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Abstract

Market-based mechanisms such as auctions are being studied
as an appropriate means for resource allocation in distributed
and multiagent decision problems. When agents value re-
sources in combination rather than in isolation, one gener-
ally relies on combinatorial auctions where agents bid for re-
sourcebundles, or simultaneousauctionsfor all resources. We
develop a different model, where agents bid for required re-
sourcessequentially. This model hasthe advantagethat it can
be applied in settings where combinatorial and simultaneous
modelsareinfeasible (e.g., when resourcesare made available
at different pointsin time by different parties), aswell as cer-
tain benefitsin settings where combinatorial models are appli-
cable. We develop a dynamic programming model for agents
to compute bidding policies based on estimated distributions
over prices. We also describe how these distributions are up-
dated to provide alearning model for bidding behavior.

1 Introduction

A great dedl of attention has been paid to the devel opment of
appropriate model sand protocol sfor theinteraction of agents
in distributed and multiagent systems (MASs). Often agents
need access to specific resources to pursue their objectives,
but the needs of one agent may conflict with those of another.
A number of market-based approaches have been proposed
as a means to deal with the resource allocation and related
problemsin MASs[5, 21].

Of particular interest are auction mechanisms, where each
agent bids for a resource according to some protocol, and
the alocation and price for the resource are determined by
specific rules [13]. Auctions have a number of desirable
properties as a means for coordinating activities, including
mi nimizing the communi cation between agents and, in some
cases, guaranteeing Pareto efficient outcomes[13, 21].

An agent often requires severa resources before pursu-
ing a particular course of action. Obtaining one resource
without another—for example, being alocated trucks with-
out fuel or drivers, or processing time on a machine with-
out skilled labor to operate it—makes that resource worth-
less. When resources exhibit such complementarities, it is
unknown whether simple selling mechanisms can lead to effi-
cient outcomes[21, 1]. Moreover, groupsof resources are of -
ten substitutable: obtaining the bundle needed to pursue one
course of action can lower the value of obtai ning another, or
render it worthless. For instance, oncetrucksand driversare
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obtained for transporting materia in an optimal fashion, he-
licoptersand pilotslose any value they may have had.

Two methods for dealing with complementarities have
been studied: simultaneous auctions for multiple goods [1,
17]; and combinatorial auctionsin which agents submit bids
for resource bundles [16, 18, 19, 9, 21]. Specific models
sometimes dedl (possibly implicitly) with substitution ef-
fects, and sometimes not. In this paper, we explore a model
that combines features of both simultaneous and combinato-
rial auctions. Our sequential auctions model supposes that
the set of resources of interest are auctioned in sequence.
Agents bid for resources in a specific, known order, and can
choose how much (and whether) to bid for aresource depend-
ing on past successes, failures, prices, and so on.

Our model has several advantages over standard combina-
torial and simultaneous models. The chief benefit of such a
model isthat is can be applied in situations where combina-
torial and simultaneous models cannot. Specifically, when
multiple sellers offer various resources of interest, or when
theresources are sold at different pointsin time, one does not
have theluxury of setting up either combinatorial or smulta-
neousauctions. Assuch, our model issuitablefor agentswho
are required to interact with multiple suppliers over time.
Even in settingswhere combinatorial models can be applied,
there may be some advantages to using a sequential model.
Unlike combinatorial models, our mode relieves the (com-
putational) burden of determining afinal allocation from the
seller, effectively distributing computation among the buyers
(asin the simultaneous case); note that determining an opti-
mal allocation that maximizesthesdller’srevenueisNP-hard
[18]. Our sequential model also has the advantage that buy-
ers are not required to reveal information about their valu-
ations for specific resource bundles that they do not obtain.
Furthermore, it has greater flexibility in that agents can enter
and |eave the market without forcing recomputation of entire
allocations. In contrast to simultaneous models, agentsinthe
sequential model may lessen their exposure. If an agent does
not obtai n acertain resource early inthe sequence, it need not
expose itself by bidding on complementary resources occur-
ring later in the sequence. Agents are typicaly biddingin a
state of greater knowledgein the sequential model, at least in
later stages; however, in earlier stages agents may havelesser
information than they would in a simultaneous model.

Onedifficulty that arisesin the sequential model ishow an



agent computes bids for individua resources (the same dif-
ficulty arises in smultaneous models). An agent has a val-
uation for a particular resource bundleb = {ry,---, 74},
but has no independent assignment of value to the individ-
ual resources.! Whileauction theory can tell us how an agent
should bid asafunction of itsval uation of resource r; for spe-
cific auction mechanisms, in our setting no such vauation
exists. If b isworth v(b), how is an agent to “distribute the
value’” among the resources r; in order to compute bids?

