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Abstract. We consider a modified version of the situation calculus built using a
two-variable fragment of the first-order logic extended with counting quantifiers.
We mention several additional groups of axioms that need to be introduced to cap-
ture taxonomic reasoning. We show that the regression operator in this framework
can be defined similarly to regression in the Reiter’s version of the situation calcu-
lus. Using this new regression operator, we show that the projection problem (that
is the main reasoning task in the situation calculus) is decidable in the modified ver-
sion. We mention possible applications of this result to formalization of Semantic
Web services.
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1. Introduction

The Semantic Web community makes significant efforts toward integration of Semantic Web technology with the on-
going work on web services. These efforts include use of semantics in the discovery, composition, and other aspects
of web services. Web service composition is related to the task of designing a suitable combination of available com-
ponent services into a composite service to satisfy a client request when there is no single service that can satisfy
this request [15]. This problem attracted significant attention of researchers both in academia and in industry. A major
step in this direction is creation of ontologies for web services, in particular, OWL-S that models web services as
atomic or complex actions with preconditions and effects. An emerging industry standard BPEL4WS (Business Pro-
cess Execution Language for Web Services) provides the basis for manually specifying composite web services using
a procedural language. However, in comparison to error-prone manual service compositions, (semi)automated service
composition promises significant flexibility in dealing with available services and also accommodates naturally the
dynamics and openness of service-oriented architectures. The problem of the automated composition of web services
is often formulated in terms similar to a planning problem in AI: given a description of a client goal and a set of com-
ponent services (that can be atomic or complex), find a composition of services that achieves the goal [19,20,25,23].
Despite that several approaches to solving this problem have already been proposed, many issues remain to be resolved,
e.g., how to give well-defined and general characterizations of service compositions, how to compute all effects and
side-effects on the world of every action included in composite service, and other issues. Other reasoning problems,
well-known in AI, that can be relevant to service composition and discovery are executability and projection problems.
Executability problem requires determining whether preconditions of all actions included in a composite service can
be satisfied given incomplete information about the world. Projection problem requires determining whether a certain
goal condition is satisfied after the execution of all component services given an incomplete information about the
current state. In this paper we would like to concentrate on the last problem because it is an important prerequisite
for planning and execution monitoring tasks, and for simplicity we start with sequential compositions of the atomic
actions (services) only (we mention complex actions in the last section). More specifically, following several previous
approaches [19,20,5,25,15], we choose the situation calculus as an expressive formal language for specification of ac-
tions. However, we acknowledge openness of the world and represent incomplete information about an initial state of
the world by assuming that it is characterized by a predicate logic theory in the general syntactic form.

The situation calculus is a popular and well understood predicate logic language for reasoning about actions and
their effects [24]. It serves as a foundation for the Process Specification Language (PSL) that axiomatizes a set of
primitives adequate for describing the fundamental concepts of manufacturing processes (PSL has been accepted as
an international standard) [13,12]. It is used to provide a well-defined semantics for Web services and a foundation
for a high-level programming language Golog [5,19,20]. However, because the situation calculus is formulated in a
general predicate logic, reasoning about effects of sequences of actions is undecidable (unless some restrictions are
imposed on the theory that axiomatizes the initial state of the world). The first motivation for our paper is intention to
overcome this difficulty. We propose to use a two-variable fragment FO2 of the first-order logic (FOL) as a foundation
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for a modified situation calculus. Because the satisfiability problem in this fragment is known to be decidable (it is in
NEXPTIME), we demonstrate that by reducing reasoning about effects of actions to reasoning in this fragment, one
can guarantee decidability no matter what is the syntactic form of the theory representing the initial state of the world.
The second motivation for our paper comes from description logics. Description Logics (DLs) [2] are a well-known
family of knowledge representation formalisms, which play an important role in providing the formal foundations of
several widely used Web ontology languages including OWL [14] in the area of the Semantic Web [3]. DLs may be
viewed as syntactic fragments of FOL and offer considerable expressive power going far beyond propositional logic,
while ensuring that reasoning is decidable [6]. DLs have been mostly used to describe static knowledge-base systems.
Moreover, several research groups consider formalization of actions using DLs or extensions of DLs. Following the key
idea of [8], that reasoning about complex actions can be carried in a fragment of the propositional situation calculus,
De Giacomo et al. [9] give an epistemic extension of DLs to provide a framework for the representation of dynamic
systems. However, the representation and reasoning about actions in this framework are strictly propositional, which
reduces the representation power of this framework. In [4], Baader et al. provide another proposal for integrating
description logics and action formalisms. They take as foundation the well known description logic ALCQIO (and its
sub-languages) and show that the complexity of executability and projection problems coincides with the complexity
of standard DL reasoning. However, actions (services) are represented in their paper meta-theoretically, not as first-
order (FO) terms. This can potentially lead to some complications when specifications of other reasoning tasks (e.g.,
planning) will be considered because it is not possible to quantify over actions in their framework. In our paper, we take
a different approach and represent actions as FO terms, but achieve integration of taxonomic reasoning and reasoning
about actions by restricting the syntax of the situation calculus. Our paper can be considered as a direct extension of the
well-known result of Borgida [6] who proves that many expressive description logics can be translated to two-variable
fragment FO2 of FOL. However, to the best of our knowledge, nobody proposed this extension before.

The main contribution of our paper to the area of service composition and discovery is the following. We show that
by using services that are composed from atomic services with no more than two parameters and by using only those
properties of the world which have no more than two parameters (to express a goal condition), one can guarantee that
the executability and projection problems for these services can always be solved even if information about the current
state of the world is incomplete.

Our paper is structured as follows. In Section 2, we briefly review the Reiter’s situation calculus. In Section 3
we review a few popular description logics. In the following section 4 we discuss details of our proposal: a modified
situation calculus. In Section 5 we consider an extension of regression (the main reasoning mechanism in the situation
calculus). Finally, in Section 6 we provide a simple example and in Section 7 we discuss briefly other related approaches
to reasoning about actions.

