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Abstract

We propose a model of abduction based on the revision of the epistemic state of an agent.

Explanations must be sufficient to induce belief in the sentence to be explained (for instance, some

observation), or ensure its consistency with other beliefs, in a manner that adequately accounts for

factual and hypothetical sentences. Our model will generate explanations that nonmonotonically

predict an observation, thus generalizing most current accounts, which require some deductive

relationship between explanation and observation. It also provides a natural preference ordering

on explanations, defined in terms of normality or plausibility. To illustrate the generality of our

approach, we reconstruct two of the key paradigms for model-based diagnosis, abductive and

consistency-based diagnosis, within our framework. This reconstruction provides an alternative

semantics for both and extends these systems to accommodate our predictive explanations and

semantic preferences on explanations. It also illustrates how more general information can be

incorporated in a principled manner.

�Some parts of this paper appeared in preliminary form as “Abduction as Belief Revision: A Model of Preferred
Explanations,” Proc. of Eleventh National Conf. on Artificial Intelligence (AAAI-93), Washington, DC, pp.642–648 (1993).
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1 Introduction

It has become widely recognized that a lot of reasoning does not proceed in a “straightforward”

deductive manner. Reasonable conclusions cannot always be reached simply by considering the

logical consequences (relative to some background theory) of some known facts. A common pattern

of inference that fails to conform to this picture is abduction, the notion of finding an explanation for

the truth of some fact. For instance, if the grass is wet, one might explain this fact by postulating that

the sprinkler was turned on. This is certainly not a deductive consequence of the grass being wet (it

may well have rained).

Abduction has come to play a crucial role in knowledge representation and reasoning, across many

areas of AI. In discourse interpretation, one often wants to ascribe beliefs to a speaker that explain a

particular utterance, perhaps gaining insight into the speaker’s intentions [30]. More generally, plan

recognition often proceeds abductively. In high-level scene interpretation [51], an interpretation can

be reached by postulating scene objects that explain the appearance of objects in an image. Probably

the most common use of abductive inference in AI is in the area of model-based diagnosis. Given

unexpected observations of the behavior of an artifact or system, a diagnosis is usually taken to be

some set of components, the malfunctioning of which explains these observations [14, 24, 17, 49, 43].

Traditionally, the process of abduction has been modeled by appeal to some sort of deductive

relation between the explanandum (or fact to be explained) and the explanation (the fact that renders

the explanandum plausible). Hempel’s [29] deductive-nomological explanations fall into this cate-

gory, requiring that the explanation entail the explanandum relative to some background knowledge.

Broadly speaking, this picture of abduction can be characterized as follows: an explanation for �
relative to background theory T will be any � that, together with T , entails � (usually with the

additional constraint that f�g [ T be consistent). Such a picture is adopted in much research on

abduction [54, 35, 50]. Theories of this type are, unfortunately, bound to the unrelenting nature of

deductive inference. There are three directions in which such theories must be generalized.

First, we should not require that an explanation deductively entail its observation (even relative

to some background theory). There are very few explanations that do not admit exceptions. The

sprinkler being on can explain the wet grass; but the sprinkler being on with a water main broken is

not a reasonable explanation. Yet this exceptional condition does not make the initial explanation any

less compelling. Rather it illustrates that explanations may entail their conclusions in a defeasible or

nonmonotonic sense.

Second, while there may be many competing explanations for a particular observation, certain of

these may be relatively implausible. While a tanker truck exploding in front of the yard may explain
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the wet grass in the sense described above, this is certainly not as reasonable an explanation as the

sprinkler being turned on. Thus, we require some notion of preference to chose among these potential

explanations.

Third, the deductive picture of explanation does not allow one to explain facts that are inconsistent

with the background theory. Such explanations are, in fact, among the most important; for it is facts

that conflict with existing expectations that most urgently require explanation. This is the case in

diagnostic applications, for example, where observations to be explained contradict our belief that a

system is performing according to specification.

The first two of these problems can be addressed using, for example, probabilistic information

[29, 17, 46, 41]. We might simply require that an explanation render the observation sufficiently

probable. Explanations might thus be nonmonotonic in the sense that � may explain �, but � ^ 
may not (e.g., P (�j�) may be sufficiently high while P (�j� ^ )may not). For instance, it is highly

likely that the grass becomes wet when the sprinkler is turned on, but it is unlikely to become wet

if the water main is broken. Preference can also be given to explanations that are more likely. A

tanker truck exploding in front of the yard is much less probable than the sprinkler being turned

on. There have been proposals to address these issues in a more qualitative manner using “logic-

based” frameworks also. Peirce (see Rescher [52]) discusses the “plausibility” of explanations, as

do Quine and Ullian [48]. Consistency-based diagnosis [49, 16] uses abnormality assumptions to

capture the context-dependence of explanations; and preferred explanations are those that minimize

abnormalities. Poole’s [44] assumption-based framework captures some of these ideas by explicitly

introducing a set of default assumptions to account for the nonmonotonicity of explanations.

In this paper we propose a semantic framework and logical specification of abduction that captures

the spirit of probabilistic proposals, but does so in a qualitative fashion. Explanations are given a

defeasible aspect through the use of techniques for default reasoning and belief revision. Furthermore,

explanations are viewed as more or less plausible according to a qualitative notion of plausibility,

a relation naturally induced by the preferences associated with our defaults. Finally, by relying on

existing theories of belief revision, explanations for facts that conflict with existing beliefs can be

provided. In particular, such conflicting observations will require explanations that themselves force

an agent to revise its beliefs.

Our account will take as central subjunctive conditionals of the form A ) B, which can be

interpreted as asserting that, if an agent were to believe A it would also believe B. Such a conditional

can be consistently held even if A is believed to be false. This is the cornerstone of our notion of

explanation: if believing A is sufficient to induce belief in B, then A explains B. This determines

a strong, predictive sense of explanation; but weaker forms of explanation can also be captured.
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Semantically, such conditionals are interpreted relative to an ordering of plausibility or normality over

possible worlds. This ordering is taken to represent the epistemic state of an agent; thus all forms of

explanation we describe can be classified as epistemic explanations. Our conditional logic, described

in earlier work as a representation of belief revision and default reasoning [3, 7, 9], has the desired

nonmonotonicity and induces a natural preference ordering on sentences (hence explanations).

In the next section we describe abduction, belief revision, our conditional logics and other

necessary logical preliminaries. In Section 3, we discuss the concept of explanation, its epistemic

nature, and how different types of explanations can be captured in our framework. We also introduce

the notion of preferred explanations, showing how the same conditional information used to represent

the defeasibility of explanations induces a natural preference ordering. To demonstrate the expressive

power of our model, in Section 4 we show how Poole’s [43, 44] Theorist framework (without

constraints) and Brewka’s [12] extension of Theorist can be captured in our logics. This reconstruction

explains semantically the non-predictive and paraconsistent nature of explanations in Theorist. It also

illustrates the correct manner in which to augment Theorist with a notion of predictive explanation

and how one should capture semantic preferences on Theorist explanations. These two abilities have

until now been unexplored in this canonical abductive framework. In Section 5, we reconstruct a

canonical theory of consistency-based diagnosis due to de Kleer, Mackworth and Reiter [16, 49] in

our logics. This again suggests extensions of the theory and illustrates the natural similarities and

distinctions between consistency-based and abductive diagnosis.

Proofs of main theorems may be found in the appendix.

2 Abduction and Belief Revision

In this section, we briefly discuss some previous work on abduction, drawing attention to the aspects

of these various proposals that influence our approach. We also describe the AGM model of belief

revision of Alchourrón, Gärdenfors and Makinson [2]; and we present the conditional logics required

to capture this theory of revision, due to Boutilier [9]. This will provide the logical apparatus required

to describe the process of abduction in terms of belief revision.

2.1 Abduction

Abduction is the process of inferring certain facts and/or laws that render some sentence plausible,

that explain some phenomenon or observation. The sentence to be explained is often denoted the

explanandum. We will use the term “observation” instead, for typically we are interested in explaining

some observed fact. This is merely suggestive, however, for hypothetical possibilities can be explained
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as well. The sentences (facts or laws) doing the explaining are often dubbed the explanans sentences.

Though the term is often used to characterize this inference process, we will use “explanation” more

simply to refer to the explanans sentences. Thus, an explanation renders an observation plausible (in

some yet to be determined sense).

The most basic and, in some idealized sense, the most compelling form of abduction is represented

by Hempel’s [29] deductive-nomological explanations. Such explanations consist of certain specific

facts and universal generalizations (scientific laws) that, taken together, deductively entail a given

observation. For example, the observation “This thing flies” can be explained by the fact “This thing is

a bird” and the law “All birds fly.” As Hempel observes, often parts of the explanation are left unstated

with the explicitly provided explanation being elliptical. If it is understood among participants in some

discourse that all birds fly, then “This thing is a bird” alone is a reasonable explanation. Suppose we

take T to be some theory capturing the relevant background knowledge (this may be some scientific

or commonsense theory). Then the sentence � explains observation � just whenf�g [ T j= �
We will be less concerned with the nomological aspects of abduction, assuming that relevant laws are

captured in some background theory.1 Thus, our notion of explanation will be elliptical in this sense,

taking background information for granted.

The criteria for deductive explanations are clearly too strong to allow wide applicability. In

commonsense reasoning and scientific inquiry very few explanations have such strength. One accepts

as a reasonable explanation for wet grass that the sprinkler was turned on; but this explanation is

not (deductively) conclusive. The grass may have been covered by a tarpaulin, the water pressure

may have fallen at a crucial instance, any of a number of other exceptional conditions can defeat this

inference. Of course, we may claim that “the sprinkler was turned on” is elliptical, implicitlyassuming

that none of these exceptional circumstances hold, and that the true explanation includes the denial of

these. However, this runs into the qualification problem of default reasoning, the problem of having

to know that such conditions are false [38]. This view is also untenable when such qualifications

cannot be listed, or the phenomenon in question is inherently probabilistic (at least, given our current

knowledge). To take an example of Hempel, Jim’s close exposure to his brother who has the measles

explains Jim catching the measles; but it certainly doesn’t imply Jim catching the measles.

A number of methods for specifying probabilistic explanations have been proffered. Hempel [29]

1In fact, as we will see in Section 3, the “theory” is implicit in the epistemic state of our reasoning agent. We will have
a few things to say about laws in our framework in the concluding section.
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requires that the explanation make the observation highly probable. Thus, probabilistic explanations

still retain the essential predictive power of deductive explanations. Other accounts make less stringent

requirements. For instance, Gärdenfors [22] insists only that the explanation render the observation

more probable than it is a priori. A key component of the Gärdenfors theory is that the judgements of

probability are rendered with respect to the epistemic state of an agent. We return to this in Section 3.

Because of their probabilistic nature, such explanations are nonmonotonic or defeasible. It

may be that SprinklerOn explains WetGrass, since this observation is very probable given the

explanation. But the stronger propositionSprinklerOn^Covered is not a reasonable explanation,

for the probability of wet grass is quite low in this case. Our goal is to capture this type of explanation

in a qualitative fashion. Rather than relying on probabilistic information, we will provide an account

of defeasible explanations based on the “default rules” held by an agent.

Both deductive and probabilistic models of abduction typically give rise to a number of competing

explanations for a given observation. The propositions Rain and SprinklerOn both explain

WetGrass. If an agent has to choose among competing explanations, there must exist some criteria

for this choice. An obvious preference criterion on explanations is based on the likelihood of the

explanations themselves. An agent should choose the most probable explanation relative to a given

context. Such accounts are often found in diagnosis [46, 15] and most probable explanations are

discussed by Pearl [41]. In a more qualitative sense, one might require that adopted explanation(s)

be among the most “plausible.” This view is advocated by Peirce (see Rescher [52]) and Quine and

Ullian [48]. The notion of minimal diagnosis in the consistency-based models of diagnosis [49] is an

attempt to qualitatively characterize most probable diagnoses. We will provide a formal framework

in which such qualitative judgements of plausibility can be made.

One of the areas of AI that most frequently appeals to abductive inference is model-based di-

agnosis. Given a theory describing the correct behavior of some system or artifact, one can make

predictions about its behavior based on some given information. One might expect a certain observa-

tion based on information about other parts of the system. For example, given the inputs to a digital

circuit, the background theory (or system description) allows one to deduce the value of the outputs.

Should the actual observation differ from the expected observation then the system must not conform

to the system description (assuming the input values are correct). The goal of model-based diagnosis

is to discover an explanation for the aberrant behavior, usually some set of components of the system

that, if behaving abnormally, will entail or excuse the actual observation. The two main paradigms for

model-based diagnosis are the abductive approaches, of which Poole’s [43, 44] Theorist framework is

representative, and consistency-based models such as that of de Kleer, Mackworth and Reiter [16, 49].

These will be discussed in detail in Sections 4 and 5.
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2.2 Conditionals and Belief Revision

The account of abduction we propose relies heavily on the notion of belief revision. For instance,

a predictive explanation requires that belief in the explanation be sufficient to induce belief in the

observation. Therefore we must be able to test the epistemic state of an agent after it (hypothetically)

adopts a potential explanation,or test a knowledge base once it is revised to incorporate the explanation.

A theory of belief revision thus lies at the core of epistemic explanation.

We assume an agent to have a deductively closed set of beliefs K taken from some underlying

language. For concreteness, we will assume this language LCPL to be that of classical propositional

logic generated by some set of variables P. We will often take K to be the closure of some finite set

of premises, or knowledge base, KB; so K = Cn(KB). The expansion of K by new information A
is the belief set K+A = Cn(K [ fAg). This is a seemingly reasonable method of belief change whenK 6j= :A. More troublesome is the revision of K by A when K j= :A. Some beliefs in K must be

given up before A can be accommodated. The problem lies in determining which part of K to give

up. Alchourrón, Gärdenfors and Makinson [2] have proposed a theory of revision (the AGM theory)

based on the following observation: the least “entrenched” beliefs in K should be given up and A
added to this contracted belief set.

We use K�A to denote the belief set resulting when K is revised by A. The AGM theory logically

delimits the scope of acceptable revision functions. To this end, the AGM postulates below are

maintained to hold for any reasonable notion of revision [22].

(R1) K�A is a belief set (i.e. deductively closed).

(R2) A 2 K�A.

(R3) K�A � K+A .

(R4) If :A 62 K then K+A � K�A.

(R5) K�A = Cn(?) iff j= :A.

(R6) If j= A � B then K�A = K�B.

(R7) K�A^B � (K�A)+B .

(R8) If :B 62 K�A then (K�A)+B � K�A^B.

