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Abstract

To reason about properties of reactive programs, one
may usually follow either an operational or a deductive
approach. In this paper, we propose representing the
classical model checking approach of Clarke and Emer-
son in the situation calculus. Doing so, we propose an
approach that merges the operational and the deduc-
tive approaches into one single framework by translat-
ing Kripke models that represent system specifications
into theories formulated in the situation calculus and
by recasting CTL as a sublanguage of the calculus.

Introduction

The importance of long running, nondeterministic con-
current programs has been emphasized over the past
two and half decades since Pnueli proposed using tem-
poral logic for reasoning about them (Pnueli 1977).
These, also called reactive systems, as opposed to se-
quential transformational programs, show ideally non-
terminating behaviors (Clarke, Grumberg, & Peled
1999). Their mathematical properties are usually de-
fined using either the operational or the deductive ap-
proach. In the operational approach, programs are
viewed as generator of computations. Given a program,
all the computations associated with it can be gener-
ated once by an interpreter, or incrementally by specify-
ing a transition relation that holds between consecutive
states of the computation of the program. In summary,
the operational semantics is based on the structure of
the given program (Plotkin 1981). In the deductive ap-
proach, programs are viewed as specifying a set of com-
putations about which some statements can be proven.
Dynamic logic (Harel, Tiuryn, & Kozen 2000), Hoare’s
systems (Hoare 1969), and the situation calculus (Mec-
Carthy 1963; Reiter 2001) are examples of formalisms
used in this approach.

The semantics of concurrent programs is described
in either approaches in terms of infinite behaviors, also
called computations. A behavior is a sequence of states
that a program moves through while executing. The be-
haviors are all the possible interleavings of the “atomic”
steps of the subprograms running in parallel; that is,
given a concurrent program P composed of subpro-
grams Py, P, ..., P,, where the P;s, 1 < i < n, are
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sequential programs running in parallel, its execution is
usually modeled by nondeterministically executing the
atomic steps for each P;, 1 <14 < n, in an arbitrary or-
der. So if P is in a state s, it nondeterministically goes
to the next state sx41 by executing an arbitrary atomic
step of any of its subprograms P;. This procedure is
repeated infinitely, or at least indefinitely.

Linear and branching temporal logics are the most
commonly used languages for describing computations.
The model checking problem (MC) can be defined as
follows: Given (1) a reactive system & represented as
a finite-state structure which generates computations,
and (2) a temporal logic formula B specifying a prop-
erty of G, find whether & satisfies 8. There are suc-
cessful algorithmic solutions of MC. As an example, in
(Clarke & Sistla 1986), Kripke Structures are used to
represent the reactive system and Computational Tree
Logic (CTL), a branching time temporal logic, is used
to represent properties of the system.

In this paper, we propose representing the classical
MC approach of (Clarke & Sistla 1986) in the situation
calculus. Our approach merges both the operational
and the deductive approaches into a single framework
by translating Kripke models into theories of the situ-
ation calculus and by recasting CTL as a sublanguage
of the same calculus. This approach can be labeled as
deductive-operational in the sense of (Pnueli 1981); that
is, it deals with computations arising during program
execution and, at the same time, allows us to deduc-
tively reason about those computations in the logic of
the situation calculus.

In (De Giacomo, Ternovskaia, & Reiter 1997), it is
argued that, for non-terminating programs, one needs
to rely on a transition semantics, in which one allows
for interpreting and quantifying over parts of programs
and their executions. In this paper, we show that an
evaluation semantics in which one allows for interpret-
ing whole programs is possible for non-terminating pro-
grams.

The paper is organized as follows. In the next section,
we introduce the situation calculus, and the classical
model of concurrent systems in terms of Kripke struc-
tures. Then we give an effective method for translating
a Kripke structure to a basic action theory. Next, we



show how CTL properties are specified in the situation
calculus and treat the model checking of action theories
within our framework. This is followed by the presen-
tation of an an example which illustrates our approach
of model checking in the situation calculus. Finally,
we conclude the paper and indicate avenues for future
work.