In this paper, we develop a dynamic programming algo-
rithm for doing just this. We assume that each agent has a
probabilistic estimate of the size of the maximum bids for
each resource (excluding its own). It can then compute a
bidding policy that maximizes its expected utility, and apply
this policy as dictated by itsinitial endowment. Bidsfor re-
sources early in the sequence are computed as a function of
the odds of being able to obtain their complements and sub-
stitutes, while bids for later resources are conditioned on the
resources obtained early in the sequence.

Wealsointerested in adaptive bidding behavior, and tothis
end investigatearepeated sequential auction model inwhich
agents repeatedly bid for the same resources over time. We
consider the problem of estimating the probability distribu-
tions over maximal bids in this repeated scenario. If agents
persistently find themselves requiring resources to pursue
their aims, we want them to learn which resources they will
be ableto obtainand whichthey will not. Thisisrelatedtore-
cently proposed | earning model sfor auctions[11, 12], though
our focusison learning prices and its effect on the vauation
of individual resourcesin bundles.

The problem we study is part of a more general research
program designed to study the impact of specific resource
allocation schemes on the solution of sequential multiagent
decision problems. We motivate the problem studied here
as follows. We suppose that a number of agents have cer-
tain tasks and objectives to pursue, and for any objective
there may exist a number of potentia courses of action that
are more or less suitable. For instance, an agent may con-
struct a policy for a Markov decision process [15, 2], from
which it can determine the value of variouscourses of action,
their likelihood of success, and so on. Any specific course of
action will require certain resources, say, bundle *, whose
value can be determined as a function of the expected value
of that course of action (and the expected value of alternative
courses of action). As such, we suppose each bundle b* has
an associated value v (b*) and that the agent will use only one
bundl e (the one associated with the highest-valued course of
action among thosebundl esit possesses). Itisfromtheseval-
uations that the agent must determine its bidding policy for
individual resources. Thisisthe problem considered here.

Ultimately, the decision problem we hope to study isfar
more complex. Determining appropriate courses of action
will depend on perceived probability of obtaining requisite
resources, uncertainty in that course of action, alternatives
available and so on. We envision very sophisticated reason-
ing emerging regarding the interaction bidding behavior and

YInfact, wewill assumethat several bundlescan bevalued, with
possible overlap. This accountsfor possible substitution effects.

“base-level” action choice (intheMDP), such astaking afew
critical steps aong a specific course of action before decid-
ing to enter the market for the corresponding resources (e.g.,
perhaps because this policy isfraught with uncertainty). We
also foresee interesting interactions with other coordination
and communication protocols.

In Section 2 we describe the basic sequential bidding
model. We note a number of dimensions along which our
basic modd can vary, though we will focus only on specific
instantiations of the model for expository reasons. We de-
scribe our dynamic programming model for constructing bid-
ding policiesin Section 3. We also describe the motivation
for using the specific model proposed here instead of using
explicit equilibrium computation. We discuss repeated se-
guentia auctions in Section 4, focusing on the problem of
highest-bid estimation. In Section 5 we describe some pre-
[iminary experimental results, and concludein Section 6 with
discussion of futureresearch directions.

While bidding strategies for sequential auctions would
seem to be an issue worthy of study, there appears to have
been little research focussed on thisissue. What work exists
(see, eg., [8, 10]) tendsto focus the seller’s point of view—
for example, will simultaneous or sequentia sales maximize
revenue—and does not address the types of complementari-
tieswe consider here. Generally, existing work assumes that
singleitems are of interest to the buyer.

2 Basic Modd

We assume we have a finite collection of agents, al of
whom require resources from a pool of n resources R =
{ri, -, rn}. Wedenoteby R’ thesubset {ry, -, 7}, 1 <
n, with R® = § by convention. We describe the quanti-
tiesrelevant to a specific agent a below, assuming that these
guantities are defined for each agent. Agent a can use ex-
actly one bundle b" = {rf,--- 7}, } of resources from a

set of k possiblebundles: B = {b',---,b*}. We denote by
U(a) = UB the set of useful resources for our agent.

Agent a has a positive valuation v(b*) for each resource
bundle b’ € B. Supposethe holdingsof a, H(a) C Uf(a),
are those resources it is able to obtain. The value of these
holdingsis given by v(H (a)) = max{v(b®) : b* C H(a)};
that is, the agent will be able to use the resource bundle with
maximal valuefrom among thoseit holdsin entirety, withthe
others going unused. Thisis consistent with our interpreta-
tion givenin Section 1 whereresource bundlescorrespond to
alternative plans for achieving some objective (though other
value combinators can be accommodated).

The resources will be auctioned sequentialy in a com-
monly known order: without loss of generality, we assume
that this ordering is ry, 72, -+, 7, We use A; to denote
the auction for r;. We refer to the sequence of auctions
Ay, As, -+ A, asaround of auctions. Theremay beasingle
round, some (definite or indefinite) finite numbers of rounds,
or an infinite number of rounds.