The semantics of AGM revision functions will be described below.

An alternative model of revision is based on the notion of epistemic entrenchment [22]. Given a

belief set K, we can characterize the revision of K by ordering beliefs according to our willingness
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to give them up when necessary. If one of two beliefs must be retracted in order to accommodate

some new fact, the least entrenched belief will be relinquished, while the most entrenched persists.

Gärdenfors [22] presents five postulates for such an ordering and shows that these orderings determine

exactly the space of revision functions satisfying the AGM postulates. We letB �E A denote the fact

that A is at least as entrenched as B in theory K. A complete set of sentences of this form is sufficient

to specify a revision function. We note that the dual of an entrenchment ordering is a plausibility

ordering on sentences. A sentence A is more plausible than B just when :A is less entrenched than:B, and means that A would be more readily accepted than B if the opportunity arose. Grove [28]

studied this relationship and its connection to the AGM theory.

Another form of belief change studied within the AGM theory is the process of contraction, or

rejecting a belief in a belief set. When the belief set K is contracted by A, the resulting belief set K�A
is such that A is no longer held. The AGM theory provides a set of postulates for contraction as well.

This process is related to revision via the Levi and Harper identities:K�A = K \K�:A and K�A = (K�:A)+A
2.2.1 The Logics CO and CO*

Boutilier [9] presents a family of bimodal logics suitable for representing and reasoning about the

revision of a knowledge base. We briefly review the logics and associated possible worlds semantics

for revision. We refer to [9] for further details and motivation.

Semantically, the process of revision can be captured by considering a plausibility ordering

over possible worlds. We can reason about such structures, as well as AGM revision (and several

generalizations of it), using a family of bimodal logics. The languageLB is a bimodal language formed

from a denumerable set P of propositional variables, together with the usual classical connectives

and two modal operators2 and
 2. Intuitively,2A is read as “A holds at all equally or more plausible

worlds,” while
 2A is read “A holds at all less plausible worlds.” We denote byLCPL the propositional

sublanguage of LB. We will define four bimodal logics based on this language.

Our semantics is based on structures consisting of a set of possible worldsW and a binary ordering

relation � over W , reflecting the relative degree of plausibility of worlds. The interpretation of � is

as follows: v � w iff v is at least as plausible as w.2 As usual, v is more plausible than w (v < w)

iff v � w but not w � v. Plausibility is a pragmatic measure that reflects the degree to which one is

willing to accept w as a possible state of affairs. If v is more plausible than w, loosely speaking, v is

2Having “more” plausible elements denoted as “lesser” in the ordering is consistent with the usual AI practice of
preferring minimal elements in some ordering — in this case, the more plausible worlds.
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“more consistent” with an agent’s beliefs than w. We take reflexivity and transitivity to be minimal

requirements on �, dubbing any such model a CT4O-model.

Definition 2.1 [7] A CT4O-model is a triple M = hW;�; 'i, where W is a set (of possible worlds),� is a reflexive, transitive binary relation on W (the ordering relation), and ' maps P into 2W
('(A) is the set of worlds where A is true).

Sentences in LB are interpreted in the usual way, with the truth of a modal formula at world w in M
(where M j=w A means A is true at w) given by

1. M j=w 2A iff for each v such that v � w, M j=v A.

2. M j=w  2A iff for each v such that v 6� w, M j=v A.

If M j=w A we say that M satisfies A at w. For any sentence A, we use kAk to denote the set of

worlds w 2 W that satisfy A (assuming some fixed M ). Each world in this set is an A-world. For

an arbitrary set of formulae S, we use kSk to denote those worlds satisfying each A 2 S and refer to

these as S-worlds. Somewhat loosely we dub those worlds that falsify some A 2 S to be :S-worlds.

We now define several new connectives as follows:3A �df :2:A ;
 3A �df : 2:A ;

$2A �df 2A ^  2A ;
$3A �df 3A_  3A

It is easy to verify that these connectives have the following truth conditions:

(a) M j=w 3A iff for some v such that v � w, M j=v A.

(b) M j=w  3A iff for some v such that v 6� w, M j=v A.

(c) M j=w $2A iff for all v 2 W , M j=v A.

(d) M j=w $3A iff for some v 2 W , M j=v A.

These connectives have the obvious readings: 2A means “A is true at all equally or more plausible

worlds”; 3A means “A is true at some equally or more plausible world”;
 2A means “A is true

at all less plausible (and incomparable) worlds”;
 3A means “A is true at some less plausible (or

incomparable) world”;
$2A means “A is true at all worlds, whether more or less plausible”; finally,$3A means “A is true at some world, whether more or less plausible.” Validity and satisfiability are

defined in a straightforward manner and a sound and complete axiomatization for the logic CT4O is

provided in [7].
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(a) CT4O-model (b) CO-model

Figure 1: CT4O and CO models

A natural restriction on the ordering of plausibility is connectedness; that is, for any pair of worldsw; v, either v � w or w � v. In other words, all worlds must have comparable degrees of plausibility.

This restriction gives rise to the logic CO (again axiomatized in [7]).

Definition 2.2 [7] A CO-model is a triple M = hW;�; 'i, where M is a CT4O-model and � is

totally connected.

In any reflexive, transitive Kripke frame, a cluster is any maximal mutually accessible set of

worlds [53]: a set C � W is a cluster just when v � w for all v; w 2 C and no extension C 0 � C
has this property. We note that CO-structures consist of a totally-ordered set of clusters of equally

plausible worlds, while CT4O-models consist of a partially-ordered set of clusters. Figure 1 illustrates

this, where each large circle denotes a cluster of equally plausible worlds and arrows point in the

direction of increasing plausibility.

Finally, both CT4O and CO can be extended by restricting attention to those structures in which

all logically possible worlds are represented. No matter how implausible, each should be somehow

ranked and should occur in our models. This property turns out to be crucial in characterizing the

AGM theory of belief revision.

Definition 2.3 [7] Let M = hW;�; 'i be a Kripke model. For all w 2 W , w� is defined as the map

from P into f0; 1g such that w�(A) = 1 iff w 2 '(A) (w� is the valuation associated with w).

CT4O*-models and CO*-models are (respectively) CT4O-models and CO-models satisfying the
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condition that ff : f maps P into f0; 1gg � fw� : w 2 Wg:
This restriction is captured axiomatically determining the logics CT4O* and CO* [7].

2.2.2 Modeling Belief Revision

Assume we have a fixed (CO- or CT4O-) modelM . We use min(�) to denote the set of most plausible�-worlds in M :3

min(�) = fw : w j= �; and v < w implies v 6j= �g
In both models in Figure 1, the shaded regions denote the worlds that make up min(A).

The revision of a belief set K can be represented using CT4O- or CO-models that reflect the

degree of plausibility accorded to worlds by an agent in such a belief state. To capture revision of K,

we insist that any such K-revision model be such that kKk = min(>); that is, the model must have a

(unique) minimal cluster formed by kKk.4 This reflects the intuition that all and only K-worlds are

most plausible for an agent with belief set K [9], and corresponds to a form of only knowing [36, 4].

The CT4O-model in Figure 1(a) is a K-revision model for K = Cn(:A;B), while the CO-model in

Figure 1(b) is suitable for K = Cn(:A).
To reviseK byA, we construct the revised setK�A by considering the set min(A) of most plausibleA-worlds in M . In particular, we require that kK�Ak = min(A); thus B 2 K�A iff B is true at each of

the most plausible A-worlds. We can define a conditional connective ) such that A ) B is true in

just such a case: A) B �df
$2(A � 3(A^ 2(A � B)))

This is equivalent to the requirement that

min(A) � kBk
Both models in Figure 1 satisfy A ) B, since B holds at each world in min(A), the shaded regions

of the models.

The Ramsey test [57] provides acceptance conditions for subjunctive conditionals of the form “IfA were the case, then B would hold” by appeal to belief revision. Indeed, the conditional should be

accepted just when an agent, hypothetically revising its beliefs by A, accepts B. Thus, we can equate

3We assume, for simplicity, that such a (limiting) set exists for each � 2 LCPL, though the following technical
developments do not require this [7, 9].

4This constraint can be expressed in the object language LB; see [9, 4].
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the conditional A) B with the statement B 2 K�A and interpret our conditional as a certain type of

epistemic subjunctive conditional. For a specific K-revision model we can define the revised belief

set K�A as K�A = fB 2 LCPL : M j= A) Bg:
Boutilier [9] shows that the revision functions determined by CO*-models are exactly those that

satisfy the AGM postulates. The revision functions captured by the weaker logics impose slightly

weaker constraints on the revision functions: CT4O and CT4O* fail to satisfy postulate (R8), while

CT4O and CO satisfy slightly weaker versions of most of the postulates. Intuitively, a K-revision

model captures the epistemic state of an agent, both its beliefs and its revision policies. A belief

connective can be defined in the object language:5

B(A) �df > ) A
We briefly describe the contraction of K by :A in this semantic framework. To retract belief in:A, we simply accept the worlds in min(A) as epistemically possible without rejecting the possibility

of K-worlds. In other words, K�A = kKk [ min(A)
This is due to the fact that certain A-worlds must become epistemically possible if :A is not to be

believed, and the principle of minimal change suggests that only the most plausible A-worlds should

be accorded this status. The belief set K�:A does not contain :A, and this operation captures the

AGM model of contraction if we restrict our attention to CO*-models. In Figure 1(a) K�:A = Cn(B),
while in Figure 1(b) K�:A = Cn(A � B).

A key distinction between CT4O and CO-models is illustrated in Figure 1: in a CO-model, all

worlds in min(A) must be equally plausible, while in CT4O this need not be the case. Indeed, the

CT4O-model shown has two maximally plausible sets of A-worlds (the shaded regions), yet these are

incomparable. We denote the set of such incomparable subsets of min(A) by Pl(A):Pl(A) = fmin(A)\ C : C is a clusterg
Thus, we have that min(A) = [Pl(A). Taking each such subset (each element of Pl(A)) to be a

plausible revised state of affairs rather than their union, we can define a weaker notion of revision

using the following connective. It reflects the intuition that the consequent C holds within some

5See [4] for a more comprehensive definition of belief and a proof of correspondence to the belief logic weak S5.
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element of Pl(A): (A! C) �df
$2(:A) _$3(A ^2(A � C))

The model in Figure 1(a) shows the distinction: it satisfies neither A ) C nor A ) :C, but bothA! C and A! :C. There is a set of comparable most plausible A-worlds that satisfies C and one

that satisfies :C. Notice that this connective is paraconsistent in the sense that both C and :C may

be “derivable” from A, but C ^ :C is not. However, ! and ) are equivalent in CO, since min(A)
must lie within a single cluster. This weak connective will be primarily of interest when we examine

the Theorist system in Section 4.

We define the plausibility of a proposition by appealing to the plausibility ordering on worlds. We

judge a proposition to be just as plausible as the most plausible world at which that proposition holds.

For instance, if A is consistent with a belief set K, then it will be maximally plausible — the agent

considersA to be epistemically possible. We can compare the relative plausibility of two propositions

semantically: A is at least as plausible as B just when, for every B-world w, there is some A-world

that is at least as plausible as w. This is expressed in LB as
$2(B � 3A). If A is (strictly) more

plausible than B, then as we move away from kKk, we will find an A-world before a B-world; thus,A is qualitatively “more likely” than B. In each model in Figure 1, A ^ B is more plausible thanA ^ :B. We note that in CO-models plausibility totally orders propositions; but in CT4O, certain

propositions may be incomparable by this measure.

2.2.3 Default Rules and Expectations

The subjunctive conditionals defined above have many properties one would expect of default rules.

In particular, the conditional is defeasible. For instance, one can assert that if it rains the grass

will get wet (R ) W ), but that it won’t get wet if the grass is covered ((R ^ C) ) :W ). As

subjunctive conditionals, these refer to an agent adopting belief in the antecedent and thus accepting

the consequent. In this case, the most plausible R-worlds must be different from the most plausibleR ^ C-worlds.

These conditionals have much the same character as default rules. Recently, a number of condi-

tional logics have been proposed for default reasoning [18, 26, 33, 34]. In particular, Boutilier [7]

has proposed using the logics CT4O and CO together with the conditional ) for default reasoning.

To use the logics for this purpose requires simply that we interpret the ordering relation � as ranking

worlds according to their degree of normality. On this interpretation, A ) B means that B holds

at the most normal A-worlds; that is, “If A then normally B.” These default logics are shown to be

equivalent to the preferential and rational consequence operations of Lehmann [33, 34]. They are also
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equivalent to the logic of arbitrarily high probabilities proposed by Adams [1] and further developed

by Goldszmidt and Pearl [26], and can be given a probabilistic interpretation [7].

Boutilier [9] also shows how default reasoning based on such a conditional logic can be interpreted

as a form of belief revision, hence explaining the equivalence of the conditional logic representation

of both processes. Gärdenfors and Makinson’s [23] notion of expectation inference adopts a similar

viewpoint. Roughly, we think of default rules of the form A ) B as inducing various expectations

about the normal state of affairs. In particular, for any such default an agent expects the sentenceA � B to be true in the most normal state of affairs. An agent without specific knowledge of a

particular situation should then adopt, as a “starting point,” belief in this theory of expectations. In

other words, an agent’s “initial” beliefs should be precisely its default expectations. When specific

facts F are learned, the agent can revise this belief set according to the revision model capturing its

default rules. The revised belief set will then correspond precisely to the set of default conclusions

the agent would reach by performing conditional default reasoning from this set of facts using its

conditional default rules (see [9] for details). For this reason, our theory of explanation can be used in

one of two ways. We may think of explanations relative to the epistemic state of an agent. This is the

viewpoint adopted in Section 3 where we present our theory. We may also interpret the conditionals

involved in explanation as default rules. This interpretation will be implicit in Sections 4 and 5 in our

reconstruction of model-based diagnosis, where plausibility orderings are in fact normality orderings.

3 Epistemic Explanations

Often scientific explanations are postulated relative to some background theory consisting of various

scientific laws, principles and facts. In commonsense domains, this background theory should be

thought of as the belief set of some agent. We will therefore define explanations relative to the epistemic

state of some agent or program. We assume this agent to possess an objective (or propositional) belief

set K. We also assume the agent to have certain judgements of plausibility and entrenchment at its

disposal to guide the revision of its beliefs. These may be reflected in the conditionals held by the

agent, explicit statements of plausibility, or any other sentences in the bimodal language that constrain

admissible plausibility orderings. Such a theory may be complete — in the sense that it determines

a unique plausibility ordering — or incomplete. For simplicity, we assume (initially) that an agent’s

theory is complete and that its epistemic state is captured by a single K-revision model. We discuss

later how one might compactly axiomatize such a categorical theory, and how explanations are derived

for incomplete theories.

