicity of the TBox
axioms, and from the assumption thatRBox axioms are
compiled into the SSAs and consequently do not participate
in regression. �

Moreover, it is easy to see that anyLDL
sc regressable for-

mula has no more than two variables (x andy), and the fol-
lowing theorem holds.

Theorem 3 SupposeW is aLDL
sc regressable formula with

the background basic action theoryD. Then,R[W] is a
LDL

sc formula uniform inS0 with no more than two variables
(x andy). Moreover,D |= W ≡ R[W], and

D |= W iff DS0
|= R[W].

Moreover, we can also obtain the following corollary
about decidability of the projection problem forLDL

sc re-
gressable formulaW (particularly, whenW is of form
executable(S) for some ground situationS, it becomes the
executability problem).

Corollary 1 SupposeW is aLDL
sc regressable formula with

the background basic action theoryD. Then, the problem
whetherD |= W is decidable.

Proof: According to Theorem 3,D |= W iff DS0
|=

R[W], whereW0 and the axioms inDS0
areC2 formulas.

Therefore, the problem whetherD |= W is equivalent to
whetherDS0

∧¬R[W] is unsatisfiable or not, which is a de-
cidable problem, according to the fact that the satisfiability
problem inC2 is decidable. So, the corollary is proved.�

Examples
In this section, we give some examples to illustrate the basic
ideas described in the previous sections. First, we give the
formal specification for the web services of an imaginary
university described informally in the second section.

Example 1Consider a university that provides on the Web
student administration and management services, such as
admitting students, paying tuition fees, enrolling or drop-
ping courses and entering grades.

Notice that although the number of object arguments in
the predicates can be at most two, sometimes, we are still
able to handle those features that require more than two
arguments. For example, the gradez of a studentx in a
coursey may be represented as a predicategrade(x, y, z)
in the general FOL. Because the number of distinct grades
is finite and they can be easily enumerated as ”A”, ”B”,
”C” or ”D”, we can handlegrade(x, y, z) by replacing it
with a finite number of extra predicates, saygradeA(x, y),
gradeB(x, y), gradeC(x, y) and gradeD(x, y) such that
they all have two variables only. However, the restriction
on the number of variables limits the expressive power of
the language if more than two arguments vary over infinite
domains. Despite that, we conjecture that lots of the web
services still can be represented with two variables eitherby
introducing extra predicates (just like we did for the predi-
categrade) or by grounding some of the arguments if their
domains are finite and relatively small. Intuitively, it seems
that most of the dynamic systems can be specified by us-
ing properties and actions with small arities, hence the tech-
niques for arity reductions mentioned above require no more
than polynomial increase in the number of axioms.

The high-level features of our example are specified as the
following concepts and roles:
• Static primitive concepts:person(x) (x is a person);
course(x) (x is a course provided by the university).
• Dynamic primitive concepts:incoming(x, s) (x is an
incoming student in the situations true whenx was admit-
ted);student(x, s) (x is an eligible student in the situation
s when an incoming studentx pays the tuition fee).

• Dynamic defined concepts:eligFull(x, s) (x is eligi-
ble to be a full-time student by paying more than 5000 dol-
lars tuition fee);eligPart(x, s) (x is eligible to be a part-
time student by paying no more than 5000 dollars tuition);
qualFull(x, s) (x is a qualified full-time student if he or
she pays full time tuition fee and takes at least 4 courses);
qualPart(x, s) (x is a part-time student if he or she pays
part-time tuition and takes 2 or 3 courses).
• Static role:preReq(x, y) (coursex is a prerequisite of
coursey).
• Dynamic roles: tuitPaid(x, y, s) (x pays tuition fee
y in the situations); enrolled(x, y, s) (x is enrolled in
coursey in the situations); completed(x, y, s) (x com-
pletes coursey in the situations); hadGrade(x, y, s) (x
had a grade for coursey in the situations); gradeA(x, y, s);
gradeB(x, y, s); gradeC(x, y, s); gradeD(x, y, s).