Supposing for the moment only oneround, we assume that
agent a isgivenaninitial endowment e whichit can usetoob-
tain resources. At theend of theround, « has holdings H («)



and d dollars remaining from its endowment.? We assume
that the utility of being in such a state at the end of the round
isgiven by v(H(a)) + f(d), where f is some function at-
taching utility to theunused portion of theendowment. Other
utility functions could be considered within thisframework.

There areawiderange of optionsone could consider when
instantiating this framework. We define a specific model
here, but list the optionsthat could be explored. We develop
the algorithmsin this paper for the specific model, but where
appropriate, indicate how they should be modified for other
design choices. The main design choices are:

o What auction mechanism isused for the auctions A;?

o What rulesare ingtituted for reselling or speculation?

o What information isrevealed to the agents? When?

¢ What information do agents have when a round begins?

We assume that the individual auctions will be first-price,
sealed-bid—each agent will provide a single bid and the
highest bidder will be awarded the resourcefor the price bid.
We adopt this model because of the ease with which it fits
with our approach to bid computation; however, we believe
our model could be adapted for other auction protocols. We
also assume that bidsare discrete (integer-val ued); but we do
describethe appropriateamendmentsto deal with continuous
bids. Agents, once obtainingaresource, cannot resell that re-
source to another agent. This, of course, means that an agent
may obtain one resource r;, but later be unable to obtain a
complementary resourcer; , essentially being “ stuck” with
a useless resource r;. We do this primarily for simplicity,
though in certain settings this assumption may be redigtic.
We are currently exploring more sophisticated model swhere
agents can “put back” resources for re-auctioning, or possi-
bly resell resources directly to other agents.

Each agent istold the winning price at the end of the each
auction (and whether it was the winner). We could suppose
that no information (other than winning or losing) is pro-
vided, that the distributionover bidsisannounced, or that the
bids of specific individuasare made public; our assumption
seems compatible with the first-price, sealed-bid model.

Finally, agent a believes that the highest bid that will be
made for resource r;, excluding any bid « might make, is

drawn from some unknown distribution Pr’. Because bids
are integer-valued, this unknown distribution is a multino-
mial over a non-negative, bounded range of integers® To
represent a’s uncertainty over the parameters of this distri-
bution, we assume « has a prior probability distribution Pr’
over the space of bid distributions. Agent « models Pr’
as a Dirichlet distribution with parameters 3, - - -, 3., [6],
where m; isthe (estimated) maximum possiblebid for ;. We
elaborate on this probability model in Sections 3 and 4.

We make two remarks on thismodel. Firgt, if the space of
possible bidsis continuous, a suitable continuous PDF (e.g.,

21f speculation or reselling is allowed, thereis the possibility that
d > e, depending on the interaction protocols we allow. We will
mention this possibility below, but we will examine only protocols
that disallow it.

#We assumethat a bound can be placed on the highest bid.

Gaussian) could be used to model bid distributions and the
uncertainty about the parameters of this PDF. More ques-
tionableis the implicit assumption that bids for different re-
sources are uncorrelated. By having distributions Pr* rather
than ajoint distribution over all bids, agent « is reasoning as
if the bids for different resources are independent. When re-
sources exhibit complementarities, thisis unlikely to be the
case. For instance, if someone bids up the price of some re-
source 7; (e.g., trucks), they may subsequently bid up the
price of complementary resource r; (e.g., fuel or drivers). If
agent « does not admit amode that can capture such correla-
tions, it may make poor bidsfor certain resources. Again, we
make this assumption primarily for ease of exposition. Ad-
mitting correlations does not fundamentally change the na-
tureof the algorithmsto follow, though it does raiseinterest-
ing modeling and computational issues (see Section 4).

3 Computing Bids by Dynamic Programming

In this section we focus on the decisions facing an agent in a
single round of auctions. A key decision facing an agent at
the start of around ishow much to bid for each resource that
makes up part of a useful bundleb;. In standard single item
auctions (e.g., first/second-price, sealed bid) rational agents
with an assessment of the val uationsof other agents can com-
pute bidswith maximum expected utility [13]. For example,
infirst-price, sealed bid auctions, an agent should bid a some
amount below its true valuation, where this amount is given
by its beliefs about the valuations of others.

Unfortunately, the same reasoning cannot be appliedto our
sequential setting, since individual resources cannot be as-
sessed awell-defined valuation. For instance, if bundle b’ =
{ri,ri} has valuation v(b"), how should agent a apportion
this value over the two resources? Intuitively, if thereis a
greater demand for i, alarger “portion” of the value should
beallotted for biddingin thefirst auction rather than the sec-
ond. If theagent failstoobtain i, thevalueof r, goesto zero
(ignoring other bundles). In contrast, should a obtain i, itis
likely that the agent should offer a substantial bid for =%, ap-
proaching the valuation v(b?), since the price paid for ri is
essentially a“sunk cost.” Of course, if the agent expects this
high priceto be required, it should probably not have bid for
¢ inthefirst place. Finally, the interaction with other bun-
dlesrequiresthe agent to reason about the relative likelihood
of obtaining any specific bundle for an acceptable price, and
to focus attention on the most promising bundles.