2. The Situation Calculus

The situation calculus (SC) Lsc is a FO language for axiomatizing dynamic systems. In recent years, it has been
extended to include procedures, concurrency, time, stochastic actions, etc [24]. Nevertheless, all dialects of the SC
Lsc include three disjoint sorts: actions, situations and objects. Actions are FO terms consisting of an action function
symbol and its arguments. Actions change the world. Situations are FO terms which denote possible world histories. A
distinguished constant S0 is used to denote the initial situation, and function do(a, s) denotes the situation that results
from performing action a in situation s. Every situation corresponds uniquely to a sequence of actions. Moreover,
notation s′ � s means that either situation s′ is a subsequence of situation s or s = s′.2 Objects are FO terms other
than actions and situations that depend on the domain of application. Fluents are relations or functions whose values
may vary from one situation to the next. Normally, a fluent is denoted by a predicate or function symbol whose last
argument has the sort situation. For example, F (~x, do([α1, · · · , αn], S0) represents a relational fluent in the situation
do(αn, do(· · · , do(α1, S0) · · · ) resulting from execution of ground action terms α1, · · · , αn in S0.3

The SC includes the distinguished predicate Poss(a, s) to characterize actions a that are possible to execute in
s. For any SC formula φ and a term s of sort situation, we say φ is a formula uniform in s iff it does not mention the
predicates Poss or ≺, it does not quantify over variables of sort situation, it does not mention equality on situations,
and whenever it mentions a term of sort situation in the situation argument position of a fluent, then that term is s (see
[24]). If φ(s) is a uniform formula and the situation argument is clear from the context, sometimes we suppress the
situation argument and write this formula simply as φ. Moreover, for any predicate with the situation argument, such
as a fluent F or Poss, we introduce an operation of restoring a situation argument s back to the corresponding atomic

2Reiter [24] uses the notation s′ v s, but we use s′ � s to avoid confusion with the inclusion relation < that is commonly used in description
logic literature. In this paper, we use < to denote the inclusion relation between concepts or roles.
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formula without situation argument, i.e., F (~x)[s] =def F (~x, s) and Poss(A)[s] =def Poss(A, s) for any action term
A and object vector ~x. By the recursive definition, such notation can be easily extended to φ[s] for any FO formula φ,
in which the situation arguments of all fluents and Poss predicates are left out, to represent the SC formula obtained
by restoring situation s back to all the fluents and/or Poss predicates (if any) in φ. It is obvious that φ[s] is uniform in
s.

A basic action theory (BAT) D in the SC is a set of axioms written in Lsc with the following five classes of axioms
to model actions and their effects [24].
Action precondition axioms Dap: For each action function A(~x), there is an axiom of the form Poss(A(~x), s) ≡
ΠA(~x, s). ΠA(~x, s) is a formula uniform in s with free variables among ~x and s, which characterizes the preconditions
of action A.
Successor state axioms Dss: For each relational fluent F (~x, s), there is an axiom of the form F (~x, do(a, s)) ≡
ΦF (~x, a, s), where ΦF (~x, a, s) is a formula uniform in s with free variables among ~x, a and s. The successor state
axiom (SSA) for F (~x) completely characterizes the value of F (~x) in the next situation do(a, s) in terms of the current
situation s. The syntactic form of ΦF (~x, a, s) is as follows:

F (~x, do(a, s)) ≡
∨m

i=1(∃~yi)(a = PosActi(~ti) ∧ φ
+
i (~x, ~yi, s))∨

F (~x, s) ∧ ¬
∨k

j=1(∃~zj)(a = NegActj(~t′j) ∧ φ
−
j (~x, ~zj , s)),

where for i = 1..m (j = 1..k, respectively), each ~ti (~t′j , respectively) is vector of terms including variables among
~x and quantified new variables ~yi (~zj , respectively) if there are any, each φ+

i (~x, ~yi, s) (φ−j (~x, ~zj , s), respectively)
is a SC formula uniform in s who has free variables among ~x and ~yi (~zj , respectively) if there are any, and each
PosAct(~ti) (NegAct(~t′j), respectively) is an action term that makes F (~x, do(a, s)) true (false, respectively) if the
condition φ+

i (~x, ~yi, s) (φ−j (~x, ~zj , s), respectively) is satisfied.
Initial theory DS0

: It is a set of FO formulas whose only situation term is S0. It specifies the values of all fluents in
the initial state. It also describes all the facts that are not changeable by any actions in the domain.
Unique name axioms for actions Duna: Includes axioms specifying that two actions are different if their names are
different, and identical actions have identical arguments.
Fundamental axioms for situations Σ: The axioms for situations which characterize the basic properties of situations.
These axioms are domain independent. They are included in the axiomatization of any dynamic systems in the SC (see
[24] for details).

Suppose that D = Duna ∪ DS0
∪ Dap ∪ Dss ∪ Σ is a BAT, α1, · · · , αn is a sequence of ground action

terms, and G(s) is a uniform formula with one free variable s. One of the most important reasoning tasks in the
SC is the projection problem, that is, to determine whether D |= G(do([α1, · · · , αn], S0)). Another basic rea-
soning task is the executability problem. Let executable(do([α1, · · · , αn], S0)) be an abbreviation of the formula
Poss(α1, S0) ∧

∨n
i=2 Poss(αi, do([α1, · · · , αi−1], S0)). Then, the executability problem is to determine whether

D |= executable(do([α1, · · · , αn], S0)). Planning and high-level program execution are two important settings where
the executability and projection problems arise naturally. Regression is a central computational mechanism that forms
the basis for automated solution to the executability and projection tasks in the SC [22,24]. A recursive definition of the
regression operator R on any regressable formula φ is given in [24]; we use notation R[φ] to denote the formula that
results from eliminating Poss atoms in favor of their definitions as given by action precondition axioms and replacing
fluent atoms about do(α, s) by logically equivalent expressions about s as given by SSAs of sort situation inW is start-
ing from S0 and has the syntactic form do([α1, · · · , αn], S0) where each αi is of sort action; (2) for every atom of the
form Poss(α, σ) in W , α has the syntactic form A(t1, · · · , tn) for some n-ary function symbol A of Lsc; and (3) W
does not quantify over situations, and does not mention the relation symbols “≺” or “=” between terms of situation sort.
The formula G(do([α1, · · · , αn], S0)) is a particularly simple example of a regressable formula because it is uniform
in do([α1, · · · , αn], S0)), but in the general case, regressable formulas can mention several different ground situation
terms. Roughly speaking, the regression of a regressable formulaφ through an action a is a formulaφ′ that holds prior to
a being performed iff φ holds after a. Both precondition and SSAs support regression in a natural way and are no longer
needed when regression terminates. The regression theorem proved in [22] shows that one can reduce the evaluation of a
regressable formulaW to a FO theorem proving task in the initial theory together with unique names axioms for actions:

D |= W iff DS0
∪ Duna |= R[W ].