Web services are specified as actions:reset (at the be-
ginning of each academic year, the system is being re-
set so that students need to pay tuition fee again to be-
come eligible);admit(x) (the university admits studentx);
payTuit(x, y) (x pays tuition fee with the amount ofy);
enroll(x, y) (x enrolls in coursey); drop(x, y) (x drops
coursey); enterA(x, y) (enter grade ”A” for studentx in
coursey); enterB(x, y); enterC(x, y); enterD(x, y).

The basic action theory is as follows (most of the axioms
are self-explanatory).

Precondition Axioms: Poss(reset, s) ≡ true,

Poss(admit(x), s) ≡ person(x) ∧ ¬incoming(x, s),
P oss(payTuit(x,y), s) ≡ incoming(x, s) ∧ ¬student(x, s),
P oss(drop(x, y), s) ≡ enrolled(x, y, s) ∧ ¬completed(x, y, s),
P oss(enterA(x,y), s) ≡ enrolled(x, y, s),

and similar to enterA(x, y), the precondition for
enterB(x, y) (enterC(x, y) and enterB(x, y) re-
spectively) at any situations is also enrolled(x, y, s).
Moreover, in the traditional SC, the precondition for action
enroll(x, y) would be equivalent to
student(x) ∧ (∀z)(preReq(z, y) ∧ completed(x, z, s)
∧¬gradeD(x, z, s)) ∧ course(y).

However, in the modified SC, we only allow at most two
variables (including free or quantified) other than the
situation variables and action variablea. Fortunately, the
number of the courses offered in a university is limited
(finite and relatively small) and relatively stable over years
(if we manage the students in a college-wise range or
department-wise range, the number of courses may be even
smaller). Therefore, we can specify the precondition for the
actionenroll(x, y) for each instance ofy. That is, assume
that the set of courses is{CS1, · · · , CSn}, the precondition
axiom for eachCSi (i = 1..n) is
Poss(enroll(x,CSi), s) ≡ student(x) ∧ (∀y)(preReq(y,CSi)

∧completed(x, y, s) ∧ ¬gradeD(x, y, s)).

On the other hand, when we do this transformation,
we can omit the statementscourse(x) for each course
available at the university in the initial theory.

Successor State Axioms:

incoming(x, do(a, s)) ≡ a = admit(x)∨ incoming(x, s),
student(x, do(a, s)) ≡ (∃y)(a = payTuit(x, y))∨

student(x)∧ a 6= reset,
tuitPaid(x, y, do(a, s)) ≡ a = payTuit(x, y)∨

tuitPaid(x, y, s) ∧ a 6= reset,
enrolled(x, y, do(a, s)) ≡ a = enroll(x, y) ∨ enrolled(x, y, s)

∧¬(a = drop(x, y) ∨ a = enterA(x, y) ∨ a = enterB(x, y)
∨a = enterC(x, y) ∨ a = enterD(x, y)),

completed(x, y, do(a, s)) ≡ a = enterA(x, y) ∨ a = enterB(x, y)
∨a = enterC(x, y) ∨ a = enterD(x, y)∨
completed(x, y, s) ∧ a 6= enroll(x, y),

gradeA(x,y, do(a, s)) ≡ a = enterA(x, y)∨
gradeA(x,y, s) ∧ ¬(a = enterB(x, y)
∨a = enterC(x, y) ∨ a = enterD(x, y)),

and the SSAs for fluentgradeB(x, y, s), gradeC(x, y, s)
andgradeD(x, y, s) are very similar to the one for fluent
gradeA(x, y, s), which ensures that for each student and
each course no more than one grade is assigned.
Acyclic TBox Axioms:
eligFull(x, s) ≡ (∃y)(tuitPaid(x, y, s) ∧ y > 5000),
eligPart(x, s) ≡ (∃y)(tuitPaid(x, y, s) ∧ y ≤ 5000),
qualFull(x, s) ≡ eligFull(x, s) ∧ (∃≥4y)enrolled(x, y, s),
qualPart(x, s) ≡ eligPart(x, s) ∧ (∃≥2y)enrolled(x, y, s)

