
To appear, Proc. Fourteenth Inter. Conf. on AI (IJCAI-95),
Montreal, August, 1995

Process-Oriented Planning and Average-Reward Optimality

Craig Boutilier�
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, CANADA
cebly@cs.ubc.ca

http://www.cs.ubc.ca/spider/cebly/craig.html

Martin L. Putermany
Faculty of Commerce

University of British Columbia
Vancouver, BC V6T 1Z2, CANADA

marty@markov.commerce.ubc.ca
http://acme.commerce.ubc.ca/puterman/puterman.html

Abstract

We argue that many AI planning problems should be
viewed as process-oriented, where the aim is to pro-
duce a policy or behavior strategy with no termina-
tion condition in mind, as opposed to goal-oriented.
The full power of Markov decision models, adopted
recently for AI planning, becomes apparent with
process-oriented problems. The question of appro-
priate optimality criteria becomes more critical in
this case; we argue that average-reward optimality
is most suitable. While construction of average-
optimal policies involves a number of subtleties
and computational difficulties, certain aspects of
the problem can be solved using compact action
representations such as Bayes nets. In particular,
we provide an algorithm that identifies the struc-
ture of the Markov process underlying a planning
problem – a crucial element of constructing average
optimal policies – without explicit enumeration of
the problem state space.

1 Introduction
The traditional AI planning paradigm requires an agent to
derive a sequence of actions that leads from an initial state to
a goal state. While much planning research has focussed on
rather unrealistic models that assume complete knowledge of
both states and actions, increasingly, research in planning has
been directed towards problems in which the initial conditions
and the effects of actions are not known with certainty, and
in which multiple, potentially conflicting objectives must be
traded against one another to determine optimal courses of
action. In particular, there has been much interest in decision-
theoretic planning (DTP) (Dean and Wellman 1991).

The theory of Markov decision processes (MDPs) has found
considerable popularity recently both as a conceptual and
computational model for DTP (Dean et al. 1993; Boutilier
and Dearden 1994). Indeed, much recent research has em-
phasized the complementary nature of work in (for example)
operations research (OR) on the foundations and computa-
tional aspects of MDPs, and planning models used in AI. Per-
haps most important is the exploitation of structure in solving�This research was supported by NSERC Research Grant
OGP0121843, and the NCE IRIS-II program Project IC-7.yThis research was supported by NSERC Grant OGP0005527.

MDPs. Using compact representations of actions (such as
influence diagrams or STRIPS operators) one can often group
together large classes of calculations with great savings if the
domain possesses many regularities (Tatman and Shachter
1990; Boutilier, Dearden and Goldszmidt 1995). We will
exploit representations of this form below.

An important distinction that arises when one considers the
use of MDPs for planning problems is that between goal-
oriented planning problems and process-oriented problems.
A goal-oriented problem is one in which an agent must con-
struct a plan that will change the world from some initial
state to one of a specified set of goals states. For example,
constructing a plan to achieve a goal propositionG is a goal-
oriented problem. Implicit in such problems is the assumption
that the evolution of the system, once the goal is achieved,
ceases to be of interest. The agent must be given another
goal to achieve in order to begin planning and acting again.
Such problems have received the bulk of the attention from
the planning community, even when uncertainty is involved
(though a relaxed definition of success may be used (Kushm-
erick, Hanks and Weld 1994)). In decision-theoretic settings,
goal-based approaches are also common, with utilities used
often to discriminate feasible plans (Dean et al. 1993).

A process-oriented problem is one in which there does not
(necessarily) exist a goal state of the type described above.
More specifically, there may be no state (or goal) such that
the agent should stop acting once that state is reached (or the
goal is true). Such problems require that the planning agent
construct an on-going plan that proceeds indefinitely. While
we focus on DTP, where these often occur naturally, process-
oriented problems can also arise in more “classical” settings;
for example, one might require an agent to construct a plan or
policy that continuously alternates between states satisfying
goals G1 and G2. If exogenous events can cause these goals
to become false, then such a plan proceeds indefinitely.