This fact is the key result for our paper. It demonstrates that an executability or a projection task can be reduced to
a theorem proving task that does not use precondition, successor state, and foundational axioms. This is one of the
reasons why the SC provides a natural and easy way to representation and reasoning about dynamic systems. However,
because DS0

is an arbitrary FO theory, this type of reasoning in the SC is undecidable. One of the common ways to



overcome this difficulty is to introduce the closed world assumption that amounts to assuming that DS0
is a relational

theory (i.e., it has no occurrences of the formulas having the syntactic form F1( ~x1, S0) ∨ F2( ~x2, S0) or ∃xF (x, S0),
etc) and all statements that are not known to be true explicitly, are assumed to be false. However, in many application
domains this assumption is unrealistic. Therefore, we consider a version of the SC formulated in FO2, a syntactic frag-
ment of the FO logic that is known to be decidable, or in C2 an extension of FO2 (see below), where the satisfiability
problem is still decidable. If all SC formulas are written in this syntactically restricted language, it is guaranteed by the
regression theorem that both the executability and the projection problems for ground situations are decidable.

3. Description Logics and Two-variable First-order Logics

In this section we review a few popular expressive description logics and related fragments of the FO logic. We start
with logic ALCHQI . Let NC = {C1, C2, . . .} be a set of atomic concept names and NR = {R1, R2, . . .} be a set
of atomic role names. A ALCHQI role is either some R ∈ NR or an inverse role R− for R ∈ NR. A ALCHQI role
hierarchy (RBox ) RH is a finite set of role inclusion axiomsR1 v R2, whereR1, R2 are ALCHQI roles. ForR ∈ NR,
we define Inv(R) = R− and Inv(R−) = R, and assume that R1 v R2 ∈ RH implies Inv(R1) v Inv(R2) ∈ RH.

The set of ALCHQI concepts is the minimal set built inductively from NC and ALCHQI roles using the following
rules: all A ∈ NC are concepts, and, if C, C1, and C2 are ALCHQI concepts, R is a simple role and n ∈ N, then also
¬C, C1 u C2, and (∃>nR.C) are ALCHQI concepts. We use also the following abbreviations for concepts:

C1 t C2
def
= ¬(¬C1 u ¬C2) (∃

�
n R.C)

def
= ¬(∃

�
(n+1) R.C)

C1 ⊃ C2
def
= ¬C1 t C2 (∃n R.C)

def
= (∃

�
n R.C) u (∃

�
n R.C)

∃R.C
def
= (∃

�
1 R.C) >

def
= A t ¬A for some A ∈ NC

∀R.C
def
= ∃<1 R.¬C ⊥

def
= A u ¬A for some A ∈ NC

Concepts that are not concept names are called complex. A literal concept is a possibly negated concept name. A
TBox T is a finite set of equality axioms C1 ≡ C2 (sometimes, general inclusion axioms of the formC1 v C2 are also
allowed, where C1, C2 are complex concepts). An equality with an atomic concept in the left-hand side is a concept
definition. In the sequel, we always consider TBox axioms set T that is a terminology, a finite set of concept definition
formulas with unique left-hand sides, i.e., no atomic concept occurs more than once as a left-hand side. We say that a
defined concept name C1 directly uses a concept name C2 with respect to T if C1 is defined by a concept definition
axiom in T with C2 occurring in the right-hand side of the axiom. Let uses be the transitive closure of directly uses,
and a TBox axioms set T is acyclic if no concept name uses itself with respect to T . An ABox A is a finite set of
axioms C(a), R(a, b), and (in)equalities a ≈ b and a 6≈ b.

The logic ALCQI is obtained by disallowing RBox . A more expressive logic ALCQI(t,u,¬, |, id) is obtained
from ALCQI by introducing identity role id (relating each individual with itself) and allowing complex role expres-
sions: if R1, R2 are ALCQI(t,u,¬, |, id) roles and C is a concept, then R1 t R2, R1 u R2, ¬R1, R−

1 and R1|C are
ALCQI(t,u,¬, |, id) roles too.4 These complex roles can be used in TBox (in the right-hand sides of definitions).
Subsequently, we call a role R primitive if it is either R ∈ NR or it is an inverse role R− for R ∈ NR.

τx(>)
def
= x = x τx,y(id)

def
= x = y

τx(⊥)
def
= ¬(x = x) τx,y(R−)

def
= τy,x(R)

τx(A)
def
= A(x) for A ∈ NC τx,y(¬R)

def
= ¬τx,y(R)

τx(¬C)
def
= ¬τx(C) τx,y(R1 u R2)

def
= τx,y(R1) ∧ τx,y(R2)

τx(C1 u C2)
def
= τx(C1) ∧ τx(C2) τx,y(R1 t R2)

def
= τx,y(R1) ∨ τx,y(R2)

τx(∀R.C)
def
= ∀y.( τx,y(R) ⊃ τy(C) ) τy,x(R)

def
= R(y, x) for R ∈ NR

τx(∃./nR.C)
def
= ∃./ny.( τx,y(R) ∧ τy(C) ) τx,y(R)

def
= R(x, y) for R ∈ NR

τy(C)
def
= τx(C)[x/y, y/x] τx,y(R|C)

def
= τx,y(R) ∧ τy(C)

Two-variable FO logic FO2 is the fragment of ordinary FO logic (with equality), whose formulas only use no more
than two variable symbols x and y (free or bound). Two-variable FO logic with counting C2 extends FO2 by allowing
FO counting quantifiers ∃≥m and ∃≤m for all m ≥ 1. Borgida in [6] defines an expressive description logic B and
shows that each sentence in the language B without transitive roles and role-composition operator can be translated to
a sentence in C2 with the same meaning, and vice versa, i.e., these two languages are equally expressive. A knowledge
base KB is a triple (R, T ,A). The semantics of KB is given by translating it into FO logic with counting C2 by the
operator τ (see the table above, in which ./ ∈ {>,6} and x/y means replace x with y). Borgida’s logic B includes

4All these standard roles constructors and their semantics can be found in [3].



all concept and role constructors in ALCQI(t,u,¬, |, id) and, in addition, it includes a special purpose constructor
product that allows to build the role C1 × C2 from two concepts C1 and C2. This construct has a simple semantics

τx,y(C1 × C2)
def
= τx(C1) ∧ τy(C2) , and makes the translation from C2 into B rather straightforward. Although

constructor product is not a standard role constructor, we can use restriction constructor | in addition with t,u,¬ and
inverse role to represent it. That is, for any concepts C1 and C2,

C1 × C2 = (R t ¬R)|C2
u ((R t ¬R)|C1

)−,

whereR can be any role name. Consequently, product can be eliminated. Therefore, the following statement is a direct
consequence of the theorems proved in [6].