∧(∃≤3enrolled(x, y, s)).
An initial theory DS0

may be the conjunctions of the
following sentences: (∀x)¬student(x,S0);

person(PSN1), person(PSN2),· · · , person(PSNm),
(∀x)incoming(x,S0) ⊃ x = PSN2 ∨ x = PSN3,
preReq(CS1, CS4) ∨ preReq(CS3, CS4),
(∀x)x 6= CS4 ⊃ ¬(∃y).prePeq(y,x).

Suppose we denote above basic action theory asD. Given
goal G, for example∃x.eligPart(x), and a composite
web service starting from the initial situation, for example
do([admit(PSN1), payTuit(PSN1, 3000)], S0) (we de-
note the corresponding resulting situation asSr), we can
check if the goal is satisfied after the execution of this
composite web service by solving the projection prob-
lem whetherD |= G[Sr]. In our example, this cor-
responds to solving whetherD |= ∃x.eligPart(x, Sr).
We may also check if a given (ground) composite web
service A1;A2; · · · ;An is possible to execute starting
from the initial state by solving the executability prob-
lem whetherD |= executable(do([A1, A2, · · · , An], S0)).
For example, we can check if composite web service
admit(PSN1); payTuit(PSN1, 3000) is possible to be ex-
ecuted from the starting state by solving whetherD |=
executable(Sr).

Example 2 Consider a web service dynamic system in
which clients are able to buy CDs and books online with
credit cards. The system high-level features of this example
are specified as concepts and roles.
• Static primitive concept(s):person(x) (x is a person);
cd(x) (x is a CD);book(x) (x is a book);creditCard(x) (x
is a credit card).
• Static defined concept(s):client(x) (x is a client).
• Dynamic primitive concept(s):instore(x, s) (x is in
store in situations).
• Dynamic defined concept(s):valCust(x, s) (x is valu-
able customer ins).
• Static role(s):has(x, y) (x hasy).

• Dynamic role(s):boughtCD(x, y, s) (x bought CDy in
situations); boughtBook(x, y, s) (x bought booky in situ-
ations); bought(x, y, s) (x boughty in situations).

Web services are specified as actions:buyCD(x, y)
(x buys CD y); buyBook(x, y) (x buys book y);
returnCD(x, y) (x returns CDy); returnBook(x, y) (x
returns booky); order(x) (the web service agent ordersx
from the publisher).

The basic action theory is as follows (most of the axioms
are self-explanatory).
Precondition Axioms:
Poss(buyCD(x, y), s) ≡ client(x) ∧ cd(y) ∧ instore(y, s),
P oss(buyBook(x, y), s) ≡ client(x) ∧ book(y) ∧ instore(y, s),
P oss(returnCD(x, y), s) ≡ boughtCD(x, y, s),
P oss(returnBook(x, y), s) ≡ boughtBook(x, y, s),
P oss(order(x), s) ≡ book(x) ∨ cd(x).

Successor State Axioms:
instore(x, do(a, s)) ≡ (∃y)(a=returnCD(y,x))∨

(∃y)(a=returnBook(y,x)) ∨ a=order(x)∨ instore(x, s)
∧¬((∃y)(a=buyCD(y,x)) ∨ (∃y)(a=buyBook(y,x))),

boughtCD(x, y, s) ≡ a=buyCD(x, y)∨
boughtCD(x, y, s) ∧ a 6= returnCD(x, y),

boughtBook(x, y, s) ≡ a=buyBook(x, y)∨
boughtBook(x, y, s) ∧ a 6= returnBook(x, y),

bought(x, y, s) ≡ a=buyCD(x, y) ∨ a=buyBook(x, y)∨
bought(x, y, s) ∧ ¬(cd(y) ∧ a=returnCD(x, y)

∨book(y) ∧ a=returnBook(x, y)).