Defining explanations relative to such structured epistemic states extends the usual deductive and
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probabilistic approaches. There an explanation must be added to an agent’s “theory” to account for an

observation. This restrictive view precludes meaningful explanations of observations other than those

consistent withK. In fact, it is often explanations for observations that conflict with our current beliefs

in which we are most interested. Thus, a model of belief revision seems crucial for explanations of this

sort. In order to account for such explanations, one must permit the belief set (or background theory)

to be revised in some way that allows consistent explanations of such observations. Gärdenfors [22]

has proposed a model of abduction that relies crucially on the epistemic state of the agent doing the

explaining. Our model finds its origins in his account, but there are several crucial differences. First,

Gärdenfors’s model is probabilistic whereas our model is qualitative. As well, our model will provide

a predictive notion of explanation (in a sense described below). In contrast, Gärdenfors makes no

such requirement, counting as explanations facts that only marginally affect the probability of an

observation. However, we share with Gärdenfors the idea that explanations may be evaluated with

respect to states of belief other than that currently held by an agent.

Levesque’s [35] account of abduction is also based on the notion of an epistemic state. Levesque

allows the notion of “belief” to vary (from the standard deductively-closed notion) within his frame-

work in order to capture different types of explanation (e.g., a syntax-motivated notion of simplest

explanation). Our model is orthogonal in that the notion of “implication” between explanation and

observation is weakened.

In this section, we introduce several forms of epistemic explanation and their characterization

in terms of revision. There are two key dimensions along which these forms of explanation are

compared, predictive power and the epistemic status of the observation to be explained.

If belief in the explanation is sufficient to induce belief in the observation, the explanation is said

to be predictive. Deductive-nomological explanations have this form, as do probabilistic explanations

based on high probability. However, weaker, non-predictive explanations are also of interest. These

must simply render the observation reasonable, without necessarily predicting it. Consistency-based

diagnosis adopts this perspective. Exposure to a virus may explain one’s having a cold without

having the predictive power to induce the belief that one will catch cold (prior to observing the cold).

Predictive and non-predictive explanations are discussed in Sections 3.1 and 3.2, respectively. We will

also distinguish two forms of non-predictive explanations: weak explanations and the even weaker

might explanations.

Explanations may also be categorized according to the epistemic status of the explanandum, or

“observation” to be explained. There are two types of sentences that we may wish to explain: beliefs

and non-beliefs. If � is a belief held by the agent, it requires a factual explanation, some other belief� that might have caused the agent to accept �. This type of explanation is clearly crucial in many
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reasoning applications. An intelligent program will provide conclusions of various types to a user;

but a user should expect a program to be able to explain how it reached such a belief, or to justify its

reasoning. We may ask a robot to explain its actions, or an expert system to explain its predictions.

The explanation should clearly be given in terms of other (perhaps more fundamental) beliefs held

by the program. When explaining belief in �, a program or agent that offers a disbelieved sentence� is performing in a misleading manner. A second type of explanation is hypothetical: even if � is

not believed, we may want an explanation for it, some new belief the agent could adopt that would

be sufficient to ensure belief in �. This counterfactual reading turns out to be quite important in AI,

for instance, in diagnostic tasks (see below), planning, and so on [25]. For example, if turning on the

sprinkler explains the grass being wet and an agent’s goal is to wet the grass, then it may well turn on

the sprinkler. We can further distinguish hypothetical explanations into those where observation � is

rejected in K (i.e., :� 2 K) and those where observation � is indeterminate in K (i.e., � 62 K and:� 62 K). Regardless of the predictive power required of an explanation, factual and hypothetical

explanations will require slightly different treatment.

The type of explanation one requires will usually depend on the underlying application. For

instance, we will see that hypothetical explanations, whether predictive or non-predictive, play a key

role in diagnosis. Whatever the chosen form of explanation, certain explanations will be deemed

more plausible than others and will be preferred on those grounds. We will introduce a model of

preference in Section 3.3 that can be used to further distinguish explanations in this fashion.

3.1 Predictive Explanations

In very many settings, we require that explanations be predictive; that is, if an agent were to adopt

a belief in the explanation, it would be compelled to accept the observation. In other words, the

explanation should be sufficient to induce belief in the observation. Legal explanations, discourse

interpretation, goal regression in planning, and diagnosis in certain domains all make use of this type

of explanation.

To determine an appropriate definition of predictive explanation, we consider the factual and

hypothetical cases separately. If the observation � is believed, as argued above, we require that a

suitable explanation � also be believed. For example, if asked to explain the belief WetGrass, an

agent might choose between Rain and SprinklerOn. If it believes the sprinkler is on and that

it hasn’t rained, then Rain is not an appropriate explanation. This leads to our first condition on

explanations: if observation � is accepted (i.e., � 2 K) then any explanation � must also be accepted

(i.e., � 2 K).

If � is not believed, it may be rejected or indeterminate. In the first instance, where � is rejected,
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we insist that any explanation � also be rejected (i.e., :� 2 K). If this were not the case then �
would be consistent with K. According to the AGM theory and our model of revision, this means

that accepting � would be tantamount to adding � toK, and :� would still be believed. For example,

suppose an agent believes the grass is not wet and that the sprinkler may or may not be on. To explain

(or ensure) wet grass, it should not accept the sprinkler being on (or turn it on), for according to its

beliefs the sprinkler may well be on — yet the grass is not believed to be wet.

In the second instance, where � is indeterminate, we insist that any explanation also be indeter-

minate (i.e., � 62 K and :� 62 K). If � 2 K, clearly accepting � causes no change in belief and does

not render � believed. Dismissing explanations � where :� 2 K requires more subtle justification.

Intuitively, when � is indeterminate, it is an epistemic possibility for the agent: for all the agent knows� could be true. If this is the case, it should be explained with some sentence that is also epistemically

possible. If :� 2 K the agent knows � to be false, so it should not be willing to accept it as an

explanation of some fact � that might be true. Since learning � conflicts with none of its beliefs, so

too should a reasonable explanation be consistent with its beliefs. For example, suppose an agent is

unsure whether or not the grass is wet, but believes that it hasn’t rained. Upon learning the grass is

wet, accepting rain as an explanation seems unreasonable.6

Combining these criteria for both factual and hypothetical explanations, we have the following

condition relating the epistemic status of observation � and explanation �:

(ES) � 2 K iff � 2 K and :� 2 K iff :� 2 K
Assuming an agent to possess a unique revision model M reflecting its current epistemic state, we

can express this in the object language asM j= (B� � B�) ^ (B:� � B:�)
If the epistemic state is captured by some (possibly incomplete) theory in the language LB, we can

test this condition using entailment in the appropriate bimodal logic.

We note here that this condition relating the epistemic status of explanation and observation is at

odds with one prevailing view of abduction, which takes only non-beliefs to be valid explanations.

On this view, to offer a current belief � as an explanation is uninformative; abduction should be

an “inference process” allowing the derivation of new beliefs. We take a somewhat different view,

assuming that observations are not (usually) accepted into a belief set until some explanation is

found and accepted. In the context of its other beliefs, observation � is unexpected to a greater or

6Below we will briefly explanations where this condition is weakened.
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lesser degree. Unexplained “belief” in � places the agent in a state of cognitive dissonance. An

explanation relieves this dissonance when it is accepted [22]. After this process both explanation and

observation are believed. Thus, the abductive process should be understood in terms of hypothetical

explanations: when it is realized what could have caused belief in an (unexpected) observation,

both observation and explanation are incorporated. In this sense, our use of the term observation is

somewhat nontraditional — it is a fact that has yet to be accepted (in some sense) as a belief. Factual

explanations are retrospective in the sense that they (should) describe “historically” what explanation

was actually adopted for a certain belief. We will continue to call such beliefs “observations,” using

the term generally to denote a fact to be explained.

Apart from the epistemic status of observation and explanation, we must address the predictive

aspect of explanations. In particular, we require that adopting belief in the explanation � be sufficient

to induce belief in the observation �. The obvious criterion is the following predictive condition:

(P) � 2 K��
which is expressed in the object language as �) �. This captures the intuition that If the explanation

were believed, so too would be the observation [37]. For hypothetical explanations, this seems

sufficient, but for factual explanations (where � 2 K), this condition is trivialized by the presence of

(ES). For once we insist that a valid explanation � be in K, we have K�� = K; and clearly � 2 K��
for any belief �. But surely arbitrary beliefs should not count as valid explanations for other beliefs.

The belief that grass is green should not count as an explanation for the belief that the grass is wet.

In order to evaluate the predictive force of factual explanations, we require that the agent (hypo-

thetically) give up its belief in � and then find some � that would (in this new belief state) restore �.

In other words, we contractK by � and evaluate the conditional�) � with respect to this contracted

belief state:

(PF) � 2 (K�� )��
Thus, when we hypothetically suspend belief in �, if � is sufficient to restore this belief then � counts

as a valid explanation. The contracted belief set K�� might fruitfully be thought of as the belief set

held by the agent before it came to accept the observation �.

An (apparently) unfortunate consequence of this condition is the difficulty it introduces in evalua-

tion. It seems to require that one generate a new epistemic state, reflecting the hypothetical belief setK�� , against which to evaluate the conditional � ) �. Thus, (PF) requires two successive changes

in belief state, a contraction followed by a revision.7 However, it turns out that the condition (ES)

7This is especially problematic, for the AGM theory provides no guidance as to the conditionals an agent should adopt
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ensures that one can effectively test (PF) without resorting to hypothetical contraction. We first note

that (PF) reduces to (P) for hypothetical explanations; for if � 62 K then K�� = K. For factual

explanations, (ES) requires that both � and � are believed. The following proposition shows that

(PF) can be evaluated without iterated belief change.

Proposition 3.1 If �; � 2 K, then � 2 (K�� )�� iff :� 2 K�:�.

Thus condition (PF), in the presense of (ES), is equivalent to the following condition pertaining to

the absence of the observation:

(A) :� 2 K�:�
which is expressed in the object language as :� ) :�. This captures the intuition that If the

observation had been absent, so too would be the explanation.

This condition is now vacuous when the observation is rejected in K, for K�:� = K and we must

have :� 2 K by (ES). It seems plausible to insist that an agent ought to imagine the explanation to

be possible and then test if rejection of the observation leads to rejection of the explanation; in other

words:

(AR) :� 2 (K�:�)�:�
However, just as (PF) reduces to (A), so too does (AR) reduce to (P).

Proposition 3.2 If :�;:� 2 K, then :� 2 (K�:�)�:� iff � 2 K��.

Thus, we are lead to the notion of a predictive explanation, relative to some epistemic state.

Definition 3.1 Let M be a K-revision model reflecting the epistemic state of an agent with belief setK. A predictive explanation for observation � (relative to M ) is any � 2 LCPL such that:

(ES) M j= (B� � B�) ^ (B:� � B:�);
(P) M j= �) �; and

(A) M j= :� ) :�.

in this contracted belief state. Very little can be known about the content of belief sets that are changed more than once as
required by (PF). The AGM theory does not provide a method for determining the structure of the resulting epistemic state,
even if the original epistemic state and belief setK are completely known (but for a recently developed model that captures
such iterated revision, see [6]).
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Figure 2: Explanations for “Wet Grass”

The reductions afforded by Propositions 3.1 and 3.2 are crucial, for they allow an agent to test whether

an explanation is valid relative to its current epistemic state (or its current set of simple conditionals).

An agent is not required to perform hypothetical contraction.

This definition captures both factual and hypothetical predictive explanations. Furthermore, once

the epistemic status of � is known we need only test one of the conditions (A) or (P).

Proposition 3.3 If �; � 2 K then � (predictively) explains � iff :� ) :�.

Proposition 3.4 If �; �;:�;:� 62 K then � (predictively) explains � iff �) � iff :� ) :�.

Proposition 3.5 If :�;:� 2 K then � (predictively) explains � iff �) �.

Example 3.1 Figure 2 illustrates both factual and hypothetical explanations. In the first model, the

agent believes the following are each false: the grass is wet (W ), the sprinkler is on (S), it rained

(R) and the grass is covered (C). W is explained by sprinkler S, since S ) W holds in that

model. So should the agent observe W , S is as possible explanation; should the agent desireW to be true (and have control over S) it can ensure W by causing S to hold. Similarly, R
explainsW , as does S^R. Thus, there may be competing explanations; we discuss preferences
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on these below. Intuitively, � explains � just when � is true at the most plausible situations

in which � holds. Thus, explanations are defeasible: W is explained by R; but, R together

with C does not explain wet grass, for R ^ C ) :W . Notice that R alone explains W , since

the “exceptional” condition C is normally false when R holds, thus need not be stated. This

defeasibility is a feature of explanations that has been given little attention in many logic-based

approaches to abduction.

The second model illustrates factual explanations for W . Since W is believed, explanations

must also be believed. R and :S are candidates, but only R satisfies the condition on factual

explanations: if we give up belief in W , adding R is sufficient to get it back. In other words,:W ) :R. This does not hold for :S because :W ) S is false. �
The crucial features of predictive explanations illustrated in this example are their defeasibility, the

potential for competing explanations, and the distinction between factual and hypothetical explana-

tions.

Notice that if we relax the condition (ES) in the factual example above, we might accept S as a

hypothetical explanation for factual belief W . Although, we believe R, W and :S, one might say

that “Had the sprinkler been on, the grass (still) would have been wet.” This slightly more permissive

form of predictive explanation, called counterfactual explanation, is not explored further here (but

see [10] for further details).

3.1.1 Causal Explanations

The notion of explanation described here cannot be given a truly causal interpretation. In the factual

model in Figure 2, we suggested that rain explains wet grass. However, it is also the case that wet

grass explains rain. Explanations are simply beliefs (whether factual or hypothetical) that induce

belief in the fact to be explained. The connection may be causal (belief in R induces belief in W ) or

evidential (belief in W induces belief in R).