Preliminaries
The Situation Calculus

The situation calculus (McCarthy 1963; Reiter 2001)
is a many-sorted second order language with equal-
ity specifically designed for representing dynamically
changing world. We consider a version of the situation
calculus with three sorts for actions (A), situations (S),
and objects (O) other than the first two. Actions are
first order terms consisting of a 0—ary action function
symbols corresponding to the transitions of the finite
state structures. Situations are first order terms de-
noting a sequence of actions. They are represented us-
ing a binary function symbol do: do(w, s) denotes the
sequence resulting from adding the action « to the se-
quence s. The constant Sy (initial situation) denotes
the empty sequence [ ]. In modeling systems, situations
will correspond to computations. Objects constitute
a catch-all sort representing everything else depending
on the domain of application.

We shall have a finite number of unary predicates
called fluents which represent properties with truth
values varying from state to state. Fluents are denoted
by predicate symbols with argument a situation term.
In a Reader-Writer example given below (Example 1),
statey(s) is a relational fluent, meaning that the system
is in state w; after performing the sequence of opera-
tions in the computation s. In addition to the fluents,
we shall have a finite number of ground situation inde-
pendent predicates. For example, we will use ground
binary predicate trans(I,J) to represent a transition
form state wy to wy of the system being modeled.

The language also includes special predicates Poss,
and C; Poss(a,s) means that the action a is possible
in the situation s, and s C s’ states that the situation
s’ is reachable from s by performing some sequence of
actions. In system modeling terms, s C s’ means that s
is a proper subcomputation of the computation s’. The
predicate C will be useful in formulating properties of
systems. We call this fragment of the situation calculus
Lo°. In general, we can define fragments L;*, where
i (j) is the maximum number of arguments of sort O
that an action function (fluent predicate) may have.

Axiomatizing a Domain Theory

A domain theory is axiomatized in the situation calcu-
lus with four classes of axioms which constitute a basic
action theory (BAT — More details in (Pirri & Reiter
1999)):1

!There are also unique names axioms which guarantee
that primitive actions of the domain are pairwise unequal.

Foundational axioms for situations (Djy). These
guarantee an infinite tree structure for the situations,
and are the same for all BATs.

Action precondition axioms (D,,). There is
one for each action function A, with syntactic form
Poss(A, s) =11 4(s). Here, I14(s) is a formula with free
variable s. These characterize the preconditions for do-
ing action A in the situation s.

In the Reader-Writer example, the following states that
it is possible for the system to move from state 1 to
state 2 relative to the system computation s iff there is
a transition from state 1 to state 2, and as a result of
performing the actions in that computation, the system
is in state 1.

Poss(try 2, s) = trans(1,2) A statey (s).

Successor state axioms (Ds;). There is one
for each relational fluent F(s), with syntactic form
F(do(a,s)) = ®p(a,s), where ®p(a,s) is a formula

with free variables among a and s. These characterize
the truth values of the fluent F' in the next situation
do(a, s) in terms of the current situation s, and they
embody a solution to the frame problem for determin-
istic actions (Reiter 2001).

In the Reader-Writer example, the following states that
the system will be in the state 1 relative to the com-
putation do(a, s) iff the last system operation a in the
computation was try 1 or tre 1, or it was already in state
1 relative to the computation s, and a does not lead the
system to another state.

statei(do(a,s)) =a=tra1 Va=1tre 1V
state1(s) A a # tria Aa #try 3.

Initial database (Dg,). This is a set of first order sen-
tences whose only situation term is Sp; it specifies the
initial state of the domain, in our case, the initial sys-
tem state. Notice that while these initial system axioms
specify a complete initial system state (as is normal for
reactive systems), this is not a requirement of the theory
we are presenting. Therefore our account could, for ex-
ample, accommodate incomplete initial system states.