MDPs are excellent models for such process-oriented prob-
lems: techniques such as policy iteration (Howard 1971) can
be used to derive optimal plans for infinite horizon problems
of this type under uncertainty. Unfortunately, the emphasis in
recent work using MDPs for DTP has been on goal-oriented
problems (Dean et al. 1993; Boutilier and Dearden 1994),
albeit conditional and decision-theoretic. This is not to say
that these algorithms don’t work for process-oriented prob-
lems; but no consideration has been given to the issues and
special circumstances that might arise when an ongoing pro-
cess is involved. The full power of MDPs only comes to light

To appear, Proc. Fourteenth Inter. Conf. on AI (IJCAI-95),
Montreal, August, 1995

when we have problems that exhibit this continual basis. One
aim of this paper is to survey the unique challenges that arise
when we attempt to solve process-oriented problems. Issues
that take on added importance include representation of ex-
ogenous events, design of reward functions, and appropriate
optimality criteria.

This last issue, the design of appropriate optimality criteria,
has been paid little attention in DTP. MDPs have been used
for planning and reinforcement learning quite extensively,
and most models measure the goodness of policies using dis-
counted total reward (one exception is (Singh 1994)). How-
ever, little thought seems to have been given to this choice of
optimality measure or to good discounting rates. In fact, for
many ongoingprocesses it seems that the correct (or most use-
ful) measure of a policy is the average reward it accrues per
unit time. Discounting admits conceptually simpler policy
construction algorithms; but small discounting rates intro-
duce unacceptable bias toward quick rewards at the expense
of long-term gain, while large (close to one) discounting rates
cause algorithms to converge quite slowly.

Unfortunately, finding average-optimal policies compli-
cates most policy construction algorithms. Some algorithms
such as value iteration (Bellman 1957; Puterman 1994) will
work in almost the same form as for discounted problems,
but only if one can establish the underlying “reachability”
or communicating structure of the process. The second aim
and key technical contribution of this paper is the develop-
ment of an algorithm that determines this structure using a
compact representation of the MDP’s dynamics. Unlike ex-
isting algorithms for structure classification (Fox and Landi
1968), our algorithm exploits the problem representation to
avoid enumeration and traversal of the underlying state space.
This is an important feature because the planning state space
grows exponentially with the number of variables or features
present.

In Section 2 we will sketch a rather simplified, but in many
respects realistic example to illustrate these considerations.
We argue that many realistic problems ought to viewed as
process-oriented rather than goal-oriented. We emphasize
the importance of exogenous events (especially user com-
mands) and considerations of appropriate reward structure.
In Section 3, we describe the basic MDP model and policy
construction techniques. In addition, we discuss compact rep-
resentations of MDPs, the separation of events from actions,
and point to ways in which these can be used to speed-up pol-
icy construction. In Section 4, we argue that average reward
optimality is often appropriate for such problems and point
out the difficulties involved in computing average-optimal
policies. We also present the main technical contribution of
the paper, namely, an algorithm that determines the underly-
ing communicating structure of an MDP, a crucial step in the
computation of average-optimal policies. By exploiting our
action representation, (potentially exponential) reductions in
time and memory requirements are possible for many prob-
lems, as compared to traditional state-space algorithms.

2 A Process-Oriented Planning Problem
Oft-used “gopher” domains are commonly viewed as goal-
oriented planning problems. We have an agent (say a robot)
that is designed to perform certain tasks for its owner (the
user). Most planning algorithms suggest that the user will

ask the robot to perform some task or achieve some goal.1

The robot will construct a plan to achieve that goal, and then
execute the plan. When that goal is achieved the robot waits,
doing nothing, until another request is issued. This cycle
of “Get goal; Achieve goal” is pervasive in classical and
decision-theoretic models. However, this cycle of achieving
goals in order is rather unrealistic for a number of reasons:

1. Many goals are not specifiable in this manner. Consider
simple maintenance goals such as “keep the lab tidy.”
This is not a goal that can be achieved then abandoned.
Though maintenance goals are used in classical plan-
ning, they typically specify constraints, such as subgoals
and safety constraints, that the agent is not permitted to
violate while achieving a primary goal. These serve a
somewhat different purpose than true maintenance goals.