Ultimately, we would like to be able to distinguish causal from non-causal explanations in this

conditional model. Lewis [37] has proposed a counterfactual analysis of causation, whereby a theory

of conditionals might be used to determine causal relations between propositions. More recently,

and perhaps more compelling, is the use of stratified rankings on conditional theories by Goldszmidt

and Pearl [27] to represent causation. Incorporating such considerations in our model brings to mind

Shoham’s [55] epistemic account of causality, whereby a causal theory is expressed in terms of the

knowledge of an agent, and can be nonmonotonic. Whether or not causality is an epistemic notion

(cf. the critique of Galton [20]), it is clear that perceived causal relations will have a dramatic impact
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on the conditional beliefs of an agent. Furthermore, it is the epistemic state of an agent with respect

to which causal predictions and explanations must be derived. In this regard, an epistemic theory of

causal explanation is consistent with Shoham’s viewpoint. However, a more sophisticated account

of causation is necessary in order to distinguish causal from evidential relations among an agent’s

beliefs.8 A more suitable theory should include some account of actions, events, and “intervention”

[27]. For instance, if a (possibly hypothetical) mechanism exists for independently wetting the grass

(W ) and making it rain (R), this can be exploited to show that W does not cause R, but that R causesW , according to the plausibility judgements of an agent. Such experimentation or experience can be

used to distinguish causal from evidential explanations.

Another similarity between conditionals and Shoham’s causal statements are their context-

sensitivity. Simon [56] argues that one potential drawback in Shoham’s theory is the necessity

of distinguishing causal from contextual conditions and the asymmetry this introduces. While this

may or may not be a necessary feature of “true” causal relations, it is a fact of life in any useful

epistemic account, for we naturally communicate and acquire our causal knowledge making such

distinctions. Simon finds disquieting the fact that the roles of cause and contextual condition are

sometimes reversed; but the dependence of the form of causal utterances on circumstances is exactly

what we capture when we evaluate causal statements with respect to an epistemic state. Imagine an

agent possesses two conditionalsR) W and R^C ) :W : the grass gets wet when it rains unless

it’s covered. Taking :C to be the normal case, it seems natural to offer R as a causal explanation (or

cause) for W , and take :C to be a contextual condition. This offers a certain economy in thinking

about and communicating causes. However, in a different epistemic setting, without altering the

underlying physical causal relations (whatever they may be, or if they even exist), these roles may

reversed. If the grass is typically covered, we may have R) :W andR^:C ) W . Supposing that

it usually rains, > ) R, an intuitive causal explanation for W relative to this epistemic state is now:C, someone uncovered the grass. R is relegated to the role of contextual condition. This asymmetry,

far from being problematic, is natural and desirable. We do not delve further into causal explanations

here, but we conjecture that conditional logics will provide a natural and flexible mechanism for

representing causal relations and generating causal explanations with an epistemic flavor.

8Temporal precedence,one mechanism available in Shoham’s theory, cannot resolve such issues in general. For instance,
the truth of E at time t may be evidence for the truth of fact F at time t+ 1 without having caused it.
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3.2 Nonpredictive Explanations

3.2.1 Might Explanations

Very often we are interested in weaker types of explanation that do not predict an observation, but

merely “allow” it. For example, suppose Fred has a choice of three supermarkets at which to shop,

one very close (A), and two rather farther away (B and C). We expect Fred to shop at the closestA, but observe that he actually chooses to shop at C. We might explain Fred’s choice by claiming

that (D) Fred dislikes the service at market A. However, explanation D does not predict that Fred

will choose C, for he may well have chosen B. That is, we do not accept the conditionals D) C orD ) B, but only D ) B _ C. In a sense D “excuses” or permits C but does not predict C. If we

learned D, we would claim that Fred might go to C. Upon learning C, we adopt the explanation D.

A similar example is captured by the hypothetical model in Figure 2: here W permits both R and S
without predicting them. Might explanations of this type play an important role in consistency-based

diagnosis without fault models as well (see Section 5).

Intuitively, a might explanation reflects the slogan If the explanation were believed, the observation

would be a possibility. The sense of “possible” here is naturally that of epistemic possibility. If an

agent accepts explanation �, the observation � becomes consistent with its new belief set. The might

condition is simply

(M) :� 62 K��
which is expressed as � 6) :�.

For hypothetical explanations of rejected � (where :� 2 K), might explanations require nothing

further. However, for explanations of indeterminate �, we must weaken the condition (ES). If � is

indeterminate, it is already a possibility for the agent, and we should not rule out beliefs � 2 K
as potential might explanations: if � is believed (it is!) then � is possible (it is!). Such might

explanations are not very informative, however, so we take the principle case for might explanations

to be that where � is rejected. Thus, (ES) is again replaced by (F):9

(F) If � 2 K then � 2 K.

Definition 3.2 Let M be a K-revision model reflecting the epistemic state of an agent with belief setK. A might explanation for observation � (relative to M ) is any � 2 LCPL such that:

(F) M j= B� � B�; and

9This weakening of (ES) does not affect the principle case where :� 2 K . If :� 62 K , then � 6) :� cannot hold. So:� 2 K ensures :� 2 K for all might explanations.
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(M) M j= � 6) :�.

Intuitively, the epistemic state induced by acceptance of �must contain �-worlds, hence rendering� possible. If it contains only �-worlds then � is a predictive explanation. Predictive explanations

are therefore a special (stronger) case of might explanations.

Proposition 3.6 If � is a predictive explanation for � then � is a might explanation for �.

We take might explanations to be the primary form of non-predictive explanation.

3.2.2 A Variant of Might Explanations

In this section we describe a form of might explanation that is of particular relevance to CT4O-models,

where clusters of equally plausible worlds are partially ordered rather than totally ordered. This form

of explanation is somewhat difficult to motivate independently, but in Section 4 we will see that it is

precisely the type of explanation used by Theorist.

Clearly, a sentence � can be a might explanation for both � and :�. This is similar to the behavior

of the weak conditional connective !, where � ! � and � ! :� can be held consistently. Recall

that a sentence � ! � holds just when � holds at all worlds in some element of Pl(�), (i.e., at

minimal cluster of �-worlds). We call � a weak explanation for � just in case it is a might explanation

such that �! �.

Definition 3.3 Let M be a K-revision model reflecting the epistemic state of an agent with belief setK. A weak explanation for observation � (relative to M ) is any � 2 LCPL such that:

(F) M j= B� � B�; and

(W) M j= �! �.

Intuitively, weak explanations lie between predictive and might explanations. They are stronger than

might explanations, for they require, at some cluster of most plausible �-worlds, that � holds. All

other most plausible �-worlds are of incomparable plausibility, so in some sense � is “potentially

predictive” (it “could” be that the relevant cluster is actually min(�), if only one could render all

worlds comparable). On the other hand, weak explanations are weaker than predictive explanations

in the sense that certain min(�)-worlds do not (in the principle case) satisfy the observation. Weak

explanations are therefore a special (stronger) case of might explanations.

Proposition 3.7 If � is a weak explanation for � then � is a might explanation for �.
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Naturally, in the logic CO, since�! � iff �) �, weak explanations are predictive. Therefore, weak

explanations will only be used in the context of CT4O-models. In the CT4O-model in Figure 1(a), A
is a weak explanation for both C and :C.

3.3 Preferences

The explanations defined above carry the explanatory force we expect, whether predictive or not,

yet are more flexible than deductive explanations. They exhibit the desired defeasibility, allowing

exceptions and more specific information to override their explanatory status. However, the criteria

we propose admit many explanations for a given observation in general: any � sufficient to induce

belief in � counts as a valid predictive explanation. For instance, rain explains wet grass; but a

tanker truck full of milk exploding in front of the yard also explains wet grass. If you could convince

someone that such an event occurred, you would convince them that the grass was wet.

Certainly some explanations should be preferred to others on grounds of likelihood or plausibility.

In probabilistic approaches to abduction, one might prefer most probable explanations. In consistency-

based diagnosis, explanations with the fewest abnormalities are preferred on the grounds that (say)

multiple component failures are unlikely. Such preferences can be captured in our model quite easily.

Our CT4O- and CO-structures rank worlds according to their degree of plausibility, and reasonable

explanations are simply those that occur at the most plausible worlds. We recall from Section 2.2

the notion of plausibility as applied to propositions. A is at least as plausible as B just when, for

every B-world w, there is some A-world that is at least as plausible as w. For CO-models, this totally

orders propositions; but for CT4O-models, two propositions may have incomparable “degrees” of

plausibility.

An adopted explanation is not one that simply makes an observation less surprising, but one that

is itself as unsurprising as possible. We use the plausibility ranking to judge this degree of surprise.

Definition 3.4 If � and �0 both explain � then � is at least as preferred as �0 (written � �P �0) iffM j= $2(�0 � 3�). The preferred explanations of � are those � such that for no explanation�0 is it the case that �0 <P �.

Preferred explanations are those that are most plausible, that require the “least” change in belief

set K in order to be accepted. Examining the hypothetical model in Figure 2, we see that R, S andR^S each explainW ; butR and S are preferred toR^S (it may not be known whether the sprinkler

was on or it rained, but it’s unlikely that the sprinkler was on in the rain). Any world in which a tanker

truck explodes is less plausible than these other worlds, so that explanation is given relatively less

credibility.
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By basing the notion of preference on the relative plausibility of explanations, we lose the ability

to distinguish factual explanations from one another. The conditions (ES) and (FS) ensure that every

valid explanation of a factual observation is believed, and all beliefs are equally (and maximally)

plausible for an agent. Thus, each candidate explanation is preferred. This fits well with the point

of view adopted above: an agent, when accepting �, also accepts its most plausible explanation(s).

There is no need, then, to rank factual explanations according to plausibility – all explanations inK are equally plausible. If one wanted to distinguish possible explanations of some belief �, one

might distinguish the hypothetical explanations of � in the contracted belief stateK�� . Most plausible

explanations are then those that the agent judged to be most plausible before accepting �. However,

such a move serves no purpose, for the most preferred explanations in state K�� must be beliefs in K.

Proposition 3.8 Let � 2 K and � be a predictive explanation for �. Then � is a preferred (hypo-

thetical) explanation for � in K�� .

It is not hard to see that preferences cannot be applied to hypothetical explanations of indeterminate� for precisely the same reason: all valid explanations must be epistemically possible, and therefore

maximally plausible, this because (ES) requires :� 62 K. For these reasons, when describing

preferences, we restrict our attention to hypothetical explanations of rejected �.

A predictive explanation needn’t be compared to all other explanations in order to determine if it

is most preferred. The following proposition indicates a simpler test for preference.

Proposition 3.9 Let � be a predictive explanation for � relative to model M . Then � is a preferred

explanation iff M j= � 6! :�.

This test simply says that in any cluster of most normal �-worlds, if � is a preferred explanation of�, then an �-world must occur somewhere in that cluster, for this is (potentially) the most plausible

cluster of situations in which the observation holds.

The test is greatly simplified, and much clearer, for totally-ordered CO-models. This due to the

equivalence of ! and ) under CO.

Proposition 3.10 Let � be a predictive explanation for � relative to CO-model M . Then � is a

preferred explanation iff M j= � 6) :�.

In this case, � is a preferred explanation iff belief in � does not preclude the possibility of �. Preferred

explanations are those that are most plausible, that require the “least” change in belief set K in order

to be accepted. Examining the hypothetical model in Figure 2, we see that W 6) :R and W 6) :S
holds, but W 6) :(S ^ R) is false. So R and S are preferred explanations, while explanation S ^R
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is not.10

3.4 The Pragmatics of Explanation

In any actual system for explanation, ultimately a sentence must be returned which explains the

given observation. The semantic conditions we have proposed admit explanations that are intuitively

unsatisfying in some circumstances. Of the many explanations, some may be preferred on grounds

other than plausibility. Natural criteria such as simplicity and informativeness are often used to rule

out certain explanations in certain contexts [47]. Levesque [35] has proposed criteria for judging the

simplicity of explanations. Hobbs et al [30] argue that in natural language interpretation most specific

explanations are often required, rather than simple explanations. In diagnostic systems, often this

problem is circumvented, for explanations are usually drawn from a prespecified set of conjectures

[44] (see Sections 4 and 5).

It is clear that the exact form an explanation should take is influenced by the application one has in

mind. Therefore, we do not include such considerations in our semantic account of abduction. Rather,

we view these as pragmatic concerns, distinct from the semantic issues involved in predictiveness and

plausibility (cf. Levesque [35]). Providing an account of the pragmatics of explanations is beyond

the scope of this paper; but we briefly review two such issues that arise in our framework: trivial

explanations and irrelevant information.

3.4.1 Trivial Explanations

A simple theorem of CT4O and CO is � ) �. This means that � is always a predictive (and

preferred) explanation for itself. While this trivial explanation may seem strange, upon reflection it

is clear that no other proposition has a stronger claim on inducing belief in an observation than the

observation itself. This makes the task of explanation quite simple! Unfortunately, a system that

provides uninformative trivial explanations will not be deemed especially helpful.

We expect pragmatic considerations, much like Gricean maxims, to rule out uninformative expla-

nations where possible. For instance, one might require that an explanation be semantically distinct

from the observation it purports to explain. However, the semantics should not rule out trivial ex-

planations. In some applications a trivial explanation may be entirely appropriate. Consider causal

explanations in a causal network. One might expect a causal explanation for a node having a particular

value to consist of some assignment of values to its ancestors. However, when asked to explain a

10When there are several disjoint preferred explanations (e.g., R, S), we may be interested in covering explanations, that
capture all of the plausible causes of an observation. We refer to [10] for a discussion of this notion.
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root node, no explanation but the trivial explanation seems appropriate. Presumably, in any abstract

model of a domain, causes (hence causal explanations) cannot be traced back ad infinitum.11

3.4.2 Irrelevant Information

Very often one can strengthen or weaken an explanation with extraneous information and not affect its

explanatory power. But such constructions often result in explanations that are intuitively unsatisfying.

Suppose as usual that the sprinkler being on explains wet grass, so S ) W . Suppose furthermore

that the conditionals S ) O and S ) :O are both rejected by the agent, where O stands for “Fred’s

office door is open,” something about which our agent has no information. A simple inference ensures

that (S ^ O)) W and (S ^ :O)) W both hold. Thus, S ^ O and S ^ :O both explain W . Yet,

intuitively both of these explanations are unappealing — they contain information that is irrelevant

to the conclusion at hand.

In order to rule out such explanations, we expect the pragmatic component of an abductive system

to filter out semantically correct explanations that are inappropriate in a given context. In Poole’s

Theorist system, for example, explanations are drawn from a prespecified set of conjectures. We can

view this as a crude pragmatic “theory.” Levesque [35] embeds a syntactic notion of simplicity in

his semantics for abduction. In our conditional framework one can define conditions under which a

proposition is deemed irrelevant to a conditional [21, 3].