Notations

We now introduce further notations used later in the
paper. Suppose D is a basic action theory. Further-
more, suppose that U4 = {A1,..., A} is the (finite)
set of actions of D, U™ is the set of action sequences,
and F = {Fy,...,F,} is the (finite) set of fluents of
D, and V = {0,1} is a set of labels denoting the truth
values. Then ¥y = (vo,,...,v0,) denotes the vector
of initial truth values of fluents of D, where vo, with
1 < j < n is the initial value of fluent F;, and ¢;(«)
specifies whether the fluent F; holds in the situation
represented by the action sequence «; c¢; is called the
characteristic function (Ternovskaia 1999) of fluent F;.

Checking a Situation Calculus System

Let D be a background situation calculus axiomatiza-
tion for some reactive system, as described above, and



let Q(s) be a situation calculus formula — a property —
with one free situation variable s.

Let S = do(an,do(an-1, -+ ,do(a1,50)--+)) be a
situation term that mentions no free variables. We treat
this as a system computation, and define the answer to
Q relative to this computation to be “yes” iff D = Q(5).
The answer is “no” iff D | —Q(S). So on this defini-
tion, model checking is performed relative to a system
computation, and, in the most general setting, it is a
theorem-proving task. In particular, the executability
problem is to check whether D | executable(S), where

executable(s) =qr (Va,s').do(a,s") C s D Poss(a,s’).

It is important to notice the following property of ba-
sic action theories formulated in the language of Sub-
section ”The Situation Calculus”.

Theorem 1 The basic action theories formulated in
the fragment Lo° of the situation calculus are decidable.
That is, suppose D is a BAT, and ¢ is a formula, all of
which are formulated in Lo°; then there is an algorithm
for establishing whether D = ¢.

Proof (outline):

Similar to the idea in This is a corollary of Theorem 3
in (Ternovskaia 1999) that shows decidability for a sim-
ilar fragment of the situation calculus, but where there
are no situation independent predicates. The proof
there is now augmented by showing that adding finitely
many ground situation independent predicates does not
change the nature of the automata constructed for D
and ¢. O

GOLOG

GOLOG (Levesque et al. 1997) is a situation calculus-
based programming language for defining complex ac-
tions in terms of a set of primitive actions axiomatized
in the situation calculus according to Subsection ” Ax-
iomatizing a Domain Theory”. It has control structures
found in most Algol-like languages, augmented by some
nonstandard structures: Sequence (o ; 3: Do action a,
followed by action (3); Test actions (p?: Test the truth
value of expression p in the current situation); Nonde-
terministic action choice (o | f: Do a or 3); Nonde-
terministic choice of arguments ((m x)a: Nondetermin-
istically pick a value for z, and for that value of z, do
action «); Conditionals (if-then-else) and while loops;
and Procedures, including recursion.

The following is a GOLOG procedure that executes
an sequence of n randomly picked actions which are
possible:

proc execActions(n)

n =07

n > 07; (7 a)[Poss(a)? ; a];execActions(n — 1)
endProc .

The semantics of GOLOG programs is defined by
macro-expansion, using a ternary relation Do (Levesque

et al. 1997); Do(P, s, s’) is an abbreviation for a situa-
tion calculus formula which intuitively means that s’ is
one of the situations reached by evaluating the GOLOG
program P, beginning in situation s. In the reactive sys-
tem setting, any binding for s’ represents the system
computation that results from executing P, beginning
in the system state defined by the computation s.

Concurrent Systems

Concurrent reactive systems are semantically character-
ized by transition systems (Wolper 1998; Clarke, Grum-
berg, & Peled 1999). Usually, the latter are modeled by
Kripke structures (Clarke, Grumberg, & Peled 1999)
which we now introduce.

Definition 1 (Kripke structure) A finite Kripke
structure is a quintuple K = (P, W, R, wq, L) where

e P is a finite set of atomic propositions;

W is a finite set of states;

R CW x W is a total (transition) relation;

wq is an initial state;

L:W — 2F maps each w € W to the set {p € P|

p}.

Definition 2 (Behavior) Suppose K =
(P,W,R,wo,L) is a Kripke structure. Then a
behavior o of K is a function from N, a subset of the
natural numbers, to W such that:

e N =1{0,1,..,n} for some natural number n € N, or
N is the set of natural numbers;

e o(0) = wo;
o Vi>0 (o(i),0(i + 1)) € R.