3.1 The Dynamic Programming M odel

These considerations suggest that the process by which an
agent computes bids should not be one of assigning value
toindividual resources, but rather one of constructing a bid-
ding policy by which its bid for any resource is conditioned
on the outcome of events earlier in the round. The sequen-
tial nature of the bidding process means that it can be viewed
as a standard sequential decision problem under uncertainty.
Specifically, the problem faced by agent a can be modeled as
afully observable Markov decision process (MDP) [15, 2].
The computation of an optimal bidding policy can beimple-
mented using astandard stochasti c dynamic programming al -



gorithm such as vaueiteration.

We emphasize that agents are computing optimal bids, not
true valuationsfor individual resources. Thus issues involv-
ing revelation of truthful valuesfor resources are not directly
relevant (but see Section 4 on multiple rounds).

We assume the decision problem is broken into n + 1
stages, n stages at which bidding decisions must be made,
and a terminal stage at the end of the round. We use atime
index 0 < t < n torefer to stages—time ¢ refers to the
point at which auction A;,; for r;4; isabout to begin. The
state of the decision problem for aspecific agent a at timet is
given by two variables: H*(a) C R, the subset of resources
R held by agent «; and d*, the dollar amount (unspent en-
dowment) available for future bidding. We write (h, d)! to
denote the state of «’s decision problem at time ¢. Note that
although we could distinguish the state further according to
which agents obtai ned which resources, these distinctionsare
not relevant to the decision facing a.*

The dynamics of the decision process can be characterized
by o’ sestimated transition distributions. Specifically, assum-
ing that prices are drawn independently from the stationary

distributions Pr, agent a can predict the effect of any action
(bid) ~ availabletoit. If agent a isin state (h, d)* at staget,
it can bid for ;1 with any amount 0 < z < d* (for conve-
nience we use abid of 0 to denote nonparticipation). Letting
w denotethe highest bid of other agents, if a bidsz at timet,
it will transitionto state (h U {r;11},d — z)'+! with proba-
bility Pr ! (w < 2) and to (h, d)!+! with Pr T (w > )5
This does not form an MDP per se, since a may be uncer-
tain about thetruedistri butionﬁtH, havingonly aDirichlet
digtribution (3{*1, .. gt+1 ) over the possible parameters

Mi41
of Prit. However, the expectation that the highest bid isw
is given by the relative weight of parameter 51! ; thus,

z—1 pt+1

S
PrH'l(w < Z) = 7%721 Z?
ZZ:O i+1

While the observation of the true winning bid can cause
this estimated probability to change (properly making this
a partially observable MDP), the change cannot impact fu-
turetransition probability estimates or decisions: we have as-
sumed that the high bid probabilitiesare independent. Thus,
treating thisas afully observable MDP with transition prob-
abilities given by expected transition probabilitiesis sound.
The fina piece of the MDP is a reward function q. We
simply associate a reward of zero with all states at stages
0 through » — 1, and assign reward v(h) + f(d) to ev-
ery terminal state (h,d)”. A bidding policy = is a map-
ping from states into actions: for each legal state (h, d)?,
m((h,d)") = z means that « will bid z for resource r;;.
Thevalue V™ ((h,d)") of policy = at any state (h, d) isthe
expected reward £ (q({H (a), d)™)|{h, d)*) obtained by ex-
ecuting =. The expected value of 7 given the agent’s initial

*Thisistrue under the current assumptions, but may not beunder
different models; see below.

5 For expository purposes, the model assumesties arewon. Sev-
eral rules can be used for ties; none complicate the analysis.

state (0, e)* issimply V™ ({0, e)*). Anoptimal bidding policy
isany m that has maximal expected reward at every state.

We compute the optimal policy using valueiteration [15],
defining thevalue of states at staget using the value of states
at staget + 1. Specifically, we set

V((h, d)*) = w(h) + f(d)

and define, for each ¢ < n:

QUh,d)',2) = Pr'tt(w<2) - V((hU{r}, d— )+
+Prt+1(w > z) -V ({h, d>t+1)
V(<h’d>t) = I?Sagl(Q«h’dy’z)
7T(<h’d>t) = arg Iglsaj(Q«h,dy,Z)

Giventhat V isdefined for all staget + 1 states, Q((k, d)*, z)
denotesthe value of bidding = a state (h, d)* and acting op-
timally thereafter. V((h,d)") denotes the optimal value at
state (h, d)t, whiler({h, d)") isthe optimal bid.