Explanations can also be strengthened with “background information” that, while not irrelevant,

can be left unstated. For instance, returning to the example given by the factual model in Figure 2,

we can see that R explains W , and R ^ :C explains W as well. However, since :C normally holds

when R holds (i.e., R ) :C), it can be left as a tacit assumption. Certainly, :C is relevant, forR ^ C ) :W , but it needn’t be stated as part of the explanation. This suggests that logically weak

explanations are to be (pragmatically) preferred. It also suggests a mechanism whereby an abductive

system can elaborate or clarify its explanations. Should an explanation be questioned, the system can

identify tacit knowledge that is deemed relevant to the explanation and elaborate by providing these

facts.

One can weaken explanations by disjoining certain information to valid explanations, retaining

explanatory power. In general, if A explains B, and C is less plausible that A, then A _ C explainsB as well. Since (A _ C) ) A (because C is less plausible than A), we must have (A _ C) ) B.

If rain explains wet grass, so does “It rained or the lawn was covered,” since C is less plausible thanR. Once again, we view the weaker explanation as violating (something like) the Gricean maxim of

11“Why is the grass wet?” “Because it rained.” “Why did it rain?” “It just did!”
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Informativeness: the explanation R is certainly more informative that the weaker R _ C (but still

relevant). The explanation R _ C also carries with it the unwanted implicature that both disjuncts

are (individually) valid explanations. This is strongly related to the following issue that arises in the

study of conditional logics: sentences with the linguistic form (A _ C)) B are usually intended to

represent an assertion with the logical form (A) B) _ (C ) B) [40].

4 Abductive Models of Diagnosis

One of the main approaches to model-based diagnostic reasoning and explanation are the so-called

“abductive” theories. Representative of these models is Poole’s [43, 44] Theorist framework for

explanation and prediction, and Brewka’s [12] extension of it. In this section, we describe both

models, how they can be embedded within our framework, and how the notions we defined in the

last section can be used to define natural extensions of the Theorist framework. This also provides an

object-level semantic account of Theorist.

4.1 Theorist and Preferred Subtheories

Poole [43, 44] presents a framework for hypothetical reasoning that supports explanation and default

prediction. Theorist is based on default theories, pairs hF ;Diwhere F and D are sets of sentences.12

The elements of F are facts, known to be true of the situation under investigation. We take D to

be a set of defaults, sentences that are normally true, or expectations about typical states of affairs.

Although nothing crucial depends on this, we assume D to be consistent. Poole also uses a set C of

conjectures that may be used in the explanation of observations, but should not be used in default

prediction.13

Definition 4.1 [44] An extension of hF ;Di is any set Cn(F [D) where D is a maximal subset of D
such that F [D is consistent.

Intuitively, extensions are formed by assuming as many defaults as possible. Since defaults are

expected to be true, each extension corresponds to a “most normal” situation at which F holds. A

12Poole’s presentation is first-order, using ground instances of formulae in the definitions to follow. For simplicity, we
present only the propositional version.

13The following definitions are slightly modified, but capture the essential spirit of Theorist. We ignore two aspects
of Theorist, constraints and names. While constraints can be used to rule out undesirable extensions for prediction, it
is generally accepted that priorities, which we examine below, provide a more understandable mechanism for resolving
conflicts. The role of constraints in explanation has largely been ignored. Named defaults add no expressive power to
Theorist; they can be captured by introducing the names themselves as the only (atomic) defaults.
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(skeptical) notion of default prediction is defined by considering what is true at each such normal

situation.

Definition 4.2 [44] Sentence A is predicted by hF ;Di iff A is in each extension of hF ;Di.
Conjectures play a key role in abduction, and can be viewed as possible hypotheses that (together

with certain defaults) explain a given observation �.

Definition 4.3 [44] C [D is a (Theorist) explanation for observation � (w.r.t. hF ;D; Ci) iff C � C,D � D, C [D [ F is consistent and C [D [ F j= �.

Since we take defaults to be assumptions pertaining to the normal course of events, the set C of

adopted conjectures carries the bulk of the explanatory force of a Theorist explanation. Just as we

ignore “causal rules” and “scientific laws” in our earlier definition of predictive explanation, here we

take the default component of an explanation to be “understood,” and take a set C of conjectures to

be a Theorist explanation iff there is some set of defaults D that satisfies the required relation. We

assume sets C, D and F are finite and sometimes treat them as the conjunction of their elements.

Example 4.1 Let F = fU;Ag, D = fU � A;A � E;U � :E;R � :Pg and C = fU;A;Eg,

where U , A, E,R and P stand for university student, adult, employed, Republican and Pacifist,

respectively. The extensions of this default theory are

CnfU;A; U � A;A � E;R � :Pg
CnfU;A; U � A;U � :E;R � :Pg

Thus A is predicted, but neither E nor :E are predicted.

Suppose now that F = ;. The conjecture A explains E, but does not explain :E. Thus, if

one adopted belief in A, one would predict E. In a similar fashion, U explains E; but U also

explains :E. Notice that :P is not explainable. �
The last explanation in this example illustrates that Theorist explanations are, in a certain sense, para-

consistent: a conjecture may explain both a proposition and its negation. Certainly, such explanations

cannot be construed as predictive. Notice also that certain propositions may not have explanations of

the type defined by Theorist, but can be explained (nontrivially) if we allow explanations that do not

lie within the set of conjectures. Intuitively, we might want to admit R as a valid explanation of :P
even though it is not listed among our assumable hypotheses in C.
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In the example above, the second extension is more satisfying than the first. The fact that

university students are a specific subclass of adults suggests that the default rule U � :E should be

applied instead of A � E. Brewka [12] has extended the Theorist framework for default prediction

by introducing priorities on defaults to handle such a situation.

Definition 4.4 A Brewka theory is a pair hF ; hD1; � � � ;Dnii where F is a set of facts and each Di is

a set of defaults.

Intuitively, hD1; � � � ;Dni is an ordered set of default sets, where the defaults in the lower ranked

sets have higher priority than those in the higher ranked sets. We will say that default d 2 Di has

priority over default e 2 Dj if i < j. When constructing extensions of such a theory, if two default

rules conflict, the higher priority rule must be used rather than the lower priority rule. Multiple

extensions of a theory exist only when default rules of the same priority conflict with the facts or

higher priority rules. A Theorist default theory (with no conjectures) hF ;Di is a Brewka theory with a

single priority level. The reduction of a Brewka theory to a (Theorist) default theory is hF ;Di, whereD = D1 [ : : :[Dn. Brewka’s preferred subtheories (hereafter dubbed extensions) are constructed in

the obvious way.

Definition 4.5 An extension of a Brewka theory hF ; hD1; � � � ;Dnii is any setE = Cn(F [D1 [ : : :[Dn)
where, for all 1 � k � n,F[D1[ : : :[Dk is a maximal consistent subset ofF[D1[ : : :[Dk .

Thus, extensions are constructed by adding to F as many defaults from D1 as possible, then as many

defaults from D2 as possible, and so on. The following proposition should be clear:

Proposition 4.1 Every extension of a Brewka theory hF ; hD1; � � � ;Dnii is a Theorist extension of its

reduction hF ;Di.
Prediction based on a Brewka theory is defined in the obvious way, as membership in all extensions.

It then becomes clear that:

Proposition 4.2 A is predicted by a Brewka theory hF ; hD1; � � � ;Dnii if it is predicted by its reductionhF ;Di.
In other words, Brewka theories allow (typically strictly) more predictions than their Theorist counter-

parts. In the example above, should we divide D into priority levels by placing U � A and U � :E
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in D1 and A � E in D2, we are left with a single extension CnfU; U � A;U � :E;R � :Pg, and:E is predicted.

Brewka does not provide a notion of explanation, but the Theorist definition of explanation will

suffice. That is, � explains � iff f�g [ F is consistent with some set of defaults D � D1 [ : : :[ Dk
such that f�g [ F [ D j= �. Again, we will often draw explanations from a prespecified set of

conjectures. This definition retains the essential properties of the Theorist definition, in particular, its

paraconsistent flavor.

4.2 Capturing Theorist in CT4O

Our goal is to represent and extend the notion of explanation in Theorist by embedding it within

our conditional framework. This will have the effect of providing a semantic interpretation in our

conditional logic for Theorist’s notion of explanation and prediction. In what follows, we assume a

fixed, consistent set of defaults D, but the sets F and C of facts and conjectures, respectively, will be

allowed to vary.14

The definitions of extension and prediction in Theorist suggest that the more defaults a situation

satisfies, the more normal that situation is. We capture the normality criterion implicit in Theorist by

ranking possible worlds according to the default sentences they falsify (or violate).

Definition 4.6 For any possible world w 2 W , the set of defaults violated by w isV (w) = fd 2 D : w j= :dg
If we interpret defaults as normality assumptions, clearly the ordering of worlds should be induced

by set inclusion on these violation sets. This gives rise to a suitable CT4O*-model, the Theorist

structure, for a set of defaults D.

Definition 4.7 The Theorist structure for D is MD = hW;�; 'i where W is the set of truth assign-

ments suitable forLCPL; ' is the valuation function induced byW ; and v � w iff V (v) � V (w).
Proposition 4.3 MD is a CT4O*-model.

The model MD divides worlds into clusters of equally plausible worlds that violate the same set of

defaults in D. If V (w) = V (v) then w � v and v � w. Otherwise, v and w must be in different

clusters.

14The consistency of the set D is not crucial to our representation, but allows the presentation to be simplified. We
will point out various properties of our model that depend on this assumption and how they are generalized when D is not
consistent.
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Figure 3: Theorist Model for the University Students Example

Proposition 4.4 C is a cluster in the model MD iff for some D � DC = fw : w j= d if d 2 D and w j= :d if d 2 D �Dg
SinceD is finite, any modelMD consists of a finite set of clusters. Figure 3 depicts the Theorist model

for the default set D = fU � A;A � E;U � :Eg. The bottom cluster contains those worlds that

violate no defaults, that is, the most normal worlds. The middle clusters (from left to right) violate

the default sets fU � Ag, fU � :Eg and fA � Eg, respectively. The least plausible worlds violate

the default set fU � A;U � :Eg. Notice that the model MD is sensitive to the syntactic structure

of the default set D. Logically equivalent sets of defaults can result in drastically different models,

reflecting the syntax-sensitivity exhibited by Theorist.

To interpret this model, we view the defaults in D as expectations held by an agent, statements

regarding the most normal or plausible states of affairs. If an agent has no “factual beliefs,” it would

adopt this set of defaults as its only beliefs. Thus, the model MD captures the epistemic state of an

agent who has yet to encounter any default violations. In a diagnosis application, we might think of

such a belief state as representing the normal functioning of a system. Notice that sinceD is consistent
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the model MD has a unique minimal cluster.15

The facts F play no role in the definition of the model MD. The manner in which we define

prediction and explanation relative to this model below will account for F by using these facts in the

antecedents of relevant conditionals. This allows a single model to be used for a variety of different

sets of facts. One can explicitly account for F in the model by ruling out any worlds falsifying F
(e.g., by using the axiom

$2F ). However, we find the current formulation more convenient.

4.2.1 Prediction

Extensions of a default theory hF ;Di are formed by considering maximal subsets of defaults consistent

with the facts F . Recall the definition of a most plausible set of A-worlds in a CT4O-model for some

proposition A from Section 2: Pl(A) = fmin(A)\ C : C is a clusterg
By Proposition 4.4, the worlds in some most plausible set of A-worlds must violate exactly the same

defaults. In the Theorist model, an extension must then correspond to a set of most plausibleF -worlds.

Proposition 4.5 E is an extension of hF ;Di iff kEk = S for some S 2 Pl(F).
Corollary 4.6 A is in some extension of hF ;Di iff MD j= F ! A.

Theorist predictions are those sentences true in all extensions. Since min(F) = [Pl(F), we have the

following:

Theorem 4.7 A is predicted (in Theorist sense) from default theory hF ;Di iff MD j= F ) A.

Thus, default predictions in Theorist correspond precisely to those sentences an agent would believe

if it adopted belief in the facts F . In other words, believing F induces belief in all (and only) default

predictions.

Consider the example illustrated in Figure 3. We have A ) E and A ) :U , corresponding

to the Theorist predictions E and :U when F = fAg. Notice that U 6) A, U 6) :A, U 6) E
and U 6) :E all hold, indicating that none of A;:A;E;:E are predicted when F = fUg. ButU ) (E � A) holds so E � A is predicted by Theorist when F = fUg.

15If D is inconsistent, then we will have a minimal cluster corresponding to each maximal consistent subset ofD; i.e., a
minimal cluster for each extension of F = ;.
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4.2.2 Weak Explanations

To capture Theorist explanations, we assume the existence of a set C of conjectures from which

possible explanations are drawn. Recall that C � C explains � (in the Theorist sense) iff C, together

with F and some subset of defaults D � D, entails �. When this relation holds, there clearly must

exist a maximal such set of defaults consistent with C. This allows us to restrict our attention to such

maximal subsets of D. Essentially, we can exploit the result of Poole ensuring that � is explainable

iff it is in some extension. The notion of weak explanation described in Section 3 precisely captures

Theorist explanations.

Theorem 4.8 Let C � C. Then C is a Theorist explanation for � iffMD j= (F ^C)! � and F ^C
is consistent.

In other words, C is a Theorist explanation iff F ^ C is a weak explanation.16

The defeasibility of Theorist explanations is captured by the weak conditional !. In MD above

we have that A ! :U , so A explains :U (indeed, :U is explainable with ;). However, adding the

fact :E renders this explanation invalid, for (A^:E) 6! :U . The paraconsistent nature of Theorist

explanations corresponds precisely to the paraconsistent nature of the connective !. In the example

above, we have U ! E and U ! :E, so when F = ;, U explains both E and :E. IfF = fAg thenE is predicted; but U again explains :E, as well as E, for U ^A! E and U ^A! :E both hold.

4.2.3 Predictive Explanations

Some Theorist explanations do not exhibit this paraconsistent behavior. For instance, if F = fUg
then E explains A since U ^ E ! A. However, the even stronger relation U ^ E ) A is true as

well. Thus, given fact U , if E is adopted as a belief A becomes believed as well. The notion of

predictive explanation as described in Section 3 seems especially natural and important. With respect

to the Theorist model, we would expect a predictive Theorist explanation to be a set of conjecturesC satisfying the relation C ^ F ) �. While no such concept has been defined with the Theorist

framework, we can extend Theorist with this capability.

Using the original ingredients of Theorist, a predictive explanation should be such that all (rather

than some) extensions of the explanation (together with the given facts) contain the observation.

Definition 4.8 Let C � C and � be some observation. C is a predictive explanation for � iff � 2 E
for all extensions E of hF [ C;Di.