If N equals the set N of natural numbers, then o is
called an infinite behavior.

Example 1 Consider a concurrent system — denoted
by RW — consisting of a Reader process, numbered 1,
and a Writer process, numbered 2 (Emerson € Trefler
1999). We define RW as follows. Fach of these
processes can be in three states: Non-Trying, Trying,
and Critical Section. These are thus subscripted
accordingly: N;, T;, and C; refer the Non-Trying,
Trying, and Critical Section states of Process i.
Process 1 may enter its critical section only when
Process 2 is in its Non-trying section, and Process
2 may enter its critical section only when Process 1
15 in its Non-Trying or Trying states. Figure 1 is a
Kripke structure representing all the reachable states
of the RW system. Formally, we have the following:
P= {Nl,Nz,Tl,Tz,Ol,OQ}; W = {wo,- s ,w7};

R = {(wo, w1), (wo, w2), (w1, ws), (w1, ws), (w2, wa), (w2, ws),
(ws,wo),(ws,we ), (wa,wr),(ws,wo),(ws,wr),(we,w2),(wr,wi) };
the nitial state wo; and L(wo) = {Ni, N2}, L(w1) =
{T1, N2}, L(wz) = {N1, T2}, L(ws) = {C1, N2}, L(wa)
{Th, T2}, L(ws) = {N1,Ca}, L(ws) = {C1, T2}, L(wr) =
{T1,C>}.



Figure 1: Reader-Writer transition system

One may unwind a Kripke structure into an infinite tree
that is rooted in wg. Such trees are called computational
trees.

Definition 3 (Computational Tree) Suppose K =
(P,W,R,wo,L) is a Kripke structure. Then the
(infinite) computational tree CTk of K is the set
{o1,09,...} of all (infinite) behaviors of K; that is,

e foreachi=1,2,..., o; is a function from N to W;
e 0,(0) =wg foralli=1,2,..;

° \V/j > O,l > 0 (Uj(i),O'j(i + 1)) cR.

The top tree in Figure 2 shows the infinite computa-
tional tree of the RW system depicted in Figure 1. Thus
any path starting in the root of the computational tree
represents a behavior of the Kripke structure.

Translating Concurrent Systems into
BATSs

Recall that the foundational axioms guarantee the in-
finite tree structure of the situation calculus. We shall
translate Kripke structures to the situation calculus by
relating the idea of computational tree to the situation
calculus tree of situations. More precisely, the Kripke
structure will be translated into a BAT such that the
computational tree of the Kripke structure is repre-
sented as a subtree obtained from the tree of situations
by pruning away paths that are not executable.

In order to relate Kripke structures to BATs, we need
to define a situation tree like model for a BAT D; that
model is precisely a tree of situations constrained ap-
propriately using the successor state axioms and action
precondition axioms of D.

Definition 4 (Canonical Structure)? Suppose D =

2This definition is similar to the notion of k-ary n-labeled
situation tree associated with a BAT defined in (Ternovskaia
1999).

Dy UDyp UDss UDg, is a BAT. Then a structure I
is a canonical structure for D iff it is a pair (D, Lp),
where

o D C UL is the domain of M, satisfying the following
property: if an action sequence o is in D then any
prefiz o' of a (i.e., a = o’a” for some o’ € Uy") is
n D;

e Lp is alabeling function D — V™ such that Lp([]) =
Ug and Lp(a) = {c1(a),...,cp(a)) € V™.

Here, ¥y is the initial vector of fluent values, and c;
is the characteristic function of fluent F;.