Implementing value iteration requires that we enumerate,
for each ¢, all possible stage ¢ states and compute the con-
sequences of every feasible action at that state. Thiscan re-
quire substantial computational effort. While linear in the
state and action spaces (and in the number of stages n), the
state and action spaces themsel ves are potentially quitelarge.
Thenumber of possiblestatesat staget could potentially con-
sist of any subset of resources R together with any monetary
component. The action set at a state with monetary compo-
nent d hassize d+1. Fortunately, we can manage someof this
complexity using the following observations: first, a never
needs to bid for any resource outside the useful set U (a), s0
itsstate space (at staget) isrestricted to subsetsof U (a); and
second, if a resource r; requires a complementary resource
ru, t < 1, (thatis, al bundlescontaining r; also contain r;),
then we need never consider a state where a has r; but not
.5 Reducing the impact of the number of possible bidsis
more difficult. We can certainly restrict the state and action
space to dollar values no greater than o’sinitia endowment
e. If thePDF iswell-behaved (e.g., concave), pruningispos-
sible: eg., once the expected value of alarger bids starts to
decrease, search for amaximizing bid can be halted.”

This dynamic programming model deals with the com-
plementarities and substitutability inherent in our resource
model; no special devicesarerequired. Furthermore, it auto-
matically dealswith issues such as uncertainty, dynamic val-
uation, “sunk costs,” and so on. Given stationary, uncorre-
lated bid distributions, the computed policy is optimal.

3.2 Extensions of the M odél

While the assumptions underlying our (single-round) model
are often reasonabl e, there are two assumptions that must be
relaxed in certain settings: the requirement for discrete bids

% This reasoning extends to arbitrary subset complementarities.

7 If we moveto acontinuousaction space, thevaluefunction rep-
resentation and maximization problemsmay become easier to man-
agefor certain well-behaved classes of probability distributions and
utility functions (see Section 3.2 and [3]).



and the prohibition of reselling or returning resourcesfor re-
sale. We are currently exploring these rel axations.

Continuous bidding models are important for computa-
tional reasons. Though money isnot truly continuous, thein-
crements that need to be considered generally render explicit
value calculations for al discrete bids infeasible. Continu-
ous function maximization and manipulation techniques are
often considerably more efficient that discrete enumeration,
and approximately optimal “integer” bids can usualy be ex-
tracted. We are currently expl oring specific continuous mod-
els, specifically using parameterized bid distributions (such
as Gaussian and uniformdistributions) and linear utility func-
tions (as described above). The key difficulty in extending
value iteration is determining an appropriate value function
representation. While the maximization problem (over bids)
for a specific state is not difficult, we must represent V't as
a function of the continuous state space. This function is
linear (in d) at all states where the remaining endowment d
is greater than the maximal worthwhile bid. But a different
function representation is needed for states with endowment
less than the best bid. We are currently exploring a value
function representati on with piecewise, continuousrepresen-
tations of ' for each (discrete) set of holdings 77 (a) [3].

Resdlling may be appropriatein many settings and can al-
low agents to bid more aggressively with less risk. We are
currently developing a simple model in which agents are al-
lowed, at the end of around, to “put back” resources for re-
auction that are not needed (e.g., are not part of the agent’s
max-valued complete bundle).® Several difficulties arise in
this setting, including the fact that agents may need to esti-
mate the probability that an unobtained resource may be re-
turned for re-auction.

3.3 Equilibrium Computation

The mode described above does not alow for strategic rea
soning on the part of the bidding agent. The agent takes the
expected prices as given and does not attempt to compute the
impact of its bids on the behavior of other agents, how they
might estimate its behavior and respond, and so on; that is,
no form of equilibriumiscomputed. Standard modelsin auc-
tion theory generally prescribe bidding strategies that are in
Bayes-Nash equilibrium: when each agent has beliefs about
thetypes of other agents (i.e., how each agent valuesthe good
for sale), and these beliefs are common knowledge, then the
agents bidding policies can be prescribed so that no agent
has incentiveto change its policy.” This, for instance, is the
basisfor prescribing thewell-known strategiesfor biddingin
first- and second-price auctions [20].

Our approach is much more “myopic.” There are severa
reasons for adopting such a model rather that a full Bayes-
Nash equilibrium model. First, equilibrium computation is
often infeasible, especially in a nontrivia sequential, multi-
resource setting like ours. Second, the information required
on the part of each agent, namely a distribution over the pos-

#More complicated models that allow agents to put back re-
sources during the round or resell directly are also possible.

?We use type here in the sense used in game theory for games
with incomplete information [14].

sible types of other agents, is incredibly complex—an agent
typeinthissettingisitsset of valuationsfor all resource bun-
dles, making the space of types unmanagable. Finadly, the
common knowledge assumptions usually required for equi-
librium analysis are unlikely to hold in this setting.

We expect that theM DP model described here could beex-
tended to allow for equilibrium computation. Rather than do
this, we consider an aternative, adaptive model for bidding
in which agents will adjust their estimates of prices—hence
their bidding policies—over time. Implicitly, agents learn
how others value different resources, and hopefully some
type of “equilibrium” will emerge. We turn our attention to
this process of adaptation.