16If explanations need not come from a prespecified pool of conjecturesC, then any� such that�[F is a weak explanation
will be considered a Theorist explanation.
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Since prediction is based on considering the most normal situations consistent with some facts,

predictive explanations should be evaluated with respect to all most normal situations satisfying

that explanation. This definition reflects precisely the predictive explanations (in the CT4O sense)

sanctioned by the Theorist model MD.

Theorem 4.9 Let C � C. Then C is a predictive Theorist explanation for � iff MD j= (F ^C)) �
and F ^ C is consistent.

Notice that while the normative aspect of predictive Theorist explanations is explicitly brought

out by Definition 4.8 (in particular, by the restriction to maximal subsets of defaults), it is implicit in

the formulation (F ^ C)) � of Theorem 4.9. This is due to the fact that the Theorist model MD is

constructed in such a way that maximal sets of defaults are “preferred,” and the fact that (F^C)) �
is evaluated only in these most preferred situations satisfying F ^ C.

In our example above, A predictively explains E (with no facts) since MD j= A) E. Naturally,

predictive explanations are defeasible: MD 6j= U ^ A) E so U ^A fails to predictively explain E.

If F = fUg then E predictively explains A since U ^ E ) A. The notion of predictive explanation

described for epistemic explanations suggests a very natural and useful extension of the Theorist

framework. Theorem 4.9 ensures that the predictive explanations defined in Definition 4.8 match

our intuitions, while the definition itself demonstrates how our predictive explanations can be added

directly to the Theorist framework.

4.2.4 Preferences

As with most approaches to abduction, Theorist admits a number of possible explanations, whether

weak or predictive, and makes no attempt to distinguish certain explanations as preferred to others.

Even if we restrict attention to explanations that are formed from elements of a conjecture set C,

certain explanations seem more plausible than others. For example, one may have a set of defaultsD = fR � W;S � W;R � :Sg
inducing the Theorist model pictured in Figure 4: rain and the sprinkler cause wet grass, and the

sprinkler is on only if it isn’t raining. Assuming C = fR; Sg and F = ;, each of R, S and R ^ S
(predictively) explainW . However, inspection of the modelMD suggests that, in fact, the explanationR ^ S should be less preferred than the others. This is due to the fact that the ordering of plausibility

on propositions induced by MD makes R ^ S less plausible than R or S.

Theorist provides no notion of preference of this type; but our definition of preference from

Section 3 readily lends itself to application within the Theorist framework. In the parlance of
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Figure 4: Theorist Model for the Wet Grass Example

Theorist, preferred explanations ought to be those that occur at the most plausible situations, or those

that are consistent with as many defaults as possible. However, explanatory conjectures alone do not

have the predictive force required — the facts F must also be considered.

Definition 4.9 Let C;C 0 � C be predictive Theorist explanations for �, relative to hF ;Di. C is

at least as preferred as C 0 (written C �F C 0) iff each maximal subset of defaults D0 � D
consistent with C 0 [ F is contained in some subset of defaults D � D consistent with C [ F .

Explanation C is a preferred explanation iff there is no explanation for � such that C 0 <F C.

In our example, R and S are equally preferred explanations since both are consistent with the entire

set of defaultsD. The explanationR^S is less preferred because it conflicts with the defaultR � :S.

It is possible, due to the fact that the plausibility relation determined by MD is not total, that two

explanations are incomparable. If asked to explain (R _ S)^ :W , predictive explanations R^ :W
and S ^ :W are preferred to the explanation R ^ S ^ :W . Yet these two preferred explanations are

incomparable in the Theorist model. This notion of preference corresponds naturally to the plausibility

ordering determined by MD.

Theorem 4.10 Let C;C 0 � C be predictive Theorist explanations for �, relative to hF ;Di. ThenC �F C0 iff MD j= $2((C0 ^ F) � 3(C ^ F)).
Notice that the comparison of plausibility can be applied to nonpredictive explanations as well. We

will see this in Section 5.
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4.3 Capturing Preferred Subtheories in CT4O

The manner in which Theorist is embedded in our abductive framework also applies to Brewka’s

preferred subtheories. For a Brewka theory hF ; hD1; � � � ;Dnii the plausibility of worlds is not

determined solely by the number of rules violated, but also the priority of those rules. Implicit in the

definition of an extension is the idea that any number of rules of lower priority may be violated if it

allows a rule of higher priority to be satisfied. This gives rise to a new definition of rule violation.

Definition 4.10 For any possible world w 2 W , the set of defaults of rank i violated by w isVi(w) = fd 2 Di : w j= :dg
A world that violates fewer high priority defaults than another world should be considered more

plausible, even if the second world violates fewer low priority defaults. This gives rise to the Brewka

structure for an ordered set of defaults hD1; � � � ;Dni.
Definition 4.11 Let hD1; � � � ;Dni be an ordered set of defaults, and let v; w be possible worlds. The

minimal rank at which w and v differ is

diff(w; v) = minfi : Vi(w) 6= Vi(v)g
If Vi(w) = Vi(v) for all i � n, by convention we let diff(w; v) = n+ 1.

Thus, diff(w; v) denotes the highest priority partition of default rules Ddiff(w;v) within which w andv violate different rules. It is this set of rules that determines which of w or v is more plausible.

Definition 4.12 The Brewka structure for hD1; � � � ;Dni is MB = hW;�; 'i where W is the set of

truth assignments suitable for LCPL; ' is the valuation function induced by W ; and v � w iffVdiff(w;v)(v) � Vdiff(w;v)(w).
Proposition 4.11 MB is a CT4O*-model.

Let us denote by D the set D1 [ : : :[ Dn. The model MB , just as the Theorist model MD, divides

worlds into clusters of equally plausible worlds that violate exactly the same set of defaults in D.

Proposition 4.12 C is a cluster in the model MB iff for some D � DC = fw : w j= d if d 2 D and w j= :d if d 2 D �Dg
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Figure 5: Brewka Model for the University Students Example

However, the ordering of clusters is determined differently. In the Theorist model, only set inclusion

is used to determine relative plausibility. In contrast, the Brewka model may rank a world v more

plausible than a world w, even if V (v) 6� V (w). In particular, we may have that v violates a

low priority rule that is satisfied by w. Figure 5 depicts the Brewka model for the default setsD1 = fU � A;U � :Eg and D2 = fA � Eg. In contrast with the Theorist model for the “flat”

version of this theory (see Figure 3), we see that worlds violating the rule A � E are more plausible

than worlds violating either of the other two rules (individually).

The notions of prediction and explanation in Brewka’s framework correspond to our conditional

models of prediction and explanation, allowing results to be shown that are entirely analogous to those

demonstrated above for Theorist. We omit proofs of the following results; they can be verified in a

straightforward way by extending the proofs of the corresponding results for Theorist to accommodate

the more refined ordering of clusters provided in Definition 4.12.

Proposition 4.13 E is an extension of hF ; hD1; � � � ;Dnii iff kEk = S for some S 2 Pl(F) in the

model MB.

Corollary 4.14 A is in some extension of hF ; hD1; � � � ;Dnii iff MB j= F ! A.
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Theorem 4.15 A is predicted from Brewka theory hF ; hD1; � � � ;Dnii iff MB j= F ) A.

Assuming some set of conjectures C, we have

Theorem 4.16 Let C � C. Then C is a Theorist explanation for � relative to the Brewka theoryhF ; hD1; � � � ;Dnii iff MB j= (F ^ C)! � and F ^ C is consistent.

We define predictive explanations for a Brewka theory in the same fashion as for Theorist.

Definition 4.13 Let C � C and � be some observation. C is a predictive explanation for � iff � 2 E
for all extensions E of hF [ C; hD1; � � � ;Dnii.

Intuitively, an observation is predictively explained by some conjectures if, for every “maximal” set

of defaults consistent with C and F , the observation is entailed by the facts F and the conjectures C,

together with these defaults. However, Brewka explanations rely on a definition of “maximality” that

includes the consideration of priority of default rules.

Theorem 4.17 Let C � C. Then C is a predictive Brewka explanation for � iff MB j= (F ^C)) �
and F ^ C is consistent.

Finally, preferences on explanations are also defined in the same manner, but again taking priorities

into account.

Definition 4.14 LetC;C 0 � C be predictive Brewka explanations for �, relative to the Brewka theoryhF ; hD1; � � � ;Dnii. We call the set [k�nfDk : Dk � Dkg
a maximal set of defaults for C iff F [ C [ D1 [ : : :[ Dk is a maximal consistent subset ofF [C [D1 [ : : :[Dk, for each 1 � k � n. C is at least as preferred as C 0 (writtenC �F C 0)
iff for each maximal set of defaults [k�nfD0kg for C 0 there is a maximal set [k�nfDkg for C
such that D0k � Dk for each 1 � k � n.

Theorem 4.18 Let C;C 0 � C be predictive Brewka explanations for �, relative to the Brewka theoryhF ; hD1; � � � ;Dnii. Then C �F C0 iff MB j= $2((C 0 ^ F) � 3(C ^ F)).
If we compare the Brewka model MB in Figure 5 with the Theorist model for the same (unpri-

oritized) set of defaults MD in Figure 3, the differences in structure induced by priorities become

clear. In a sense, the Brewka model has increased “connectivity”. While worlds that are comparable
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in the Theorist model remains so in MB, certain clusters of worlds that are incomparable become

comparable in MB. This leads, for instance, to the fact that U predicts :E in MB, but does not inMD . This increased connectivity is, in fact, necessarily the case.

Proposition 4.19 Let MB be the Brewka model for hD1; � � � ;Dni and MD the Theorist model for its

reduction D = D1 [ : : :[ Dn. Then v � w in MB whenever v � w in MD.

Theorem 4.20 If MD j= �) � then MB j= �) �.

Thus any predictive explanation in Theorist is also a predictive explanation when any set of priorities

is introduced.

Intuitively, one would expect priorities to prune away possible explanations. For predictive

explanations, the opposite may occur, since priorities can only increase the number of predictions

admitted by a set of facts and conjectures. However, if we consider only preferred predictive

explanations, we have more reasonable behavior. It becomes clear that priorities may, in fact, reduce

the number of preferred explanations (and it cannot increase the number).

We note that the representation of Theorist and Brewka models for a given set of defaults does not

require that one specify the ordering relation for the model explicitly for each pair of worlds. One may

axiomatize the model (relatively) concisely using techniques described in [3]. The truth of conditionals

determining explanations and preferences can then be tested against this theory. However, we are

not suggesting that our conditional framework be used as a computational basis for explanations in

simple Theorist-like theories. Rather, it brings to light the underlying semantic properties of Theorist

and several principled extensions.

5 Consistency-Based Diagnosis

While the Theorist system may be used for diagnosis (as our examples in this section illustrate), it is

presented more generally as a method for effecting arbitrary explanations. Another approach to model-

based diagnosis is consistency-based diagnosis, which is aimed more directly at the diagnostic task,

namely to determine why a correctly designed system is not functioning according to its specification.

In this section, after presenting the fundamental concepts from Reiter’s [49] and de Kleer, Mackworth

and Reiter’s [16] methodology for diagnosis, we show how these canonical consistency-based models

can be embedded in our framework for epistemic explanations. This highlights many of the key

similarities and differences in the abductive and consistency-based approaches. We also address the

role fault models play within our semantics and how diagnoses can be made predictive.
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5.1 A Logical Specification

de Kleer, Mackworth and Reiter [49, 16] assume that an appropriate model of a system or artifact

consists of two parts. The first is a set of components COMP, the parts of a system that one is able

to distinguish and that (more or less) independently can fail to function correctly. The second is a

set of logical sentences SD, the system description, that describes precisely the intended or normal

functioning of the system. For example, given a certain set of inputs to a circuit, the system description

should allow one to predict the value of the outputs. Because certain components may fail, a system

description that only allows for correct behavior will be inconsistent with observations of incorrect

behavior. Therefore, abnormality predicates are introduced. For any component c 2 COMP, the

literal ab(c) denotes the fact that component c is not functioning as required. Such a component is

said to be abnormal; otherwise it is normal. We assume that components usually function correctly.

However, because expected observations depend on this assumption, the system description will

usually contain sentences in which anticipated behavior is explicitly predicated on this assumption.

Thus sentences such as :ab(ci) � � assert that, if component ci is functioning correctly then behavior� will be observed. The correct functioning of a system is then more accurately characterized by the

set of sentences

CORRECT = SD [ f:ab(ci) : ci 2 COMPg
Throughout we assume that this set CORRECT is consistent.

If an observation is obtained that is inconsistent with CORRECT then (assuming that both the

observation and system description are accurate and correct), it must be that some of the components

have failed; that is, ab(ci) must hold for some members ci 2 COMP.17 A diagnosis for such an

observation is any set of components whose abnormality (alone) makes the observation consistent

with SD. More precisely, following [16], we have these definitions.18

Definition 5.1 Let � � COMP be a set of components. Define sentence D(�) to be^�fab(c) : c 2 �g [ f:ab(c) : c 2 COMP ��g�D(�) expresses the fact that the components in � are functioning improperly while all other compo-

nents are functioning correctly.

17We will make a few remarks at the conclusion of this section regarding the possibility that SD is an incorrect model.
18As usual, a “set” of observations will be assumed to be finite and conjoined into a single sentence �. For any set of

sentences, such as SD, we will assume finiteness, and treat the set somewhat loosely as the conjunction of its elements.
Context should make clear whether the sentence or the set is intended.
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Definition 5.2 Let � � COMP . A consistency-based diagnosis (CB-diagnosis for short) for obser-

vation � is any D(�) such that SD [ f�;D(�)g is satisfiable.

Reiter’s [49] “Principle of Parsimony” suggests that reasonable diagnoses are those that require

as few faults as possible to explain the aberrant behavior. A minimal diagnosis is any diagnosisD(�)
such that for no proper subset �0 � � is D(�0) a diagnosis. In Reiter’s original formulation, only

minimal diagnoses are deemed essential. If the correct functioning of a system is all that is modeled in

SD, then one can show, for any diagnosisD(�), that a larger component set � � �0 also determines

a diagnosis D(�0). Thus, minimal diagnoses characterize the set of all diagnoses.