Notice that in the definition above, the pair (D, Lp) is
in fact a situation tree constrained using the BAT D.
The domain D is the set of nodes of the tree; and for
any sequence o and 1 < j < k, aA; is the j-th son
of the node « labeled by value vector Lp(«). Figure 2
shows a canonical structure for the RW system depicted
in Figure 1. The labeling tr; ; of the edges denotes an
action corresponding to the transition (S;,S;) € R. De-
tails of the BAT underlying this tree will be clearer in
Section ” An Example”. It suffices here to mention that
(N1, N2, Ty, T, Cy, Cs) is the vector of fluents describ-
ing the properties of the system. The vector ¥y of initial
values for the root of the situation tree is (1,1, 0,0, 0, 0),
and the vectors labeling the other nodes of the tree de-
pend on the characteristic functions of each fluent.

Now, we show how to effectively construct a basic
action theory from a given Kripke structure.

Theorem 2 Suppose K = (P,W, R, wg, L) is a Kripke
structure. Then one can effectively construct a BAT
Dk whose canonical structure 9 is obtained from the
computational tree CTx of K such that

K has CTk iff FEm Dk.

Proof:
Let Dk = Dy UDss UDyp, UDg, be the following BAT.

Fluents: for each p € P, introduce a fluent p(s); for
each state w; € W, introduce a fluent state;(s).

Actions: for each transition (w;,w;) € R where
w;, w; € W, introduce an action tr; ;.

Initial database (Dg,): Whenever p € L(wyp), in-
troduce the axiom p(Sp), otherwise introduce —p(Sp);
introduce axiom stateg(Sp) and, for all w; # wp, in-
troduce axioms —state;(Sp). We also need to intro-
duce finitely many non-fluent predicates tr(i, j) where
0 <14,j < |W], such that trans(i, j) is true if and only
if (wi,wj) € R.

Action precondition axioms (D,,;): for each transi-
tion tr; j, we have the axiom
Poss(tr; ;,8) = trans(i, j) A state;(s).

Successor state axioms (Ds,): For every i, 0 < i <
W,



The computational tree:

<1,1,0,0,0,0>

'll’oy1 tr 02

<010100> (<1001005) (<100,1005 -

<0,1,0,1,0,0>

<0,1,0,1,0,0> <0,1,0,1,0,0>

<1,0,0,1,0,0>

Figure 2: Computation tree and canonical structure of the RW system

state;(do(a, s)) = \/'Jlill‘ a=trj;V

state;(s) A /\‘]V:Vl| a # tryj.

For every p € P, suppose W), = {w;| [=w, p}. Then,

p(s) = \/ state;(s).

w; €Wy

Hence we could easily get the successor state axiom for
p(s).

Now we show that K has CTk iff [ Dk.
Suppose K has CTk. Then the proof proceeds by
constructing the canonical structure corresponding to
CTk. It is easy to show that the BAT constructed
above is satisfiable in this canonical structure.

Suppose FEop Dk and D C U4". Then Lp([]) = o
specifies the root of C'Tk by telling exactly which fluent
of the form stateq is true and which other fluents are
true in the state wg of the Kripke structure K. Further-
more, Lp(wA;) = (c1(w),...,cn(w)) € V™ determines
the fluent values in situation wA; by telling which flu-
ent of the form state; is true and which other fluents are
true in the state w of K corresponding to the execution
of the transitions encoded in wA;. Thus each path in
M starting in [ ] yields a corresponding path in CTk.
O

Model Checking
CTL

The temporal logics that are used for specifying prop-
erties in MC are subsets of the logic CTL* (Clarke
& Sistla 1986) which expresses a branching time logic
by extending linear time temporal logic with behavior
quantifiers. The logic CTL is the smallest set of formu-
las inductively defined as follows.

Situation formulas

— true and false are atomic situation formulas, as
well as are p and —p for all p € P.

—If ¢ and 1) are situation formulas, then ¢ Ay and ¢V
are situation formulas.

— If ¢ is a behavior formula, then A¢ (“¢ holds for all
behaviors”) and E¢ (“¢$ holds for some behavior”) are
situation formulas.

Behavior formulas

— If ¢ and ¢ are situation formulas, then X¢ (“next
time ¢”), and U (“¢ until ¢”) are behavior formu-
las.

Moreover, F¢ (“¢ holds at some future state on a
behavior”) and G¢ (“¢ holds at all future states on a
behavior”) for behavior formula ¢ abbreviate truelU¢
and —F—¢ respectively.