4 Repeated Auctionsand Value Estimation

In certain domains, agents will repeatedly need resources
drawn from some pool to pursue ongoing objectives. We
mode! this by assuming that the same resource collection is
auctioned repeatedly in rounds. While agents could compute
asingle bidding policy and use it at every round, we would
like agents to use the behavior they’ve observed at earlier
rounds to update their policies. Specificaly, observed win-
ning prices for resource auctions 4; in the past can be used
by an agent to update its estimate of the true distribution Pr’
of high bidsfor »;. Itsbidding strategy at the next round can
be based on the updated distributions.

If each agent updatesitsbidding policy based on past price
observations, the prices observed at earlier rounds may not
be reflective of the prices that will obtain a the next round.
This means that the agents are learning based on observa
tions drawn from a nonstationary distribution. This setting
is common in game theory, where agents react to each oth-
ers past behavior. Myopic learning models such asfictitious
play [4] (designed to learn strategy profiles) can be shown to
converge to a stationary distribution despite the initial non-
stationarity. Thistype of learning model has been applied to
repeated (single-item) auctions and shown to converge [11].
Our model isbased onsimilar intuitions—namely, that learn-
ing about prices will eventually converge to a steady state.
Hu and Wellman [12] also develop arelated model for price
learning in a somewhat different context.

The advantage of alearning moddl isthat agents can come
to learn which resources they can realistically obtain and fo-
cus their bidding on those. If agents A and B have similar
endowments and both equally value having either », or rs,
they may learn over timenot to competefor », and r»; instead
they may learn to anticipate (implicitly, through pricing) each
other’s strategy and (implicitly) coordinate their activities,
with one pursuing »; and the other r,. If one agent has a
greater endowment than another (e.g., it may have higher pri-
ority objectives in a distributed planning environment), the
poorer agent should learn that it can’t compete and focus on
less contentious (and perhaps less valued) resources. An-
other important feature of learning modelsisthat they can be
used to overcome biased or weak prior assessments.

Giventheform of the probabilisticmodel describedin Sec-
tion 3, an agent can update its estimate of a bid distribution
rather easily. Suppose agent a has parameters (31, - - -, 6%, )



that characterize itsdistribution Pr’ over thetruedistribution
Pr of high bids for resource r;. After auction A, the win-
ning bid w is announced to each agent.'® If « failsto win
the resource, it should update these Dirichlet parameters by
setting 3%, to 3%, + 1; at the next round, its estimate that the
highest bid will be w is thusincreased. If a wins resource
r, for price z, the only information it gets about the highest
bid (excluding its own) isthat it islessthan z. The Dirich-
let parameters can then be updated with an algorithm such as
EM [7]. Roughly, the expectation step computes an update
of the parameters of the Dirichlet using current estimates to
distribute the observation over the parameters 3, - - -, 3¢ _;:
each 3% (j < z) isincreased by 6§/ngol B, The maxi-
mization step corresponds to the actua update followed by
the substitution of these parameters in Pr. Whereas the EM
algorithm requires an iteration of these two steps until con-
vergence, we performed this iteration about 10 times.'!

In the specific probability model developed here, agents
cannot profitably use this updated estimate during the cur-
rent round. Because prices are assumed independent, learn-
ing about one price cannot influence an agent’ s bidding strat-
egy for other resources.'? Thus the agent continuesto im-
plement the bidding policy computed at thestart of theround.
The updated bid distributionsare used prior to the start of the
next round of auctionsto compute an new bidding policy.

As mentioned above, the price-independence assumption
may be unredlistic. If prices are correlated, the observed
price of aresource can impact the estimated price of another
resource that will be available later in the round. Agentsin
this case should revise their bidding policies to reflect this
information. Two approaches can be used to deal with cor-
relations. First, agents can simply recompute their bidding
policies during around based on earlier outcomes. An alter-
nativeisto model thisdirectly withintheMDPitself: thisen-
tails making the MDP partially observable, which can cause
computational difficulties.

One thing we do not consider is agents acting strategi-
caly withinaroundto influence prices at subsequent rounds.
Agents are reasoning “myopically” within a specific round.
By formulating multi-round behavior as a sequentia prob-
lem, we could have agents attempting to manipulate prices
for future gain. Our current model does not allow this.

5 Reaults

We now describe the results of applying thismodel to some
simple resource alocation problems. These illustrate inter-
esting qualitative behavior such as adaptation and coordina-
tion. We aso explain why such behavior arises. In al runs,
multiple rounds are considered and remaining endowment d

120ur mode!l can accommodate both more (e.g., the bids of all
agents) and less (e.g., only whether an agent won or lost) revealed
information about the auction outcome rather easily.

" Preliminary experiments showed this sufficient.