Theorem 1 The description logic ALCQI(t,u,¬, |, id) and C2 are equally expressive (i.e., each sentence in language
ALCQI(t,u,¬, |, id) can be translated to a sentence in C2, and vice versa). In addition, translation in both directions
leads to no more than linear increase of the size of the translated formula.

This statement has an important consequence. Gradel et. al.[11] and Pacholski et al [21] show that satisfiability problem
for C2 is decidable. Therefore, the satisfiability and/or subsumption problems of concepts w.r.t. an acyclic or empty
TBox in description logic ALCQI(t,u,¬, |, id) is also decidable.5 In Section 4, we are going to take advantage of this
and use C2 as a foundation for a modified SC.

4. Modeling Dynamic Systems in a Modified Situation Calculus

In this section, we consider dynamic systems formulated in a minor modification of the language of the SC so that it
can be considered as an extension to C2 language (with situation argument for unary and binary fluents). The key idea
is to consider a syntactic modification of the SC such that the executability and projection problems are guaranteed to
be decidable as a consequence of the C2 property of being decidable.6 Moreover, since the modified SC has a very
strong connections with description logics, which will be explained in detail below, we will denote this language as
LDL

sc .
First of all, the three sorts in LDL

sc (i.e., actions, situations and objects) are the same as those in Lsc, except that
they obey the following restrictions: (1) all terms of sort object are variables (x and y) or constants, i.e., functional
symbols are not allowed; (2) all action functions include no more than two arguments. Each argument of any term of
sort action is either a constant or an object variable (x or y); (3) variable symbol a of sort action and variable symbol s
of sort situation are the only additional variable symbols being allowed in LDL

sc in addition to variable symbols x and
y.

Second, any fluent in LDL
sc is a predicate either with two or with three arguments including the one of sort situation.

We call fluents with two arguments, one is of sort object and the other is of sort situation, (dynamic) concepts, and
call fluents with three arguments, first two of sort object and the last of sort situation, (dynamic) roles. Intuitively, each
(dynamic) concept in LDL

sc , say F (x, s) with variables x and s only, can be considered as a changeable concept F
in a dynamic system specified in LDL

sc ; the truth value of F (x, s) could vary from one situation to another. Similarly,
each (dynamic) role in LDL

sc , say R(x, y, s) with variables x, y and s, can be considered as a changeable role R in
a dynamic system specified in LDL

sc ; the truth value of R(x, y, s) could vary from one situation to another. In LDL
sc ,

(static) concepts (i.e., unary predicates with no situation argument) and (static) roles (i.e., binary predicates with no
situation argument), if any, are considered as eternal facts and their truth values never change. If they are present,
they represent unchangeable taxonomic properties and unchangeable classes of an application domain. Moreover, each
concept (static or dynamic) can be either primitive or defined. For each primitive dynamic concept, a SSA must be
provided in the basic action theory formalized for the given system. Because defined dynamic concepts are expressed
in terms of primitive concepts by axioms similar to TBox , SSAs for them are not provided. In addition, SSAs are
provided for dynamic primitive roles.

Third, apart from standard FO logical symbols – ∧, ∨ and ∃, with the usual definition of a full set of connectives
and quantifiers, LDL

sc also includes counting quantifiers ∃≥m and ∃≤m for all m ≥ 1.
The dynamic systems we are dealing with here satisfy the open world assumption (OWA): what is not stated

explicitly is currently unknown rather than false. In this paper, the dynamic systems we are interested in can

5In [3] it is shown that the satisfiability problems of concepts and subsumption problems of concepts can be reduced to each other; moreover, if a
TBox T is acyclic, the reasoning problems w.r.t. T can always be reduced to problems w.r.t. the empty TBox.

6The reason that we call it a ”modified” SC rather than a ”restricted” SC is that we not only restrict the number of variables that can be mentioned
in the SC during the formalizations of dynamic systems, but we also extend the SC with other features, such as introducing counting quantifiers and
adding acyclic TBox axioms to basic action theories.



be formalized as a basic action theory (BAT) D using the following seven groups of axioms in LDL
sc : D =

Σ ∪ Dap ∪ Dss ∪ DT ∪ DR ∪ Duna ∪ DS0
. Five of them (Σ,Dap,Dss,Duna,DS0

) are similar to those groups in a
BAT in Lsc, and the other two (DT ,DR) are introduced to axiomatize description logic related facts and properties (see
below). However, because LDL

sc allows only two object variables, all axioms must conform to the following additional
requirements.
Action precondition axioms Dap: For each action A in LDL

sc , there is one axiom of the form Poss(A, s) ≡ ΠA[s] (or
Poss(A(x), s) ≡ ΠA(x)[s], or Poss(A(x, y), s) ≡ ΠA(x, y)[s], respectively), if A is an action constant (or unary, or
binary action term, respectively), where ΠA (or ΠA(x), or ΠA(x, y), respectively) is a C2 formula with no free vari-
ables ( or with at most x, or with at most x, y as the only free variables, respectively). This set of axioms characterize
the preconditions of all actions.
Successor state axioms Dss: For each primitive dynamic concept F (x, s) in LDL

sc , a SSA is specified for
F (x, do(a, s)). According to the general syntactic form of the SSAs provided in [24], without loss of generality, we
can assume that the axiom has the form F (x, do(a, s)) ≡ ψF (x, a, s), (1)
where the general structure of ψF (x, a, s) is as follows.

ψF (x, a, s) ≡ (
∨m0

i=1[∃x][∃y](a=A+
i (~x(i,0,+)) ∧ φ

+
i (~x(i,1,+))[s]))∨

F (x, s) ∧ ¬((
∨m1

j=1[∃x][∃y](a=A−
j (~x(j,0,−)) ∧ φ

−
j (~x(j,1,−))[s]))),

where each variable vector ~x(i,n,b) (or ~x(j,n,b) respectively) (i=1..m0, j=1..m1, n ∈ {0, 1}, b ∈ {+,−}) represents
a vector of object variables, which can be empty, x, y, 〈x, y〉 or 〈y, x〉. Moreover, [∃x] or [∃y] represents that the
quantifier included in [ ] is optional; and each φ+

i (~x(i,1,+)), i= 1..m0 (φ−i (~x(j,1,−)), j= 1..m1, respectively), is a C2

formula with variables (both free and quantified) among x and y.
Similarly, a SSA for a dynamic primitive role R(x, y, s) is provided as a formula of the form

R(x, y, do(a, s)) ≡ ψR(x, y, a, s), (2)
Moreover, without loss of generality, the general structure of ψR(x, y, a, s) is as follows.