Semantics

Here, we semantically characterize CTL formulas by
translating them to formulas of the decidable fragment
of the situation calculus described in Subsection ” The
Situation Calculus”. CTL formulas are interpreted over
Kripke structures. We shall denote the suffix of the
behavior ¢ = Sp, 51, 52, ... that starts at situation s;
by 7. Given a Kripke structure K = (P, W, R, wo, L),
by Theorem 2 we first get a BAT Dk corresponding
to K. We then introduce the notation ¢[s] to denote
the situation calculus formula obtained from a given
expression ¢ by restoring the situation argument s in
all the fluents occurring in ¢. Finally, we view a CTL
formula (Op ¢)[s] as a macro defined in the situation
calculus as follows:

pls] =ar \/ state;(s), where p is an atomic

w; EW)p

proposition and W, = {w| = p},
(=9)[s] =ar — ¢[s]
(91 A @2)[s] =ar P1[s] A p2ls],
EX¢[s] =ar (Fa).Poss(a, s) A ¢[do(a, s)],
A(1Uo)[s] =ap (Vs').succ™(s,s") Abas'] D

(Vs").s C 8" C s D]s"],
E(p1U)[s] =ar (35).succ*(s,s") A a[s']|A
(Vs").s Cs" C s D [s"].

Here, succ*(s,s’) is defined as follows:
succ*(s,s") =qr s C s' A executable(s’),

meaning that s’ is a subsequent situation of s and s’ is
executable. Further operators are defined in terms of
those above:

(¢1 V ¢2)[s] =ar ~(=d1 A —¢p2)][s],
(91 D ¢2)[s] =ar (—¢1 V $2)[s],
AXP[s] =ar ("EX—0)[s],

EF¢[s| =4 E(trueUo¢)[s],

[s]
AF¢[s] =qr A(trueUog)[s],
EGY[s] =4r (mAF~9)]s],
AGY[s| =ar (FEF=9)[s].

Usually, the semantics of CTL is given in terms of sit-
uations (states) and behavior (paths) formulas (Clarke
& Sistla 1986). We can introduce this distinction here
by viewing the situations in the situation formulas as
“snapshots” of the world and those in behavior formu-
las as “histories”. For later convenience, given CTL
formula ¢ we will always denote the corresponding se-
mantic formula of ¢ at any situation s as Q4(s).

Checking Properties

Above, we have defined the semantics of CTL formu-
las in terms of a translation of these formulas into
formulas of a decidable fragment of the situation cal-
culus. Now, we define the model checking task in

terms of a logical entailment. Given a Kripke structure
K = (P,W,R,wp, L) and a CTL formula ¢, we first
construct a BAT Dk using the algorithm in the proof
of Theorem 2. We then construct a situation calculus
formula Q4 (s) corresponding to ¢ using the method de-
scribed in Subsection ”Semantics”. All these construc-
tions are done in polynomial time and yield axioms and
formulas that are polynomial in the size of both K and
¢. Now model checking the system K against the prop-
erty ¢ for initial state wy amounts to establishing the
entailment

Dk = Qy(S0)-

In (De Giacomo, Ternovskaia, & Reiter 1997), dynamic
properties of reactive systems are expressed by using
the transition semantics and second order formulas ex-
pressing least and greatest fix-point properties. Here,
following (Clarke, Grumberg, & Peled 1999), we specify
properties by using transition relation R of the Kripke
structure representing a reactive system and second
order formulas expressing least and greatest fix-point
properties. We use the following theorem from (Clarke,
Grumberg, & Peled 1999) reformulated in the situation
calculus to that end:

Theorem 3 Suppose that K is a Kripke structure and
that we identify each CTL formula ¢ with the set
{s | K,s = ¢} C 25¢. Then each of the basic CTL
operators may be characterized as a least or greatest
fiz-point of an appropriate predicate transformer in the
following way:

EF¢[s] = pz.[¢ls| vV EX(Z)[s]],
AF¢[s] = pz.[9[s] v AX(Z)]s]],
EGo[s] = vz.[os] A EX(Z)[s]];
AGP[s] = vz.[ols] N AX(Z)[s]],
A(91Us)[s] = pz-[¢2]s] V ¢1[s] A AX(Z)[s]],
E(01U¢s)[s] = pz.[da[s] V du[s] AN EX(Z)]s]].