12\ith correlated prices, an agent could attempt to provide mis-
leading information about its valuation of one resourcein order to
secure a later resource at a cheaper price. Thistype of deception,
studied for identical item auctionsin [10], cannot arise within asin-
gleround in our current model, even if strategic reasoningis used.

isvalued at 0.5d (o« = 0.5). Agent priors have slightly in-
creasing weights on higher bids.'3

Thefirst series of examplesillustratesbidding behavior in
allocation problemswith specific parameter settings.

Example There are two agents whose optimal bundles are
digoint: a; requiresbl = {r,r3} (vaue 20) or b} =
{ra,rs,r¢} (vaue 30), while a, requires b? = {rs,r3}
(vdue 20) or b2 = {r7, 78,79} (vaue 30). Initidly, both
agents focus on the smaller (and lower-valued) bundles.
Atthefirst round, a; obtainss!, whilea- gets“stuck” with
r9 (ay outbid it for r3). The next round sees a- bid less
for o, and more for 3 (outbidding ;). Sinceit obtains
b2, it does not attempt to bid for 42. But without 41, and
its estimated prices for resources in b3 lowered, a; now
bids for and gets b (its optima bundle). Up to the 14th
round, one of the agents getsits best bundle and the other
itsworst. At the 14th round, each getsitsbest bundle, and
after the 16th round, the socially optimal alocation (the
onewithmaximal total bundleva ue) isreached each time:
the agents (more or less) “realize’ that they need not com-
pete. The agents do “hedge their bets’ and till keep bid-
dingfor resourcesry, r, and rs. They aso offer fairly high
bidsfor the nonconflicting resources, thoughthese bidsare
reduced over time,

This first example shows that optima allocations will
emerge when agents are not in direct competition. It asoil-
lustratesgenera behaviora phenomenon that occur in almost
all examples. (1) Agentstend to bid more aggressively (ini-
tially) for resources in bundles with smaller size, since the
odds of getting al resources in alarger bundle are lower. (2)
Agentstend to bid more aggressively for resources that occur
later in the sequence. Once an agent obtainsall resourcesin
a bundle but one, the last resource is very valuable (for ex-
ample, in round 16 above, a; obtains b by paying 1 for r4
and r5, and 27 for rg. (3) Agentstend to initialy offer high
bidsfor certain resources, and gradually lower their bidsover
time (realizing dowly that thereis no competition). For ex-
ample, a; reducesitsbid for r to 26 only at round 36. This
isa consequence of the simple priorsand belief update rules
we use, and the lack of information it obtains when it wins
the resource consistently: it isnot told what the next highest
bidis(itiszero), and can only conclude that it was less than
27, making belief update sl ow. The equivalent sample size of
our priors aso makes adjustment somewhat slow. Domain-
specific (more accurate) priors, and the use of exponential
decay (or finite histories) in price-estimation would alleviate
much of this slowness of response.

Example There are 25 resources and five agents with four
bundles each (with an average of four resources per bun-
dle). There exists an alocation of five digoint bundles,
one to each agent. For each agent three of the resources
occur only in its bundles, so the agents are competing for
only 10 of the 25 resources. The socially optimal aloca-
tion has value 100. Over fifty rounds, the agents gener-
ally find very good (but not optimal) allocations. Figure 1
shows the value of the all ocations obtained at each round,

'3 More redlistic priors could reflect perceived demand.
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Figure 1: Behavior over 50 Auction Rounds: 5 agents with
digoint bundles (optimal allocation has value 100).

as well as the collective “surplus’ (total value minus a-
adjusted prices paid). The agentsquickly find good aloca-
tions (by the ninth round, no allocation has value less than
88), and aso learn to pay less for the resources.

Example An interesting phenomenon emerges in a two-
agent example of [21] that has no price equilibrium: as-
sume resources r1, 72, With a; valuing bundle {7y, r,} a
6, and a, valuing ether of 1, r» a 4. The agents have
equal endowments. Though thereis no price equilibrium,
in our adaptive protocol a»; winsone of its bundles much
morefrequently than ;. Itbidsfor»,, andif itwinsit need
not bidfor r»; if itlosesit can outbida; for r, (Sincea; has
paidfor r1). a, experimentswith r; and winsit occasion-
aly. a, gradually lowersits bid for », and, since it does
not model correlationsin prices, occasionally loses r», al-
lowing «a; to get both r; and r,. When thisoccurs, a, will
quickly raise its bids and win one of the resources again.
By modeling price correlations, or estimating the require-
ments of a1, agent a, could guarantee that it obtains one
of itsresources (see Section 6).

Example We have 3 resources and 2 agents, each valuing
{r1,r2} & 10 and r5 at 5, but differing in initial endow-
ment: a; beginswith6, as with8. Initialy, a; getsthefirst
(higher-valued) bundle (at prices 2 and 5) and «- the sec-
ond (at price 3). By thefourth round, a- realizesthat it can
win r; with bids of 3and 5. It spends8on {ry, r»}, leav-
inga; tobid4for r3. These pricespersist, with a» not bid-
ding on r3 and a- eventually not biddingon r; or 5. This
illustratesthat agents with larger endowments (or lessrel-
ative value for money compared to bundles) have greater
odds of obtaining their most important bundles, leaving
“poorer” agentsto get what isleft.!

Y Thislast property is useful for teamsif agents with higher pri-
ority objectives are given larger endowments.

Allocation Value ——
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Figure 2: Sample Behavior over 75 Auction Rounds: 5
agents (optimal allocation has val ue 69)

We also studied the bidding behavior on randomly gener-
ated alocation problems. Here we describe two sets of ex-
periments. In problemset Ps1, fiveallocation problemswere
randomly generated with the following characteristics: four
agents are competing for 12 resources with an initial endow-
ment of 30 each; each agent has arandom number of needed
bundles (normally distributed with mean 4 and s.d. 1); each
bundl econtainsarandom number of resources (normally dis-
tributedwithmean 3and s.d. 1, wheretheresourcesarethem-
selves drawn uniformly from the set of 12); and the vaue of
each bundle is random (normally distributed with mean 16
and s.d. 3). Problem set PS2 isidentical except there are five
agents and the mean number of resources per bundlesis 4:
hence problemsin Ps2 are more constrained, withmore com-
petition among the agents.

Typica behavior for one trial from Ps2 (the more con-
strained problem set) is shown in Figure 2, which plots the
the value of the alocations obtained at each round, as well
asthe collective surplus. The agentsfind good allocationsin
thisproblem, reaching the (socially) optimal alocation (with
value 69) a many of the rounds. On average, over the 75
rounds, the alocation obtained has value 59 (85% of opti-
mal). Notethat oncethe agents“find” agood all ocation, they
may not stick with it—generally such alocations are not in
equilibriuminthe sequential gameinduced by around of auc-
tions. At the very least, agents have a tendency to attempt to
lower the prices they bid after consistently winning a good,
duetothelack of information about what other agentsbid and
how they update their beliefs (as mentioned above). Thisit-
self can cause someinstability. The greater cause of instabil-
ity however isthe fact that asocially optimal allocation does
not generally make self-interested agents happy.

Other triasillustrate similar qualitative behavior. When
comparing Psl1 (the less constrained problem set) to Ps2
(the more constrained), we find that the alocations in Ps1
have value that is, on average, within 87% of the optimal,
whilewith Ps2, alocations are within 80% of optimal. This
suggests that for less constrained problems, sequential auc-



tions among self-interested agents can lead to alocations
with higher social welfare value. Given that agents “dis-
cover” many different allocations, one might view sequen-
tial auctions as a heuristic search mechanism for combinato-
rial auctions.'® However, we emphasize that the main goal
of our model isto compute bidding policies when combina-
torial and simultaneous auctions are not possible.

6 Concluding Remarks

We have described a model for sequential auctioning of re-
sources that exhibit complementarities for different agents
and described a dynamic programming algorithm for the
computation of optimal bidding policies. We have alsoillus-
trated how pricelearning can be used to alow agentsto adapt
there bidding policiesto those of other agents. The sequen-
tial model can be appliedin settingswhere combinatorial and
simultaneous models are infeasible (e.g., when agents enter
or leave markets over time, or when agents require resources
from multiple sellers). Preliminary results are encouraging
and suggest that desirable behavior often emerges.

We have suggested several possible extensions of the
model, some of which we are currently exploring. Thesein-
clude developing continuous bidding models, models with
reselling/return, incorporating correlated bid distributions
and exploring the interactions between decision theoretic
planning and bidding for the resources needed to implement
plans and policies.

There are several more immediate directions we hope to
pursue. One isthe investigation of models where prices are
estimated with greater weight placed on more recent prices.
Along with correlated price distributions, the use of limited
“opponent” models may be helpful: by identifying which
agentstend to need which resources, abidder can make more
informed decisions. Additional revealed information about
specific auctions (such as who bid what amount) could also
lead to more informed decisions. This information may be
appropriate in team situations, where distributed decision
makers are not directly in competition.

Apart from such myopic mechanisms, we would also like
to devel op a Bayes-Nash equilibrium formulation of the se-
guentia model, and study the extent to which myopic mod-
elslike our ssmplelearning scheme approximateit. The con-
ditionsunder which our model convergesto interesting alo-
cations (socialy optimal alocations, equilibria, etc.) isaso
worthy of exploration. Other avenues to be considered are
the development of different auction ordering heuristics to
maximize social welfare, seller’s revenue or other objective
criteria; and the development of generalization methods to
speed up dynamic programming. We are al so integrating the
sequential auction model for resource allocationintothe gen-
eral planning context described in Section 1.
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