ψR(x, y, a, s) ≡ (
∨m2

i=1[∃x][∃y](a=A+
i (~x(i,0,+)) ∧ φ

+
i (~x(i,1,+))[s]))∨

R(x, y, s) ∧ ¬((
∨m3

j=1[∃x][∃y](a=A−
j (~x(j,0,−)) ∧ φ

−
j (~x(j,1,−))[s]))),

where each variable vector ~x(i,n,b) (or ~x(j,n,b) respectively) (i=1..m2, j=1..m3, n ∈ {0, 1}, b ∈ {+,−}) represents
a vector of free variables, which can be either empty, x, y, 〈x, y〉 or 〈y, x〉. Moreover, [∃x] or [∃y] represents that the
quantifier included in [ ] is optional; and each φ+

i (~x(i,1,+)), i= 1..m2 (φ−j (~x(j,1,−)), j= 1..m3, respectively), is a C2

formula with variables (both free and quantified) among x and y.7

Acyclic TBox axioms DT : Similar to the TBox axioms in DL, we may also introduce a group of axioms DT to define
new concepts, which are later called TBox axioms. Any group of TBox axioms DT may include two sub-classes: static
TBox DT,st and dynamic TBox DT,dyn. Every formula in static TBox is a concept definition formula of the form

G(x) ≡ φG(x),

where G is a unary predicate symbol and φG(x) is a C2 formula in the domain with free variable x, and there is no
dynamic concept or dynamic role in it. Every formula in dynamic TBox is a concept definition formula of the form

G(x, s) ≡ φG(x)[s],

where φG(x) is a C2 formula with free variable x, and there is at least one dynamic concept or dynamic role in it. All
the concepts appeared in the left-hand side of TBox axioms are called defined concepts. During reasoning, we use lazy
unfolding technique (see [2]) to expand a given sentence whenever we regress defined dynamic concepts. In this paper,
we require that the set of TBox axioms must be acyclic to ensure the lazy unfolding approach terminates in the finite
number of steps (acyclicity in DT is defined exactly as it is defined for TBox ).
RBox axioms DR: Similar to the idea of RBox in DL, we may also specify a group of axioms, called RBox axioms
below, to support a role taxonomy. Each role inclusion axiom R1 v R2, if any, where R1 and R2 are primitive roles
(either static or dynamic) is represented as R1(x, y)[s] ⊃ R2(x, y)[s]. If these axioms and included in the BAT D, then
it is assumed that D is specified correctly in the sense that the meaning of any RBox axiom included in the theory is
correctly compiled into SSAs. This means that one can prove by induction that D |= ∀s.R1(x, y)[s] ⊃ R2(x, y)[s].
Although RBox axioms are not used by the regression operator, they are used for taxonomic reasoning in the initial
theory.
Initial theory DS0

: It is a finite set of C2 sentences (assuming that we suppress the only situation term S0 in all
fluents). It specifies the incomplete information about the initial problem state and also describes all the facts that are

7Notice that when m0 (or m1,m2, m3, respectively) is equal to 0, the corresponding disjunctive subformula is equivalent to false.



not changeable over time in the domain of an application. In particular, it includes static TBox axioms DT,st as well as
RBox axioms in the initial situation S0 (if any).

The remaining two classes ( Σ and Duna) are the same as those in the usual SC.

5. Extending Regression with Lazy Unfolding

After giving the definition of what the BAT in LDL
sc is, we turn our attention to the reasoning tasks. There are various

kinds of reasoning problems we could think of. For example, if we are considering a planning problem, we are looking
for a ground situation starting from the initial situation such that it is executable and a given goal (formalized as a
logic formula with respect to this situation) can be entailed by D. However, below we focus on two sub-problems
of the planning problem (executability and projection), because they are the most essential for solving the planning
(composition) problem.

Consider a BAT D of LDL
sc specified as in the previous section for some dynamic system with OWA. Given a for-

mulaW of LDL
sc in the domain D, the definition ofW being regressable (called LDL

sc regressable below) is slightly dif-
ferent from the definition of W being regressable in Lsc (see Section 2) by adding the following additional conditions:
(4) any variable (free or bounded) in W is either x or y; (5) every term of sort situation in W is ground. Moreover, in
LDL

sc we have to be more careful with the definition of the regression operator R for two main reasons. First, to deal
with TBox we have to extend regression. For a LDL

sc regressable formula W , we extend below the regression operator
defined in [24] with the lazy unfolding technique and still denote such operator as R. Second, LDL

sc uses only two
object variables and we have to make sure that after regressing a fluent atom we still get a LDL

sc formula, i.e., that we
never need to introduce new (free or bound) object variables. To deal with the two-variable restriction, we modify our
regression operator R in comparison to the conventional operator defined in [24]. For example, when replacing Poss
atom or fluent atoms about do(α, σ), the definition of the conventional regression operator in [24] has the assumption
that the quantified variables in the right-hand side of the corresponding axioms should be renamed in advance to new
variables different from the free variables in the atoms that to be replaced. This assumption of using new variables for
renaming assures equivalence of original formula and the formula after regression. However, by modifying the conven-
tional regression operator, we can obtain a new regression operator for LDL

sc regressable formulas (which assures the
correctness of the replacement without using new variables), when renaming of the quantified variables is carried by
means of reusing them (the details are given in items b, c and d below). Possibility of reusing variables is guaranteed
by the general format of the SSAs given in the previous section and the additional condition (5) in the definition of
the LDL

sc regressable formula. The complete formal definition of our R is as follows, where σ denotes the term of sort
situation, and α denotes the term of sort action.

• If W is not atomic, i.e. W is of the form W1 ∨ W2, W1 ∧ W2, ¬W ′, Qv.W ′ where Q represents a quantifier
(including counting quantifiers) and v represents a variable symbol, then

R[W1 ∨W2] = R[W1] ∨ R[W2], R[¬W ′] = ¬R[W ′],
R[W1 ∧W2] = R[W1] ∧ R[W2], R[Qv.W ′] = Qv.R[W ′].