Example 5.1 Imagine a simple system with two components, a plug and a light bulb. One can

observe that the bulb is bright, dim or dark. SD captures the correct behavior of the system::ab(bulb)^ :ab(plug) � bright
We assume that the three possible observations are exhaustive and mutually exclusive (and that

this fact is captured in SD as well). We expect to see a bright light (i.e., bright is true), since

this is entailed by CORRECT:

SD [ f:ab(bulb);:ab(plug)g j= bright
If we observedim, then the minimal diagnoses areD(fbulbg)andD(fplugg). The nonminimal

diagnosis D(fbulb; plugg) also renders the observation dim consistent. Notice that each of

these diagnoses applies to the observation bright as well, even though this is the system’s

predicted behavior. That is, the diagnoses do not rule out the “correct” behavior. �
The presence of fault models renders Reiter’s characterization incorrect.19 de Kleer, Mackworth

and Reiter suggest a notion of kernel diagnosis that can be used to replace minimal diagnosis in the

characterization of all diagnoses. Our goal here is not to investigate such characterizations, but rather

investigate the semantics of diagnosis as explanation. Despite the failure of minimal diagnoses in this

characterization task, the principle of parsimony (in the absence of more refined, say, probabilistic

information) suggests that minimal diagnoses are to be preferred. We will simply point out the impact

of fault models on diagnosis.

Intuitively, a fault model is a portion of the system description that allows predictions to be made

when it is known or assumed that some component is faulty. In the example above, one cannot predict

19Similar remarks apply to exoneration axioms, which we do not discuss here.



To appear, Artificial Intelligence, 1995

5 CONSISTENCY-BASED DIAGNOSIS 43

anything about the brightness of the light if one of the components is abnormal. All observations are

possible (consistent). Suppose we add the following axiom:

ab(bulb)^ ab(plug) � dark
WhileD(fbulbg) andD(fplugg) are both diagnoses for dim, the “larger” diagnosisD(fbulb; plugg)
is not. Thus, in the presence of fault models, supersets of diagnoses need not themselves be diagnoses.

de Kleer, Mackworth and Reiter do, however, formulate conditions under which this is guaranteed to

be the case.

5.2 Capturing Consistency-Based Models in CT4O

Just as with our embedding of Theorist, we can provide a CT4O-model that captures the underlying

intuitions of consistency-based diagnosis. We assume that the language in which the system de-

scription and observations are phrased is propositional, denoted LCPL. We will assume that for each

component in COMP there is a proposition stating that the component has failed. We will, however,

continue to use the first-order notation ab(c) for such a proposition.20

The principle of parsimony carries with it the implicit assumption that situations in which fewer

system components are abnormal are more plausible than those with more components failing. This

suggests a natural ordering of plausibility on possible worlds.

Definition 5.3 Letw be a possible world suitable forLCPL and COMP some set of system components.

The abnormality set for w is the setAb(w) = fc 2 COMP : w j= ab(c)g
Definition 5.4 The consistency-based model (the CB-model) for component set COMP isMCOMP =hW;�; 'iwhere W is the set of truth assignments suitable for LCPL; ' is the valuation function

induced by W ; and v � w iff Ab(v) � Ab(w).
Proposition 5.1 MCOMP is a CT4O*-model.

Notice that the CB-model for a set of components is exactly the Theorist model with the set of defaultsD = f:ab(c) : c 2 COMPg
20A first-order diagnostic model can be captured propositionally by using ground terms should the domain of components

and other objects of interest be finite. A first-order version of our logics could be used but this is not relevant to our concerns
here.
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Figure 6: The CB-model for a Two Component System

We will exploit this fact below when comparing consistency-based and abductive diagnosis.

The model MCOMP does not rule out worlds violating SD. SD, much like F above, will be used

explicitly in defining diagnoses. Worlds in which :SD holds will not play a role in consistency-based

diagnosis; therefore, we could easily use a CT4O-model in which only SD-worlds are represented

(e.g., using the axiom
$2SD).21

Example 5.2 Figure 6 illustrates the model MCOMP for our simple light bulb example with two

components. For simplicity, we show only those worlds that satisfy the system description SD

provided in Example 5.1. As usual, worlds in the same cluster are those in which the same

components have failed or work correctly. �
The most plausible state of affairs in the model MCOMP is simply the set of worlds satisfying

the theory CORRECT. Should an observation be made that conflicts with this theory, the system

must be functioning abnormally and belief in the assumption :ab(c) for at least one c 2 C must be

retracted. A diagnosis is an explanation, given in terms of normal and abnormal components, for such

an observation. Clearly a CB-diagnosis is not predictive, for it simply must ensure that the observation

is rendered plausible. In Example 5.1, the sentences D(fbulbg) and D(fplugg) are both diagnoses

21However, one could imagine the diagnostic process including the debugging of SD, as takes place for instance in model
verification, or even scientific theory formation.
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of the observation dim. But neither of these diagnoses entails the observation dim. This leads to

the notion of an excuse, which is simply a might explanation, as described in Section 3, consisting of

possible component failures.

Definition 5.5 Let � � COMP be a set of components. Define sentence AB(�) to be^�fab(c) : c 2 �g�
Thus,AB(�) asserts that all components in� are functioning abnormally. In contrast to the sentenceD(�), AB(�) asserts nothing about the status of components not in �.

Definition 5.6 Let COMP and SD describe some system. An excuse for an observation � is any

sentence AB(�) (where � � COMP) such thatMCOMP j= AB(�) ^ SD 6) :�
If belief in the excuse were adopted, the observation would not be disbelieved. For instance, the

model MCOMP admits excuses D(fbulbg), D(fplugg) and D(fbulb; plugg) for the observationdim. Notice that D(;) (which we assume to be >) is not an excuse for dim since the belief bright
precludes it; that is, the conditional> ^ SD 6) :dim is false.

Because of the ordering of plausibility built in to the CB-model, when a certain set of components

is believed to have failed, other components are assumed to still be functioning correctly.

Proposition 5.2 MCOMP j= AB(�)) D(�)
This proposition ensures that a diagnosis in the CT4O framework (i.e., an excuse) can be given solely

in terms of failing components. Thus, we have that an excuse determines a CB-diagnosis for an

observation.

Theorem 5.3 Let SD and COMP determine some system. D(�) is a CB-diagnosis for observation� iff AB(�) is an excuse for � relative to MCOMP .

Naturally, we should not accept any might explanation for an observation as a reasonable diagnosis.

Preferred diagnoses should be those that are most plausible, and the ordering of plausibility determined

by the modelMCOMP can be used for this purpose. Unsurprisingly, preferred diagnoses are precisely

those that minimize the number of abnormal components.
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Figure 7: The Addition of a Fault Axiom

Definition 5.7 LetD(�) andD(�0) be CB-diagnoses for observation�. D(�) is at least as preferred

as D(�0) (written D(�) �COMP D(�0)) iffMCOMP j= $2(D(�0) � 3D(�))D(�) is preferred diagnosis iff there is no diagnosis for � such that D(�0) �COMP D(�).
Theorem 5.4 D(�) is a preferred diagnosis iff D(�) is a minimal diagnosis.

5.3 Predictive Diagnoses and Fault Models

Consider the light bulb example above with the additional axiom

ab(bulb)^ ab(plug) � dark
incorporated into the system description SD. Figure 7 illustrates the model MCOMP for this new

system SDF . This additional axiom will be dubbed a fault axiom or a partial fault model. If all axioms

have a “positive form” (i.e., describing behavior based only on conditions of normality), then diagnoses

(or assumptions of abnormality) can never be used to predict aberrant behavior. In other words, all

“observations” are consistent with each (nonempty) diagnosis. Fault models change the nature of

diagnosis by making it a more “nonmonotonicprocess.” For instance, without this fault axiom, the two
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excusesAB(fbulbg)andAB(fplugg)determine diagnoses for the observationdim, as does the larger

diagnosis AB(fbulb; plugg). This forms the basis for Reiter’s [49] characterization of all diagnoses

in terms of minimal diagnoses. However, with the fault axiom, the sentence AB(fbulb; plugg) is not

an excuse for dim: MCOMP j= AB(fbulb; plugg)^ SDF ) :dim
This reflects the observation of de Kleer, Mackworth and Reiter that supersets of diagnoses need not

be diagnoses themselves. In our terminology:

Proposition 5.5 If AB(�) is an excuse for observation, AB(�0) need not be, where � � �0.
Fault models have another impact on the nature of diagnosis. Consider the observation dark.

One diagnosis for this observation (relative to SDF ) is the excuse AB(fbulb; plugg):MCOMP j= AB(fbulb; plugg)^ SDF 6) :dark
Without fault axioms (i.e., using SD rather than SDF ), such an excuse renders the observation plausible,

but does not preclude other observations. However, with the fault axiom we have an even stronger

predictive condition: MCOMP j= AB(fbulb; plugg)^ SDF ) dark
Not only does the diagnosis render dark plausible, it also induces belief in the observation dark.

Naturally, one might extend the definition of a diagnosis by requiring not only that the observation

be rendered consistent, but also that it be entailed by the diagnosis. Such diagnoses will be dubbed

predictive diagnoses.

Definition 5.8 Let � � COMP . A predictive diagnosis for observation � is any D(�) such that

SD [ fD(�)g j= � and SD[ fD(�)g is consistent.

Theorem 5.6 Assume D(�) ^ SD is consistent. D(�) is a predictive diagnosis for � iffMCOMP j= AB(�) ^ SD ) �
Predictive diagnoses are predictive explanations rather than might explanations, and as such carry

many of the conceptual advantages of predictive explanations. Unfortunately, for most systems, one

cannot expect diagnoses to be predictive in most circumstances. Typically, the knowledge of how

a system fails is incomplete. One may know that a weak battery causes an LED display to show

“strange” readings, but the specific observed display in such a circumstance is not usually predicted
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by a diagnosis. However, with partial fault models one will have that certain diagnoses predict the

observations they explain, rather than just excusing them.

If one has a complete fault model incorporated into SD, intuitively every diagnosis carries with it a

prediction about the behavior that can be observed. Thus, one would expect that every CB-diagnosis, in

the process of excusing the observation, would actually predict it. This leads to general circumstances

under which every CB-diagnosis of an observation for a particular system is a predictive diagnosis.

We assume that the system’s behavior can be characterized by a given set of possible observationsO,

the elements of which must be mutually exclusive and exhaustive (relative to SD).22 We say that SD

contains a complete model of correct behavior iff there exists a � 2 O s.t.

CORRECT j= O�
where O� = � ^^f: :  2 O � f�gg
We say that SD contains a complete fault model iff for each diagnosis D(�) there is a � such thatD(�)^ SD j= � ^ O�
Notice that a complete fault model, on this definition, ensures that one has a complete model of correct

behavior (simply set � = ;). If required, we could restrict � to nonempty sets of components, thus

decoupling the model of faulty behavior from that of correct behavior.

If SD contains a complete model of correct behavior and a complete fault model, it is easy to see

that each consistency-based diagnosis will be predictive. Consider our light bulb example once again,

with observable behaviors bright, dim and dark and the following axioms in SD (the first models

correct behavior, the second and third are fault axioms):(:ab(bulb)^ :ab(plug))� bright(ab(bulb)� :ab(plug)) � dim(ab(bulb)^ ab(plug))� dark
22One may expect a number of possible observations of correct behavior, for instance, corresponding to the possible

inputs to a circuit. However, we treat this as a single observation, the form of which will typically be a conjunction of
implications or biconditionals. The antecedents will determine certain inputs and the consequents certain outputs (e.g.,on ^ :ab(bulb) � bright). Similar remarks apply to incorrect behavior. This is not the main point of our description so
we do not pursue this issue further.
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Clearly, any excuse we can make for a given observation will also predict that observation. In this

example, every CB-diagnosis is a predictive diagnosis.

Proposition 5.7 If SD includes a complete fault model then D(�) is a CB-diagnosis for � iff D(�)
is a predictive diagnosis for �.

Notice that to diagnose faulty behavior only, a model of correct behavior is not required — a complete

fault model ensures that predictive explanations can be given for every “abnormal” observation.

However, without any indication of correct behavior any observation is consistent with the assumption

that all components work correctly. Thus, a complete model of correct behavior is required if CB-

diagnoses are to be of any use. This is in accordance with the observation of Poole [45] who describes

the categories of information required for consistency-based diagnosis and abductive diagnosis.

Console and Torasso [13] have also addressed this issue. They suggest, as we have elaborated above,

that consistency-based diagnosis is appropriate if fault models are lacking, while abductive approaches

are more suitable if models of correct behavior are incomplete.

It is important to notice that the definition of complete fault model above relies crucially on the

set of propositions one is allowed to explain, in other words, the set of “observables.” For example,

suppose we had only a single fault axiom:(ab(bulb)_ ab(plug)) � (dark _ dim)
This fault model is incomplete relative to the original set of observables, for no CB-diagnosis fordim actually predicts dim. Each diagnosis,D(fbulbg),D(fplugg) and D(fbulb; plugg), allows the

possibility of observation dark. However, suppose we “coalesce” the observations dim and dark
into a single category notBright � dim_ dark. If the observations a system is allowed to explain

are restricted to bright and notBright, this fault model is complete; any CB-diagnosis will then

predict its observation. In this example, D(;) predicts bright, while the other three diagnoses predictnotBright. If users are allowed to make more refined observations, predictive diagnoses can be

given if observations are mapped into coarse-grained explainable propositions.

5.4 On the Relationship to Abductive Diagnosis

Let us assume that we have a Theorist default theory for the diagnosis of a system where SD is taken

to be the set of facts and the default set isD = f:ab(c) : c 2 COMPg
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As observed above, the Theorist model for such a theory is precisely the CB-model for this system.

If we restrict Theorist explanations to those of the form used for consistency-based diagnosis, some

interesting relationships emerge.

Suppose that Theorist explanations are restricted to have the formAB(�) (orD(�)). We will call

these explanations Theorist diagnoses. Such weak explanations are then guaranteed to be predictive.

This is due simply to the fact that the most plausible worlds at which such an explanation holds must

lie within a single cluster. In other words, Theorist diagnoses have a single extension.

Proposition 5.8 Let � � COMP. MCOMP j= AB(�) ! � iff MCOMP j= AB(�) ) �.

(Similarly for D(�).)
Should we model a system in Theorist as we do for consistency-based diagnosis, then Theorist

diagnoses are exactly predictive diagnoses as we have defined in the consistency-based framework.

As we have seen, many (if not most) observations cannot be predicted in the consistency-based

framework, especially if fault-models are lacking or incomplete. This indicates that the abductive

approach to diagnosis requires information of a form different from that used in the consistency-

based approach. This is emphasized by Poole [45]. However, given complete fault models, Theorist

diagnoses and consistency-based diagnoses will coincide. Konolige [31] has also examined the

relationship between the two forms of diagnosis.