An Example
Now, we effectively construct a BAT from the Kripke
structure of Figure 1 representing the RW system.

ACtiOIlSI troﬁl, tT072, t?"lyg, t?"174, t’l’214, t’l’215, t?"gyo,
ir3,6,1ra,7,tr5,0,176,2, 177,1.

Fluents: T1(s),T2(s), N1(s), Na(s), C1(s), Ca(s),
stateg(s), statey(s), statea(s), states(s), stateq(s),
states(s), stateg(s), stater(s).

Initial database:
Ny (SQ) A\ NQ(S()) A T4 (So) A\ ﬁTQ(S ) -C1 (SQ)
=C5(Sp) A trans(0,1) A trans(0,2) Atrans(1,3)A
trans(1,4) Atrans(2,4) Atrans(2,5) A trans(3,0)A
trans(3,6) Atrans(4,7) Atrans(5,0) A trans(5, 7)A
trans(6,2) Atrans(7,1) A stateg(So) A —stater (So)A
—states(So) A —states(Sy) A —stateq(So)A
—states (So) A —stateg(So) A —stater(Sp).



Action precondition axioms:

Poss(tro.1,s) = trans(0,1) A stateg(s),

Poss(tro,2,s) = trans(0,2) A stateg(s),
=trans(1,3
4

Poss(try,3, s A stateq(s),

Poss(try,4,5) = trans(1,4) A state; (s),

) (s)
0,2) (s)
1,3) (s)
1,4) (s)
2,4) A states(s),
2,5) A states(s),
3,0) (s)
3,6) (s)
) (s)
0) (s)
2) (s)
) (s)

Poss(tra 4, s) = trans

)

Poss(trs o, s A states(s

5
b O 9
=trans(3,6

Poss(trse, s A states(s),

)

Poss(tra,7,s) = trans(4,7) N statea(s),

Poss(trs o, s) = trans N states(s),

)

5
6,2) A stateg(s),
7,1) A stater(s).

( )
( )
( )
( )
Poss(tra s, s) = trans
( )
( )
( )
( )
( )

Poss(tre,2,s) = trans

(
(
(
(
(
= trans(
(
(
(
(
(

Poss(trz1,s) = trans
Successor state axioms:

stateg(do(a, s)) = a=trsoVa=trsoV

stateg(s) AN a # troq Aa # trga,
statey (do(a, s)) =a=tro1 Va=trs1V

state1(s) Na # tris Aa # try 4,
statea(do(a, s)) = a=troe Va=tresV

statea(s) Na # troa Aa # tras,
stateg(do(a, s)) = a = try 3V

states(s) Na # trso Aa # trsge,
stateq(do(a,s)) =a =tri4aVa=1trasV

states(s) N a # traz,
states(do(a, s)) = a =trasV

states(s) Na # trso Aa # trs 7,
stateg(do(a, s)) = a =trseV

stateg(s) A a # tre 2,
stater(do(a, s)) =a =traz Na=1trszV

stater(s) AN a # try .

Abbreviations:
T1(s) = statey(s) V stateq(s) V stater(s),
Ts(s) = statea(s) V stateq(s) V stateg(s),

Ni(s) = stateg(s) V statea(s) V states(s),

Na(s) = stateg(s) V statey(s) V states(s),

C1(s) = states(s) V stateg(s),

Cy(s) = states(s) V stater(s).
Simulation

To generate finite sequences of actions of the given
concurrent system Dk and check if property Q4(So) is
satisfied , we solve the following deduction task:

Dk = (3s).Do(execActions(N), So, s) A Qs (So),

where N is a constant mnatural number and
execActions(N) is the GOLOG procedure defined in
the section on GOLOG.