Acyclic TBox Axioms: (both dynamic and static)
valCust(x, s) ≡ person(x) ∧ ∃≥3y.(bought(x, y, s)).
client(x) ≡ person(x) ∧ (∃y)(has(x, y) ∧ CreditCard(y)).

RBox Axioms: boughtCD(x, y, s) ⊃ bought(x, y, s),
boughtBook(x, y, s) ⊃ bought(x, y, s).

We also provide below some examples ofLDL
sc regress-

able formulas and the regression of some of these formulas.
executable(S1), (∃x)valCust(x,S1), where

S1 =do([buyCD(Tom,BackStreetBoys),
buyBook(Tom,HarryPotter), buyBook(Tom,TheF irm)], S0)

Here is an example of the regression.
R[(∃x)valCust(x,S1)]
= (∃x)(person(x)∧ ∃≥3y.R[bought(x, y, S1)]) = · · ·
= (∃x)(person(x)∧ ∃≥3y.(x = Tom ∧ y = TheF irm∨
x = Tom ∧ y = HarryPotter∨
x = Tom ∧ y = BackStreetBoys∨ bought(x, y, S0))),

which is true given thatDS0
is the conjunction of the fol-

lowing sentences.
person(Tom), cd(SpiceGirls), person(Sam),
creditCard(V isa), creditCard(MasterCard),
book(TheF irm), book(Java), book(HarryPotter),
has(Tom,V isa) ∨ has(Tom,MasterCard),
has(Sam,V isa) ∨ has(Same,MasterCard),
∀x(instore(x,S0) ∨ x = Java), cd(BackStreetBoys).

Discussion and Future Work
The major consequence of the results proved above for the
problem of service composition is the following. If both
atomic services and properties of the world that can be af-
fected by these services have no more than two parame-
ters, then we are guaranteed that even in the state of in-
complete information about the world, one can always deter-
mine whether a sequentially composed service is executable

and whether this composite service will achieve a desired
effect. The previously proposed approaches made differ-
ent assumptions: (McIlraith & Son 2002) assumes that the
complete information is available about the world when ef-
fects of a composite service are computed, and (Berardiet
al. 2003) considers the propositional fragment of the SC.

As we mentioned in Introduction, (McIlraith & Son 2002;
Narayanan & McIlraith 2003) propose to use Golog for com-
position of Semantic Web services. Because our primitive
actions correspond to elementary services, it is desirable
to define Golog in our modified SC too. It is surprisingly
straightforward to define almost all Golog operators starting
from ourC2 based SC. The only restriction in comparison
with the original Golog (Reiter 2001) is that we cannot de-
fine the operator(πx)δ(x), non-deterministic choice of an
action argument, becauseLDL

sc regressable formulas cannot
have occurrences of non-ground action terms in situation
terms. In the original Golog this is allowed, because the
regression operator is defined for a larger class of regress-
able formulas. However, everything else from the original
Golog specifications remain in force, no modifications are
required. In addition to providing a well-defined semantics
for Web services, our approach also guarantees that evalua-
tion of tests in Golog programs is decidable (w.r.t. arbitrary
theoryDS0

) that is missing in other approaches (unless one
can make the closed world assumption or impose another
restriction to regain decidability).

The most important direction for future research is an ef-
ficient implementation of a decision procedure for solving
the executability and projection problems. This procedure
should handle the modifiedLDL

sc regression and do efficient
reasoning inDS0

. It should be straightforward to modify
existing implementations of the regression operator for our
purposes, but it is less obvious which reasoner will work ef-
ficiently on practical problems. There are several different
directions that we are going to explore. First, according to
(Borgida 1996) and Theorem 2, there exists an efficient al-
gorithm for translatingC2 formulas toALCQI(⊔,⊓,¬, |, id)
formulas. Consequently, we can use any resolution-based
description logic reasoners that can handleALCQI(⊔,⊓,¬, |
, id) (e.g., MSPASS). Alternatively, we can try to use ap-
propriately adapted tableaux-based description logic rea-
soners, such as FaCT++, for (un)satisfiability checking in
ALCQI(⊔,⊓,¬, |, id). Second, we can try to avoid any
translation fromC2 toALCQI(⊔,⊓,¬, |, id) and adapt reso-
lution based automated theorem provers for our purposes.

The recent paper by (Baaderet al. 2005) proposes integra-
tion of description logicsALCQIO (and its sub-languages)
with an action formalism for reasoning about Web services.
This paper starts with a description logic and then defines
services (actions) meta-theoretically: an atomic serviceis
defined as the triple of sets of description logic formulas. To
solve the executability and projection problems this paper
introduces an approach similar to regression, and reduces
this problem to description logic reasoning. The main aim
is to show how executability of sequences of actions and
solution of the executability and projection problems can
be computed, and how complexity of these problems de-
pend on the chosen description logic. In the full version
of (Baaderet al. 2005), there is a detailed embedding of

the proposed framework into the syntactic fragment of the
Reiter’s SC. It is shown that solutions of their executabil-
ity and projection problems correspond to solutions of these
problems w.r.t. the Reiter’s basic action theories in this frag-
ment for appropriately translated formulas. To achieve this
correspondence, one needs to eliminate TBox by unfolding
(this operation can result potentially in exponential blow-up
of the theory). Despite that our paper and (Baaderet al.
2005) have common goals, our developments start differ-
ently and proceed in the different directions. We start from
the syntactically restricted first-order language (that issig-
nificantly more expressive thanALCQIO), use it to construct
the modified SC (where actions are terms), define basic ac-
tion theories in this language and show that by augmenting
(appropriately modified) regression with lazy unfolding one
can reduce the executability and projection problems to the
satisfiability problem inC2 that is decidable. Furthermore,
C2 formulas can be translated toALCQI(⊔,⊓,¬, |, id), if
desired. Because our regression operator unfolds fluents “on
demand” and uses only relevant part of the (potentially huge)
TBox , we avoid potential computational problems that may
occur if the TBox were eliminated in advance. The advan-
tage of (Baaderet al. 2005) is that all reasoning is reduced
to reasoning in description logics (and, consequently, canbe
efficiently implemented especially for less expressive frag-
ments ofALCQIO). Our advantages are two-fold: the con-
venience of representing actions as terms, and the expres-
sive power ofLDL

sc . BecauseC2 andALCQI(⊔,⊓,¬, |, id)
are equally expressive, there are some (situation suppressed)
formulas in our SC that cannot be expressed inALCQIO (that
does not allow complex roles).

An interesting paper (Liu & Levesque 2005) aims to
achieve computational tractability of solving projectionand
progression problems by following an alternative direction
to the approach chosen here. The theory of the initial state
is assumed to be in the so-calledproper formand the query
used in the projection problem is expected to be in a certain
normal form. In addition, (Liu & Levesque 2005) considers
a general SC and impose no restriction on arity of fluents.
Because of these significant differences in our approaches,
it is not possible to compare them.

There are several other proposals to capture the dynamics
of the world in the framework of description logics and/or
its slight extensions. Instead of dealing with actions and the
changes caused by actions, some of the approaches turned
to extensions of description logic with temporal logics to
capture the changes of the world over time (Artale & Fran-
coni 2001; Baaderet al. 2003), and some others combined
planning techniques with description logics to reason about
tasks, plans and goals and exploit descriptions of actions,
plans, and goals during plan generation, plan recognition,or
plan evaluation (Gil 2005). Both (Artale & Franconi 2001)
and (Gil 2005) review several other related papers. In (Be-
rardi et al. 2003), Berardi et al. specify all the actions of
e-services as constants, all the fluents have only situation
argument, and translate the basic action theory under such
assumption into description logic framework. It has a lim-
ited expressive power without using arguments of objects
for actions and/or fluents: this may cause a blow-up of the
knowledge base.

References
Artale, A., and Franconi, E. 2001. A survey of temporal exten-
sions of description logics.Annals of Mathematics and Artificial
Intelligence30(1-4).
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-
Schneider, P. F., eds. 2003.The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge Un. Press.
Baader, F.; Lutz, C.; Miliĉić, M.; Sattler, U.; and Wolter, F.
2005. Integrating description logics and action formalisms:
First results. InProceedings of the Twentieth National Confer-
ence on Artificial Intelligence (AAAI-05), 572–577. extended
version is available as LTCS-Report-05-02 from http://lat.inf.tu-
dresden.de/research/reports.html.
Berardi, D.; Calvanese, D.; Giacomo, G. D.; Lenzerini, M.; and
Mecella, M. 2003. e-service composition by description logics
based reasoning. In Calvanese, D.; de Giacomo, G.; and Fran-
coni, E., eds.,Proceedings of the 2003 International Workshop in
Description Logics (DL-2003).
Borgida, A. 1996. On the relative expressiveness of description
logics and predicate logics.Artif. Intell. 82(1-2):353–367.
Giacomo, G. D.; Iocchi, L.; Nardi, D.; and Rosati, R. 1999. A
theory and implementation of cognitive mobile robots.Journal of
Logic and Computation9(5):759–785.
Giacomo, G. D. 1995.Decidability of Class-Based Knowledge
Representation Formalisms. Roma, Italy: Dipartimento di Infor-
matica e Sistemistica Universita di Roma ”La Sapienza”.
Gil, Y. 2005. Description logics and planning.AI Magazine
26(2):73–84.
Grädel, E.; Otto, M.; and Rosen, E. 1997. Two-variable logic with
counting is decidable. InProceedings of the 12th Annual IEEE
Symposium on Logic in Computer Science (LICS’97), 306–317.
Grüninger, M., and Menzel, C. 2003. The process specification
language (PSL): Theory and applications.AI Magazine24(3):63–
74.
Grüninger, M. 2004. Ontology of the process specification lan-
guage. In Staab, S., and Studer, R., eds.,Handbook on Ontolo-
gies, 575–592. Springer.
Horrocks, I.; Patel-Schneider, P.; and van Harmelen, F. 2003.
From SHIQ and RDF to OWL: The making of a web ontology
language.Journal of Web Semantics1(1):7–26.
Hull, R., and Su, J. 2005. Tools for composite web services: a
short overview.SIGMOD Record34(2):86–95.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with in-
complete first-order knowledge in dynamic systems with context-
dependent actions. InProc. IJCAI-05.
McIlraith, S., and Son, T. 2002. Adapting Golog for composition
of semantic web services. In Fensel, D.; Giunchiglia, F.; McGuin-
ness, D.; and Williams, M.-A., eds.,Proceedings of the Eighth
International Conference on Knowledge Representation andRea-
soning (KR2002), 482–493. Toulouse, France.
Narayanan, S., and McIlraith, S. 2003. Analysis and simulation
of web services.Computer Networks42:675–693.
Pacholski, L.; Szwast, W.; and Tendera, L. 1997. Complexity
of two-variable logic with counting. InProceedings of the 12th
Annual IEEE Symposium on Logic in Computer Science (LICS-
97), 318–327. Warsaw, Poland: A journal version: SIAM Journal
on Computing, v 29(4), 1999, p. 1083–1117.
Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 2005. Au-
tomated composition of web services by planning at the knowl-
edge level. InProc. of the Nineteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI05), 1252–1259. Edinburgh,
Scotland, UK: http://ijcai.org/papers/1428.pdf.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Describing and Implementing Dynamical Systems. The MIT
Press.
Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004. HTN
planning for web service composition using SHOP2.Journal of
Web Semantics1(4):377–396.