Without complete information, the Theorist system, in particular the notion of an extension,

can still be used to effect consistency-based diagnosis. While a CB-diagnosis may not predict an

observation, it does require that the observation is consistent with all other “predictions.” In Theorist

terms, the observation is consistent with the (single) extension of the diagnosis. In other words, these

are might explanations in the Theorist model.

Theorem 5.9 Let SD and COMP describe some system, � � COMP, and D be the set of defaultsf:ab(c) : c 2 COMPg. Then D(�) is a CB-diagnosis for observation � iff :� 62 E where E is the

(only) Theorist extension of hSD [ fAB(�)g;Di.
Corollary 5.10 D(�) is a CB-diagnosis for observation � iff MD j= SD^ AB(�) 6) :�.

Thus, consistency-based diagnosis can be captured in the Theorist abductive framework without

requiring that the form of the system description be altered. SD is simply used as the set of factsF . Poole [45] also defines a form of consistency-based diagnosis within Theorist. He shows thatAB(�) is a “consistency-based diagnosis” iff D(�) is in some extension of SD[f�g. Our notion of

consistency-based diagnosis in Theorist does not rely on forming extensions of the observation, but

(more in the true spirit of abduction) examines extensions and predictions of the explanation itself.
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This is important because our definition captures all CB-diagnoses. Poole’s definition is based on

Reiter’s [49] definition of diagnosis in terms of minimal sets of abnormal components. It is not hard

to see that, in fact, D(�) is in some extension of SD [ f�g iff D(�) is a minimal CB-diagnosis.

While Poole’s observation is correct for minimal diagnoses (and Reiter’s formulation, in particular),

it cannot be extended to the more general case subsequently developed by de Kleer, Mackworth and

Reiter.

Console and Torasso [13] have also explored the distinction between abductive and consistency-

based diagnosis and present a definition of explanation (in the style of Reiter) that combines both types.

The set of observations to be explained are divided into two classes: those which must be predicted

by an explanation and those which must simply be rendered consistent by the explanation. We can,

of course, capture such explanations conditionally by using both predictive and weak explanations.

Roughly, if � is the part of the observation that needs to be predicted and  is the component that

must be consistent with the explanation (and background theory) then we simply require that any

explanation � be such that �) � and � 6) :.

6 Concluding Remarks

We have presented some general conditions on epistemic explanations, describing a number of

different types of explanations, and why certain explanations are to be preferred to others. Our

account relies heavily on a model of belief revision and conditional sentences. The defeasible nature

of explanations and preferences for plausible explanations are induced naturally by the properties of

our revision model. We have also shown how the two main paradigms for model-based diagnosis can

be embedded in our conditional framework.

A number of avenues remain to be explored. We are currently investigating how our model

might be extended to incorporate causal explanations. Such explanations, especially in diagnostic

and planning tasks, are of particular interest. Grafting a representation of causal influences onto our

model of explanation, such as that of Goldszmidt and Pearl [27], seems like a promising way in which

to (qualitatively) capture causal explanations. Konolige [32] has explored the use of causal theories in

diagnosis as a means to obviate the need for fault models. His representation in terms of default causal

nets allows both explanations and excuses; but the causal component of his representation remains

essentially unanalyzed. The key features of Konolige’s theories can be captured in our framework in a

rather straightforward way. These include exemptions of “faults,” distinguishing normality conditions

from primitive causes and preferences for normal and ideal explanations. This is due to the flexibility

of the conditional logic and the generality of plausibility orderings. We also hope to explore the issue
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of designing tests to discriminate potential diagnoses, and the trade-off between further testing and

repair. This is an issue that has recently attracted much attention [19, 39].

The pragmatics of explanation remains an important avenue to pursue. Ways in which to rule out

weak or strong explanations, depending on context must be addressed. Another pragmatic concern

has to do with the elaboration of explanations. We have assumed that explanations are given relative

to background theory. If an explanation is questioned, or elaboration is requested, this may be due to

the fact that certain background is not shared between the abductive system and the user requesting the

explanation. Mechanisms with which the appropriate background knowledge can be determined, and

offered as elaboration, would be of crucial interest. The manner in which an explanation is requested

by a user can also provide clues as to what form an explanation should take [58].

Other forms of explanation cannot be captured in our framework, at least in its current formulation.

An important type of explanation is of the form addressed by the theory of Gärdenfors [22]. There

an explanation is simply required to render an observation more plausible than it was before the

explanation was adopted. As an example, consider possible explanations for Fred’s having developed

AIDS (A). A possible (even reasonable) explanation is that Fred practiced “unsafe” sex (U ). However,

it would seem that adopting the belief U is not sufficient to induce the belief that Fred contracted

HIV and developed AIDS. Furthermore, if the probability is low enough, this might not even be a

valid might explanation; that is, U ) :A. However, U does increase the likelihood of A (even if not

enough to render A believable, or even epistemically possible). Such explanations might be captured

by comparing the relative plausibility of A given U and A alone, without appeal to probabilities.

Such an example may suggest a role for decision-theoretic versions of conditional defaults. While A
may be unlikely given U , the consequences of developing AIDS are so drastic that one may adopt

a default U ) A: one should act as if A given U . Preliminary investigations of such defaults, in

a conditional setting, may be found in [42, 8]. These may lead to a “practical” form of explanation,

with some basis in rational action.

On a related note, our model can be extended with probabilistic information. Boutilier [5]

shows how the notion of counterfactual probabilities can be grafted onto the conditional logic

CO. Probabilistic information can then be used to determine explanations of the type described by

Gärdenfors, explanations that are “almost predictive” and to distinguish equally plausible explanations

on probabilistic grounds. This should allow a very general model of explanation and diagnosis.

We should also remark that the conditional framework allows arbitrary orderings of preference.

The orderings described above for Theorist and consistency-based diagnosis are merely illustrative.

Generally, orderings need not be determined by default violation and set inclusion. One may, for

example, decide that worlds violating the system description of some artifact are more plausible than
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worlds where a large number of system components have failed. So if some observation can only be

diagnosed with a large number of failures, one may prefer to adopt the hypothesis that the model of the

system is in fact inaccurate. Such a viewpoint would be necessary in system design and verification.

Finally, we have neglected an important class of explanation, namely, observations that are

explained by appeal to causal or scientific laws. Our explanations have taken for granted a background

theory with appropriate conditional information. However, especially in the realm of scientific theory

formation, explanations are often causal laws that explain observed correlations. Such explanations

require a model of belief revision that allows one to revise a theory with new conditionals. One such

model is proposed in [11] and may provide a starting point for such investigations.
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A Proofs of Main Theorems

Proposition 3.1 If �; � 2 K, then � 2 (K�� )�� iff :� 2 K�:�.

Proof LetM be an appropriateK-revision model for the contraction and revision function in question.

We have � 2 (K�� )�� iff � is true at each �-world in k(K�� )k, i.e., iff � holds at (kKk [
min(:�))\ k�k (since � 2 K). This holds iff there is no �-world in min(:�) iff :� 2 K�:�.�

Proposition 3.2 If :�;:� 2 K, then :� 2 (K�:�)�:� iff � 2 K��.

Proof The proof is similar to that of Proposition 3.1. �
Proposition 3.3 If �; � 2 K then � (predictively) explains � iff :� ) :�.

Proof If �; � 2 K then condition (A), �) �, holds trivially (since kKk = min(�) = min(�)). �
Proposition 3.4 If �; �;:�;:� 62 K then � (predictively) explains � iff �) � iff :� ) :�.

Proof If �; �;:�;:� 62 K, then min(�) � kKk and min(:�) � kKk. Thus, min(�) � k�k iff

min(:�) � k:�k. �
Proposition 3.5 If :�;:� 2 K then � (predictively) explains � iff �) �.

Proof The proof is similar to that of Proposition 3.3. �
Proposition 3.6 If � is a predictive explanation for � then � is a might explanation for �.
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Proof The condition (ES) for predictive explanations guarantees the condition (F) for might expla-

nations, while �) � `CT4O � 6) :� (for satisfiable �). �
Proposition 3.7 If � is a weak explanation for � then � is a might explanation for �.

Proof �! � `CT4O � 6) :� (for satisfiable �). �
Proposition 3.8 Let � 2 K and � be a predictive explanation for �. Then � is a preferred (hypo-

thetical) explanation for � in K�� .

Proof This follows immediately from Proposition 3.1 and the fact that � is epistemically possible in

belief state K�� (due to the fact that any explanation � must be in K). �
Proposition 3.9 Let � be a predictive explanation for � relative to model M . Then � is a preferred

explanation iff M j= � 6! :�.

Proof This fact holds trivially for accepted and indeterminate �, since there is a unique minimal �-

cluster (those �-worlds satisfyingK), and it must intersect k�k if � is a predictive explanation.

Suppose :� 2 K.

If � ! :�, then there is some minimal �-cluster C such that M j=w :� for each w 2 C. Since� predictively explains itself (see below), we note that � is a strictly preferred to �. To see this,

notice that for any w 2 C we have M j=w :3� (since �) �, and any such w is in min(�)).
If � 6! :�, then each minimal �-cluster C contains some �-world. Thus, we have M j=$2(� � 3�): � is at least as plausible as �. Clearly, no explanation �0 of � is more plausible

than � (for then �0 ) � is impossible). Thus, � is preferred. �
Proposition 4.5 E is an extension of hF ;Di iff kEk = S for some S 2 Pl(F).
Proof By definition of MD and Proposition 4.4, S 2 Pl(F) iff S consists of the set of worlds

satisfying F [ D, where D � D is some maximal subset of defaults consistent with F . By

definition of an extension, S = kEk for some extension E. �
Theorem 4.7 A is predicted (in Theorist sense) from default theory hF ;Di iff MD j= F ) A.
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Proof We have that A is predicted iff A is in all extensions of F . By Proposition 4.5, this is the case

iff S � kAk for all S 2 Pl(F). Since min(F) = [Pl(F), this holds iff F ) A. �
Theorem 4.8 Let C � C. Then C is a Theorist explanation for � iffMD j= (F ^C)! � and F ^C
is consistent.

Proof C is a Theorist explanation for � iff F [ D [ C j= � for some D � D and F [ D [ C is

consistent. This is equivalent to � belonging to some extension of the (consistent) set F [ C,

which holds (by Proposition 4.5) iff S � k�k for some S 2 Pl(F [ C) relative to MD iffMD j= (F ^ C)! �. �
Theorem 4.9 Let C � C. Then C is a predictive Theorist explanation for � iff MD j= (F ^C)) �
and F ^ C is consistent.

Proof This follows immediately from Definition 8 and Theorem 4.7. �
Theorem 4.10 Let C;C 0 � C be predictive Theorist explanations for �, relative to hF ;Di. ThenC �F C0 iff MD j= $2((C0 ^ F) � 3(C ^ F)).
Proof By definition of�F , C is preferred to C 0 iff each subset of defaults D0 consistent with C 0 [F

is contained in some subset of defaults D consistent with C [ F . By definition of MD and

Proposition 4.4, this is the case iff each world satisfying C 0 [ F sees some world satisfyingC [ F , iff MD j= $2((C 0 ^ F) � 3(C ^ F)). �
Proposition 4.19 Let MB be the Brewka model for hD1; � � � ;Dni and MD the Theorist model for its

reduction D = D1 [ : : :[ Dn. Then v � w in MB whenever v � w in MD.

Proof If v � w in MD, then V (v) � V (w) relative to the flat set of defaults D. Clearly thenVi(v) � Vi(w) for each i relative to the prioritized set of defaults. By definition, v � w in MB .�
Theorem 4.20 If MD j= �) � then MB j= �) �.

Proof By Proposition 4.19, it is clear that the set of minimal �-worlds in the Brewka model MB is

a subset of the minimal �-worlds in the Theorist model MD. Thus, if MD j= � ) � thenMB j= �) �. �



To appear, Artificial Intelligence, 1995

A PROOFS OF MAIN THEOREMS 60

Theorem 5.3 Let SD and COMP determine some system. D(�) is a CB-diagnosis for observation� iff AB(�) is an excuse for � relative to MCOMP .

Proof By definition,AB(�) is an excuse for � iffMCOMP j= AB(�)^SD 6) :�. We note that this

relation can hold only ifAB(�)^SD is consistent. Given this consistency and Proposition 5.2,

we have thatAB(�) is an excuse iffMCOMP j= D(�)^SD 6) :� (this follows from the valid

schematic entailment ofA^B 6) C fromA) B andA 6) C). This holds iff SD[f�;D(�)g
is consistent iff D(�) is a CB-diagnosis for �. �

Theorem 5.4 D(�) is a preferred diagnosis iff D(�) is a minimal diagnosis.

Proof This follows immediately from the definition of MCOMP . �
Theorem 5.6 Assume that D(�)^ SD is consistent. D(�) is a predictive diagnosis for � iffMCOMP j= AB(�) ^ SD ) �
Proof We observe that min(D(�) ^ SD) consists of the set of all worlds satisfying D(�) ^ SD by

definition of MCOMP . Thus MCOMP j= D(�) ^ SD ) �
iff SD [ fD(�)g j= �, i.e., iff D(�) is a predictive diagnosis. By Proposition 5.2,MCOMP j= D(�) ^ SD ) �
iff MCOMP j= AB(�) ^ SD ) ��

Proposition 5.8 Let � � COMP. MCOMP j= AB(�) ! � iff MCOMP j= AB(�) ) �.

(Similarly for D(�).)
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Proof As observed above, the set of clusters in the model MCOMP are distinguished by the set

of components they take to be normal and abnormal. This means that the sets Pl(AB(�))
and Pl(D(�)) are singletons consisting of a single cluster each, these clusters being exactly

min((AB(�)) and min((D(�)) respectively. Thus, AB(�) ! � iff AB(�) ) � andD(�)! � iff D(�)) �. �
Theorem 5.9 Let SD and COMP describe some system, � � COMP, and D be the set of defaultsf:ab(c) : c 2 COMPg. Then D(�) is a CB-diagnosis for observation � iff :� 62 E where E is the

(only) Theorist extension of hSD [ fAB(�)g;Di.
Proof We assume that SD [ fD(�)g is consistent. By Theorem 5.3, D(�) is a CB-diagnosis for �

iff MCOMP j= AB(�) ^ SD 6) :�
As indicated in the proof of Proposition 5.8, there is a unique minimal SD[ fAB(�)g-cluster

in MCOMP ; and as described in Section 4, this cluster determines the Theorist extension E of

SD [ fAB(�)g. Thus, MCOMP j= AB(�) ^ SD 6) :�
iff :� 62 E. �


