High-level robotic control: beyond planning
Position paper

Hector Levesque and Ray Reiter
Dept. of Computer Science
University of Toronto
Toronto, Canada. M5S 3Hb5
http://www.cs.toronto.edu/ “cogrobo/

We agree with the premise of this workshop that it
is time to consider robotic systems that integrate the
results of various independent research efforts. Our po-
sition is that to achieve this integration in a principled
way, 1t will be necessary to take a higher level view of
robotics, one that takes quite seriously the idea that
a robot must not only sense and act in the world, but
reason about itself and its environment. In this posi-
tion paper, we motivate and describe in an informal
way the direction we are taking in this regard. Tech-
nical details can be found in the papers at our website
above.

For the past five years or so, a group of us' at the
University of Toronto have been engaged in what we
call Cognitive Robotics, which we take to be the study
of the knowledge representation and reasoning prob-
lems faced by an autonomous robot (or agent) in a
dynamic and incompletely known world. Central to
this effort is to develop an understanding of the rela-
tionship between the knowledge, the perception, and
the action of such an robot. The sorts of questions we
want to be able to answer are

e to execute a program, what information does a robot
need to have at the outset vs. the information that
it can acquire en route by perceptual means?

e what does the robot need to know about its environ-
ment vs. what need only be known by the designer?

e when should a robot use perception to find out if
something is true as opposed to reasoning about
what it knows was true in the past?

e when should the inner workings of an action be avail-
able to the robot for reasoning and when should the
action be considered primitive or atomic?

and so on. With respect to robotics, our goal (like
that of many in AI) is high-level robotic control: de-

velop a system that is capable of generating actions in
the world that are appropriate as a function of some

'Todd Kelly, Yves lLespérance, Fangzhen Lin*, Jeff
Lloyd, Sheila Mcllraith*, Daniel Marcu, Javier Pinto®,
Shane Ruman®, Richard Scherl*, Steven Shapiro, Mikhail

Soutchanski, Fugenia Ternovskaia (x = emeritus).

current set of beliefs and desires. What we do not want
to do is to simply engineer robot controllers that solve
a class of problems or that work in a class of applica-
tion domains. For example, if it turns out that online
reasoning is unnecessary for some task, we would want
to know what it is about the task that makes it so.

In our opinion, previous attempts at high-level con-
trol within AT have been hampered by an over-reliance
on automated planning: given a goal to achieve to-
gether with a description of some initial state of the
world, and the prerequisites and effects of a set of prim-
itive actions, find a sequence of actions that satisfy the
goal, and then hand them over to the robot for execu-
tion. This suffers from some serious drawbacks:

e no sensing: the planning system is expected to gen-
erate a sequence of actions without considering the
results of sensing;

e lack of reactivity: exceptional situations might arise
during during execution: high-priority interrupts,
failures of the execution modules, unanticipated sit-
uations;

e computational intractability: for all but very simple
domains, automated planning appears to be infea-
sible; at 1ts very best, planning seems ill-suited to
generating very long sequences of actions;

e incompatibility with conventional robotics: conven-
tional robotics deals with micro-actions where de-
cisions are made many times per second in worlds
characterized by noise and uncertainty.

One of the reactions to these difficulties has been the
rise of so-called “insect robotics”, where high-level rea-
soning is effectively abandoned completely in favour of
sensor-based reactivity.

Our approach preserves the high-level control aspect,
but reduces the dependency on automated planning.
Instead of taking as input a goal that needs to be
achieved and calling on a planner to generate primi-
tive actions to achieve it, we imagine a system that
takes as input a high-level program that needs to be
executed, and calls on a program interpreter to gener-
ate primitive actions to execute it.



By a high-level program, here, we mean a program
that tells the robot or agent what needs to be done,
with the following characteristics:

e the most primitive statements in the program are
the external primitive actions available to the robot:

— move to the desk and then pick up the package;

e the tests within the program pertain to conditions in
the world that are affected by the robot (and other
robots):

— 1f the door is locked then .. .else ...

)

— while there is a package on the table do .. .;

— ...after which
you_must be located in Smith’s office;

e programs may be nondeterministic: they may con-
tain choice points where the interpreter must make a
reasoned (non-random) selection that correctly sat-
isfies some later constraints

— go through the appropriate door and retrieve the
package that is waiting;

— either go left or right as appropriate and
then ...at which point you must be located in
the hall.

So high-level programs resemble plans but are consid-
erably more general. For one thing, they can contain
loops, recursive procedures, and more recently for us,
concurrent actions and prioritized interrupts. Most im-
portantly, because of the nondeterminism, they cannot
be executed “blindly.” It is the task of the program
interpreter to figure out how to execute them. To do
80, the interpreter needs to be able to determine what
tests are true or false, and what primitive actions are
possible or impossible, after the execution of various
primitive actions. Moreover, to handle any nondeter-
minism, it needs to search through various possibilities
to find a sequence of primitive actions that satisfies all
the constraints embedded in the program.

In searching for a sequence of actions, what an in-
terpreter does is not so different from planning, but for
a very specific sort of goal: get to a final state where
the given high-level program has been successfully ex-
ecuted. There is, however, a crucial difference between
this search and the search required in traditional plan-
ning: a high-level program typically provides strong
clues about what the desired sequence of primitive ac-
tions should be like. In fact, when the high-level pro-
gram is (almost) deterministic, the program interpreter
requires (almost) no search.

Of course one can write high-level programs that are
so nondeterministic, that nothing is gained over plan-
ning. Consider for example,

until the goal (G is achieved, do an appropriate
primitive action.

In this case, the program interpreter must consider
all possible sequences of actions, just as a planner

would, and would have the same computational prob-
lems. One would never expect to be able to generate
a sequence involving (say) 1000 or 10,000 steps this
way. (In the blocks world, even a 100-step plan seems
infeasible.) But this is a pathological case. Typically,
the user considers what needs to be done and writes
high-level programs accordingly. The downside is that
a user has to focus on the procedural aspects of the
goals to be achieved; the upside is that we can pro-
vide high-level control in applications whose complex-
ity goes well beyond the range of automated planning.

Although our interests lie primarily in the theoretical
foundations of these ideas, we have designed a high-
level programming language embodying them (called
Golog) and implemented a program interpreter for it.
Already a number of applications have been built in
Golog and its successor ConGolog;:

e a simulated elevator controller;

e a demonstration mail delivery robot at Toronto and
York Universities (see below);

e a robot museum guide at the University of Bonn
(Germany) that is controllable online via the Web;
(The robot in this case is an RWI-B21 robot running
Golog and lower level Rhino software.)

¢ business process simulation; (Here Golog is used as
a tool to analyze business processes, rather than to
execute them.)

e characters for computer animation; (Golog is used
to specify the behaviour of characters, from which
realistic graphical animations are then generated.)

e a softbot application in the personal banking do-
main. (In this case, Golog is used to implement
agents which run under Unix and communicate over
TCP/TP. This application is significant because of
its size: over 40 pages of Golog code, clearly outside
the reach of planning systems.)

The mail delivery system mentioned above was our
first experience with an actual (non-simulated) robot,
an RWI-B21. From a high-level perspective, the main
issue to be resolved was what we took to be the prim-
itive actions. The assumption made in Golog (and in
planning, for that matter) is that when the prereq-
uisites of a primitive action are true, the action can
be reliably executed by some low-level module. So
for instance an action like go to position p may not
be desirable since so many unanticipated things can
go wrong. A better primitive might be something like
start going to position p, which initiates the activity.
Sensing actions can then assess the progress of the
motion within Golog and appropriate actions can be
taken to correct any problems.? Indeed, one of the
major strengths of this high-level approach to robotics

2In ConGolog, an interrupt can be triggered when some
termination condition (successful or unsuccessful) is made
true exogenously.



is the ability to recover from failures (such as doors
being closed unexpectedly) in a way that takes into
account the current goal and what is known about the
current situation.

The resulting mail delivery system was actually run
on two separate robotic systems: an RWI-B21 at the
University of Toronto and a Nomad 200 at York Uni-
versity. This is significant as it is the first time (to
our knowledge) that a robotic control program is run
successfully on two separate platforms from different
manufacturers and with quite different low-level soft-
ware environments.

Our sense from our admittedly limited experience
with these systems is that we may be seeing a shift
in robotics research. Up until quite recently, “robot
programming” as such was tackled mainly by engineers
and hobbyists, and required considerable familiarity
with the workings (and especially the failings) of the
underlying hardware.? Increasingly, as a result of much
more stable robotic platforms and much better low-
level interfaces and simulations, 1t has become possible
to develop robot programs like the mail delivery system
that are more portable and hardware independent. We
feel that this trend will continue, and that robotics
research will develop much the way computer science
has, and end up dealing more and more with the sort
of high-level issues we have described here.

3This is not unlike the situation with the first computers
and computer programming in the forties.