• Otherwise, W is atom. There are several cases.
a. IfW is situation independent (including equality), orW is a concept or role uniform in S0, then R[W ] = W.

b. If W is a regressable Poss atom, so it has the form Poss(A(~t), σ), for terms of sort action and situation respec-
tively in LDL

sc . Then there must be an action precondition axiom for A of the form Poss(A(~x), s) ≡ ΠA(~x, s), where
the argument ~x of sort object can either be empty (i.e., A is an action constant), a single variable x or two-variable
vector 〈x, y〉. Because of the syntactic restrictions of LDL

sc , each term in ~t can only be a variable x, y or a constant C.
Then,

R[W ] =





R[(∃y)(x = y ∧ ΠA(x, y, σ))] if ~t = 〈x, x〉,

R[(∃x)(y = x ∧ ΠA(x, y, σ))] else if ~t = 〈y, y〉,

R[ΠA(~t, σ)] else if ~t = x or ~t = 〈x, y〉 or ~t = 〈x,C〉,

R[Π̃A(~t, σ)] otherwise,

whereC represents a constant and φ̃ denotes a dual formula for formula φ obtained by replacing every variable symbol
x (free or quantified) with variable symbol y and replacing every variable symbol y (free or quantified) with variable
symbol x in φ, i.e., φ̃ = φ[x/y, y/x].
c. If W is a defined dynamic concept, so it has the form G(~t, σ) for some object term ~t and situation term σ, and
there must be a TBox axiom for G of the form G(x, s) ≡ φG(x, s). Because of the restrictions of the language LDL

sc ,
term ~t can only be a variable x, y or a constant. Then, we use lazy unfolding technique as follows:



R[W ] =

{
R[φG(t, σ)] if t is not variable y,
R[φ̃G(y, σ)] otherwise.

d. If W is a primitive concept (a primitive role, respectively), so it has the form F (t1, do(α, σ)) (the form
R(t1, t2, do(α, σ)), respectively) for some terms t1 (and t2) of sort object, term α of sort action and term σ of sort situ-
ation. There must be a SSA for F (forR, respectively) such as Eq. (1) (Eq. (2), respectively). Because of the restriction
of the language LDL

sc , the term t1 and t2 can only be a variable x, y or a constant C and α can only an action function
with no more than two arguments of sort object. Then, when W is a concept,

R[W ] =

{
R[ψF (t1, α, σ)] if t1 is not variable y,
R[ψ̃F (y, α, σ)] otherwise, i.e., if t1 = y;

and, when W is a role,

R[W ] =





R[(∃y)(x = y ∧ ψR(x, y, α, σ))] if t1 = x, t2 = x;
R[(∃x)(y = x ∧ ψR(x, y, α, σ))] if t1 = y, t2 = y;

R[ψ̃R(y, x, α, σ)] if t1 = y, t2 = x;
R[ψR(t1, t2, α, σ)] otherwise.

Based on the above definition, we are able to prove the following theorems.

Theorem 2 Suppose W is a LDL
sc regressable formula, then the regression R[W ] defined above terminates in a finite

number of steps.

Proof: Immediately follows from acyclicity of the TBox axioms, and from the assumption that RBox axioms are
compiled into the SSAs and consequently do not participate in regression. Note also that each time the application of
R either goes from formula to a sub-formula, or expands a Poss or a fluent atom using a corresponding precondition
axiom or a SSA, but only finitely many expansions are possible becauseW mentions only finitely many situation terms.
�

Moreover, it is easy to see that any LDL
sc regressable formula has no more than two variables (x and y), and the

following theorem holds.

Theorem 3 Suppose W is a LDL
sc regressable formula with the background basic action theory D. Then, R[W ] is a

LDL
sc formula uniform in S0 with no more than two variables (x and y). Moreover, D |= W ≡ R[W ].

Proof: Induction over the structure ofW and possible syntactic forms of the right-hand side of the SSAs for primitive
concepts and/or roles. �

Theorem 4 Suppose W is a LDL
sc regressable formula with the background basic action theory D. Then,

D |= W iff DS0
∪ Duna |= R[W ].

Theorem 4 is obtained similar to the regression theorem given in [24]. Moreover, we can also obtain the following
corollary about decidability of the projection problem for LDL

sc regressable formula W (particularly, when W is of
form executable(S) for some ground situation S, it becomes the executability problem).

Corollary 1 Suppose W is a LDL
sc regressable formula with the background basic action theory D. Then, the problem

whether D |= W is decidable.

Proof: Let D0 (W0, respectively) be the theory (formula, respectively) obtained by suppressing situation term S0 in
DS0

(R[W ], respectively). Therefore, D0 and W0 are in C2. According to Theorem 4, D |= W iff DS0
∪ Duna |=

R[W ], iff D0 ∪ Duna |= W0, where W0 is a C2 formula by Theorem 3. Therefore the problem whether D |= W is
equivalent to whether D0 ∧ Duna ∧ ¬W0 is unsatisfiable or not. According to the fact that the satisfiability problem in
C2 is decidable, the theorem is proved. �



6. An Example

In this section, we give an example to illustrate the basic ideas described above.
Example 1 Consider some university that provides on the Web student administration and management services,
such as admitting students, paying tuition fees, enrolling or dropping courses and entering grades.

Although the number of object arguments in the predicates can be at most two, sometimes, we are still able to
handle those features of the systems that require more than two arguments. For example, the grade z of a student x in
a course y may be represented as a predicate grade(x, y, z) in the general FOL (i.e., with three object arguments). Be-
cause the number of distinct grades is finite and they can be easily enumerated as ”A”, ”B”, ”C” or ”D”, we can handle
grade(x, y, z) by replacing it with a finite number of extra predicates, say gradeA(x, y), gradeB(x, y), gradeC(x, y)
and gradeD(x, y) such that they all have two variables only. However, the restriction on the number of variables limits
the expressive power of the language if more than two arguments vary over infinite domains (such as energy, weight,
time, etc). Despite this limitation, we conjecture that many web services still can be represented with at most two
variables either by introducing extra predicates (just like we did for the predicate grade) or by grounding some of the
arguments if their domains are finite and relatively small. Intuitively, it seems that most of the dynamic systems can be
specified by using properties and actions with small arities, hence the techniques for arity reductions mentioned above
and below require no more than polynomial increase in the number of axioms. The high-level features of our example
are specified as the following concepts and roles.
• Static primitive concepts: person(x) (x is a person); course(x) (x is a course provided by the university).
• Dynamic primitive concepts: incoming(x, s) (x is an incoming student in the situation s, it is true when x was
admitted); student(x, s) (x is an eligible student in the situation s, it is true when an incoming student x pays the
tuition fee).
• Dynamic defined concepts: eligFull(x, s) (x is eligible to be a full-time student by paying more than 5000 dol-
lars tuition fee); eligPart(x, s) (x is eligible to be a part-time student by paying no more than 5000 dollars tuition);
qualFull(x, s) (x is a qualified full-time student if he or she pays full time tuition fee and takes at least 4 courses);
qualPart(x, s) (x is a part-time student if he or she pays part-time tuition and takes 2 or 3 courses).
• Static role: preReq(x, y) (course x is a prerequisite of course y).
• Dynamic roles: tuitPaid(x, y, s) (x pays tuition fee y in the situation s); enrolled(x, y, s) (x is enrolled in course
y in the situation s); completed(x, y, s) (x completes course y in the situation s); hadGrade(x, y, s) (x had a grade
for course y in the situation s); gradeA(x, y, s); gradeB(x, y, s); gradeC(x, y, s); gradeD(x, y, s).

Web services are specified as actions: reset (at the beginning of each academic year, the system is being re-
set so that students need to pay tuition fee again to become eligible); admit(x) (the university admits student x);
payTuit(x, y) (x pays tuition fee with the amount of y); enroll(x, y) (x enrolls in course y); drop(x, y) (x drops
course y); enterA(x, y) (enter grade ”A” for student x in course y); enterB(x, y); enterC(x, y); enterD(x, y). The
basic action theory is as follows (most of the axioms are self-explanatory).
Precondition Axioms:
Poss(reset, s) ≡ true, Poss(admit(x), s) ≡ person(x) ∧ ¬incoming(x, s),
P oss(payTuit(x, y), s) ≡ incoming(x, s) ∧ ¬student(x, s),
P oss(drop(x, y), s) ≡ enrolled(x, y, s) ∧ ¬completed(x, y, s),
P oss(enterA(x, y), s) ≡ enrolled(x, y, s) ∧ ¬completed(x, y, s),

and similar to enterA(x, y), the precondition for enterB(x, y) (enterC(x, y) and enterD(x, y) respectively) at any
situation s is also enrolled(x, y, s). Moreover, in the traditional SC, the precondition for action enroll(x, y) would be
equivalent to (∀z)(preReq(z, y) ∧ completed(x, z, s) ∧ ¬gradeD(x, z, s)) ∧ student(x) ∧ course(y). However,
in the modified SC, we only allow at most two variables (including free or quantified) other than the situation variable
s and action variable a. Fortunately, the number of the courses offered in a university is limited (finite and relatively
small) and relatively stable over years (if we manage the students in a college-wise range or department-wise range, the
number of courses may be even smaller). Therefore, we can specify the precondition for the action enroll(x, y) for each
instance of y. That is, assume that the set of courses is {CS1, · · · , CSn}, the precondition axiom for each CSi (i =
1..n) is Poss(enroll(x,CSi), s) ≡ student(x)∧(∀y)(preReq(y, CSi)∧completed(x, y, s)∧¬gradeD(x, y, s)).

On the other hand, when we do this transformation, we can omit the statements course(x) for each course available
at the university in the initial theory.
Successor State Axioms: The SSAs for the fluents gradeB(x, y, s), gradeC(x, y, s) and gradeD(x, y, s) are very
similar to the one for fluent gradeA(x, y, s) (therefore are not repeated here), which ensures that for each student and
each course there is no more than one grade assigned.



incoming(x, do(a, s)) ≡ a = admit(x) ∨ incoming(x, s),
student(x, do(a, s)) ≡ (∃y)(a = payTuit(x, y)) ∨ student(x) ∧ a 6= reset,
tuitPaid(x, y, do(a, s)) ≡ a = payTuit(x, y) ∨ tuitPaid(x, y, s) ∧ a 6= reset,
enrolled(x, y, do(a, s)) ≡ a = enroll(x, y) ∨ enrolled(x, y, s) ∧ ¬(a = drop(x, y)∨

a = enterA(x, y) ∨ a = enterB(x, y) ∨ a = enterC(x, y) ∨ a = enterD(x, y)),
completed(x, y, do(a, s)) ≡ a = enterA(x, y) ∨ a = enterB(x, y) ∨ a = enterC(x, y)∨

a = enterD(x, y) ∨ completed(x, y, s) ∧ a 6= enroll(x, y),
hadGrade(x, y, do(a, s)) ≡ a = enterA(x, y) ∨ a = enterB(x, y) ∨ a = enterC(x, y)∨

a = enterD(x, y) ∨ hadGrade(x, y, s),
gradeA(x, y, do(a, s)) ≡ a = enterA(x, y) ∨ gradeA(x, y, s)∧

¬(a = enterB(x, y) ∨ a = enterC(x, y) ∨ a = enterD(x, y)),

Acyclic TBox Axioms: (no static TBox axioms in this example)
eligFull(x, s) ≡ (∃y)(tuitPaid(x, y, s) ∧ y > 5000),
eligPart(x, s) ≡ (∃y)(tuitPaid(x, y, s) ∧ y ≤ 5000),
qualFull(x, s) ≡ eligFull(x, s)∧ (∃≥4y)enrolled(x, y, s),
qualPart(x, s) ≡ eligPart(x, s) ∧ (∃≥2y)enrolled(x, y, s) ∧ (∃≤3enrolled(x, y, s)).

An example of the initial theory DS0
could be the conjunctions of the following sentences:

person(PSN1), person(PSN2),· · · , person(PSNm), preReq(CS1, CS4) ∨ preReq(CS3, CS4),
(∀x)incoming(x, S0) ⊃ x = PSN2 ∨ x = PSN3, (∀x, y)¬enrolled(x, y, S0),
(∀x)x 6= CS4 ⊃ ¬(∃y).prePeq(y, x), (∀x)¬student(x, S0).

Suppose we denote the above basic action theory as D. Given goal G, for example ∃x.qualFull(x), and a com-
posite web service starting from the initial situation, for example do([admit(PSN1), payTuit(PSN1, 6000)], S0)
(we denote the corresponding resulting situation as Sr), we can check if the goal is satisfied after the execution
of this composite web service by solving the projection problem whether D |= G[Sr]. In our example, this cor-
responds to solving whether D |= ∃x.qualFull(x, Sr). We may also check if a given (ground) composite web
service A1;A2; · · · ;An is possible to execute starting from the initial state by solving the executability problem
whether D |= executable(do([A1, A2, · · · , An], S0)). For example, we can check if the composite web ser-
vice admit(PSN1); payTuit(PSN1, 6000) is possible to be executed from the starting state by solving whether
D |= executable(Sr).

Finally, we give an example of regression of a regressable formula. For instance,
R[(∃x).qualFull(x, do([admit(PSN1), payTuit(PSN1, 6000)], S0))]

= R[(∃x).eligFull(x, do([admit(PSN1), payTuit(PSN1, 6000)], S0))∧
(∃≥4y)enrolled(x, y, do([admit(PSN1), payTuit(PSN1, 6000)], S0))]

= (∃x).R[eligFull(x, do([admit(PSN1), payTuit(PSN1, 6000)], S0))]∧
(∃≥4y)R[enrolled(x, y, do([admit(PSN1), payTuit(PSN1, 6000)], S0))]

= · · ·

= (∃x).((∃y)R[tuitPaid(x, y, do([admit(PSN1), payTuit(PSN1, 6000)], S0)) ∧ y > 5000])
∧(∃≥4y)enrolled(x, y, S0)

= · · ·

= (∃x).((∃y)tuitPaid(x, y, S0) ∧ y > 5000∨ (x = PSN1 ∧ y = 6000∧ y > 5000))
∧(∃≥4y)enrolled(x, y, S0),

which is false given the above initial theory.
We also may introduce some RBox axioms as follows: gradeA v hadGrade, gradeB v hadGrade, gradeC v

hadGrade, gradeD v hadGrade. The RBox axioms are not used in the regression steps of reasoning about exe-
cutability problems and projection problems. However, they are useful for terminological reasonings when necessary.

7. Discussion and Future Work

The major consequence of the results proved above for the problem of service composition is the following. If both
atomic services and properties of the world that can be affected by these services have no more than two parameters,
then we are guaranteed that even in the state of incomplete information about the world, one can always determine
whether a sequentially composed service is executable and whether this composite service will achieve a desired
effect. The previously proposed approaches made different assumptions: [19] assumes that the complete information
is available about the world when effects of a composite service are computed, and [5] considers the propositional
fragment of the SC.



As we mentioned in Introduction, [19,20] propose to use Golog for composition of Semantic Web services. Be-
cause our primitive actions correspond to elementary services, it is desirable to define Golog in our modified SC too.
It is surprisingly straightforward to define almost all Golog operators starting from our C2 based SC. The only restric-
tion in comparison with the original Golog [17,24] is that we cannot define the operator (πx)δ(x), non-deterministic
choice of an action argument, because LDL

sc regressable formulas cannot have occurrences of non-ground action terms
in situation terms. In the original Golog this is allowed, because the regression operator is defined for a larger class
of regressable formulas. However, everything else from the original Golog specifications remain in force, no modifi-
cations are required. In addition to providing a well-defined semantics for Web services, our approach also guarantees
that evaluation of tests in Golog programs is decidable (with respect to arbitrary theory DS0

) that is missing in other
approaches (unless one can make the closed world assumption or impose another restriction to regain decidability).

The most important direction for future research is an efficient implementation of a decision procedure for solv-
ing the executability and projection problems. This procedure should handle the modified LDL

sc regression and do ef-
ficient reasoning in DS0

. It should be straightforward to modify existing implementations of the regression operator
for our purposes, but it is less obvious which reasoner will work efficiently on practical problems. There are several
different directions that we are going to explore. First, according to [6] and Theorem 2, there exists an efficient algo-
rithm for translating C2 formulas to ALCQI(t,u,¬, |, id) formulas. Consequently, we can use any resolution-based
description logic reasoners that can handle ALCQI(t,u,¬, |, id) (e.g., MSPASS [16]). Alternatively, we can try to
use appropriately adapted tableaux-based description logic reasoners, such as FaCT++, for (un)satisfiability check-
ing in ALCQI(t,u,¬, |, id). Second, we can try to avoid any translation from C2 to ALCQI(t,u,¬, |, id) and adapt
resolution based automated theorem provers for our purposes [7].

The recent paper by Baader et al [4] proposes integration of description logics ALCQIO (and its sub-languages)
with an action formalism for reasoning about Web services. This paper starts with a description logic and then defines
services (actions) meta-theoretically: an atomic service is defined as the triple of sets of description logic formulas. To
solve the executability and projection problems this paper introduces an approach similar to regression, and reduces
this problem to description logic reasoning. The main aim is to show how executability of sequences of actions and
solution of the executability and projection problems can be computed, and how complexity of these problems depend
on the chosen description logic. In the full version of [4], there is a detailed embedding of the proposed framework
into the syntactic fragment of the Reiter’s SC. It is shown that solutions of their executability and projection problems
correspond to solutions of these problems with respect to the Reiter’s basic action theories in this fragment for appro-
priately translated formulas (see Theorem 12 in Section 2.4). To achieve this correspondence, one needs to eliminate
TBox by unfolding (this operation can result potentially in exponential blow-up of the theory). Despite that our paper
and [4] have common goals, our developments start differently and proceed in the different directions. We start from
the syntactically restricted FO language (that is significantly more expressive than ALCQIO), use it to construct the
modified SC (where actions are terms), define basic action theories in this language and show that by augmenting
(appropriately modified) regression with lazy unfolding one can reduce the executability and projection problems to
the satisfiability problem in C2 that is decidable. Furthermore,C2 formulas can be translated to ALCQI(t,u,¬, |, id),
if desired. Because our regression operator unfolds fluents “on demand” and uses only relevant part of the (potentially
huge) TBox , we avoid potential computational problems that may occur if the TBox were eliminated in advance. The
advantage of [4] is that all reasoning is reduced to reasoning in description logics (and, consequently, can be efficiently
implemented especially for less expressive fragments of ALCQIO). Our advantages are two-fold: the convenience of
representing actions as terms, and the expressive power of LDL

sc . Because C2 and ALCQI(t,u,¬, |, id) are equally
expressive, there are some (situation suppressed) formulas in our SC that cannot be expressed in ALCQIO (that does
not allow complex roles).

An interesting paper [18] aims to achieve computational tractability of solving projection and progression problems
by following an alternative direction to the approach chosen here. The theory of the initial state is assumed to be in
the so-called proper form and the query used in the projection problem is expected to be in a certain normal form.
In addition, [18] considers a general SC and impose no restriction on arity of fluents. Because of these significant
differences in our approaches, it is not possible to compare them.

There are several other proposals to capture the dynamics of the world in the framework of description logics
and/or its slight extensions. Instead of dealing with actions and the changes caused by actions, some of the approaches
turned to extensions of description logic with temporal logics to capture the changes of the world over time [1,2], and
some others combined planning techniques with description logics to reason about tasks, plans and goals and exploit
descriptions of actions, plans, and goals during plan generation, plan recognition, or plan evaluation [10]. Both [1] and
[10] review several other related papers. In [5], Berardi et al. specify all the actions of e-services as constants, all the
fluents of the system have only situation argument, and translate the basic action theory under such assumption into



description logic framework. It has a limited expressive power without using arguments of objects for actions and/or
fluents: this may cause a blow-up of the knowledge base.
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