To generate non-terminating sequences of actions and
check if Dk = Q4(S0), we solve the following deduction
task:

Dk [ checkCTL(¢),

where abbreviation checkCT L(¢) represents a sentence
obtained by replacing all the predicate succ*(s,s’) in

Q¢(So) by
36.Trans*(execActions, s, 0, s'),
and execActions is the following GOLOG procedure

that infinitely generates transitions of the system at
random.

proc execActions

while ¢rue (7 a)[Poss(a)?; a];endWhile

endProc .

Trans*(execActions, s,d,s’) represents the execution
of (non-terminating) GOLOG program execActions
starting from situation s and getting to situation s’ with
program 0 remained. The detailed semantics of T'rans*
is given in (De Giacomo, Ternovskaia, & Reiter 1997).
For example, to check CTL formula whether A (1, Uts)
holds for concurrent system K, we are to solve whether

Dk E  (Vs8).(39).Trans*(execActions, Sy, d,s) A
Pals] O (Vs').(s" £ s D ¢nls]).

Sample Properties

Some simple properties of the RW system expressed
in CTL are: EG(Ny D EX Ns), AG(Ny D EF Cy),
EG(—Cy N —Cs), EF(Cy A C3), etc. By restoring the
situation argument s, these properties can be viewed
as macros defined in the situation calculus, which still
match the intuitive semantics of the CTL formulas. For
instance,

(EG(NQ D FEX NQ))[S]

= (ﬁAF(NQ N-EX NQ))[S]

= - A(trueU(Ny A ~EX Ni))[s]
—(Vs').succ*(s,s") A (Na A —EX N3)[s']

D (Vs").sCs" C s D truels”]
= (3s').succ*(s,8') A Na(s') D (EX Na)[s]
= (3s').succ™(s,s') A Na(s') D
(3s").succ(s’,s") A Na(s").

(AG(Ny D EF Cy))ls]
= (WEF(Ns A —EF Cy))[s]
= (mE(trueU(Ny A ~EF Cy
=(3s").succ*(s,s") A No(s
(Vs").succ*(s,8") A Na(s') D
= (Vs').succ*(s, ') A Na(s') D
( !/

(3s").succ*(s',8") A Co(s").

)]
A (-EF C)[s']
(E(trueU(Cy))[s]

)
)



Discussion

Ours can be considered as a symbolic model checking
approach without BDDs, similar to the approach de-
scribed in (Biere et al. 1999). In fact we show how to
reduce model checking to entailment in a decidable sub-
set of the situation calculus. An early work heading in
this direction is reported in (Rajan, Shankar, & Srivas
1995); unfortunately, lack of technical detail does not
allow a comparison with our approach.

Notice that (Reiter 2001) gives an implementation
technique for BATs such as the one of Section ”An
Example”. This technique justifies a straightforward
translation of the BATSs to a form suitable for a Prolog
implementation. This technique could be applied here.
This would amount to implementing a predicate, e.g.
checkCTL(¢), where ¢ is a CTL formula, for checking
whether the BAT entails Q4(So). The same technique
could be used to simulate the system modeled by the
BAT. Since CTL properties involve the predicate [,
any interpreter for checking these properties will nec-
essarily be non-Markovian (Gabaldon 2002) meaning
that effects of actions are explained by taking into ac-
count all past situations. All this however remains to
be accounted for.

A perceived advantage of our framework is the rich-
ness of the situation calculus which is more expressive
than branching time temporal logic (Pinto 1994). A
systematic study of fragments richer than the one con-
sidered in this paper remains to be undertaken. It re-
mains also to see how our framework can be turned
into a practical tool using well-known automata theo-
retic semantics for the situation calculus in the style of
(Vardi & Wolper 1986).

The fragment £,° is powerful enough to express rel-
atively realistic systems. In general however, we can
define fragments £;", with increasing indexes i and j.
What is the exact expressive power of £o°? What
do we gain in expressive power with the fragments
L', i=1,2---, 35 =12,---7 All these questions
are worth pursuing.
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