2. A user should not have to wait until a previous goal is
satisfied before issuing another request; or if the robot
stores requests in the order issued, it may not be desir-
able to have the robot delay achievement of later goals
while completing earlier ones. A new goal may preempt
previous goals — and there is no reason to expect some
goals not to be preempted indefinitely.

3. We should not expect an agent’s actions at any given time
to be directed toward the achievement of a single goal
proposition. Should multiple objectives be obtainable
more readily, or at lower cost, by interleaving or sharing
certain actions to achieve those objectives, an architec-
ture that forces consideration of a single goal at any one
time will produce suboptimal behavior.

4. An agent should plan not only for its current objectives,
but also in anticipation of new goals or contingencies.
An agent whose raison d’être is mail delivery may be
well-served by positioning itself near the mailroom at
certain times (if it has no other pressing tasks).

It should be clear that many of the problems to which clas-
sical goal-oriented planning techniques are currently applied
may more naturally be thought of as process-oriented prob-
lems. While Point 1 indicates that some objectives are truly
ongoing, Points 2–4 suggest that even multiple or recurring
goals extended in time interact in ways that make the process-
oriented perspective most suitable.

To make our discussion more concrete, we will focus on a
particular example of a “gopher” robot with three primary re-
sponsibilities: to pickup and deliver mail to a user, to deliver
coffee to the user, and to keep the user’s lab tidy. This is not
a goal-oriented problem in the classical sense. Keeping the
lab tidy is certainly an on-going process. Mail arrives con-
tinually as does the user’s need for coffee.2 To formalize this
problem we assume the six domain variables. Loc, the loca-
tion of the robot, takes one of five values LO; LL; LM; LH; LC
(office, lab, mailroom, hallway, and coffeeroom, connected
in a cyclic fashion). T indicates lab tidiness with five valuesT0 (messiest) to T4 (tidiest). We also have four boolean vari-
ables denoting whether there is mail in the user’s box (M),
an outstanding coffee request by the user (CR), the robot has

1For example, software agents, as commonly conceived, often
have this flavor.

2In (Boutilier and Puterman 1995) we give a full description of
this problem, and further details of our algorithms.

To appear, Proc. Fourteenth Inter. Conf. on AI (IJCAI-95),
Montreal, August, 1995

mail (HRM), or the robot has coffee (HRC). This gives rise
to a problem with 400 states.

Process-oriented problems typically arise in systems that
change in certain ways independently of the agent’s actions.
Changes that demand the agent’s continuing attention require
that we model exogenous events that change the state of the
system. An especially important class of such events will be
user commands: so our agent can react to requests, we treat
user commands as particular exogenous events that cause facts
like “there is an outstanding request to do X” to become true.
These are not goals in the classical sense, however, for an
agent is under no obligation to drop what it is doing and im-
mediately (or ever) satisfy the request. Requests must be
balanced with other objectives in the derivation of an opti-
mal course of action for the agent. The variable CR above
serves this purpose — it indicates whether the user has issued
a coffee request that remains unfulfilled. In order to model
our problem, we assume three exogenous events occur occa-
sionally: the arrival of mail (causing M), the user requesting
coffee (causing CR), and the lab becoming untidy (causingT to decrease one unit). We assume the probability of any
of these events occurring at a given time is known. Clearly,
optimal plans vary with these probabilities. For instance, the
robot may “hang out” at the mailroom if mail arrival is likely.

Our robot has a number of actions at its disposal: it can
move through its domain in either direction (actions Go�
and Go); it can pickup mail (PuM), successfully if in the
mailroom and there is mail; it can deliver mail (DelM) in its
possession to the user; it can pour coffee (PC) if in the coffee
room; it can deliver this coffee (DelC) to the user in the office
(causing a request CR to be fulfilled); it can tidy the lab (Tidy)
by one unit; and it can do nothing (Stay).

To construct a plan, an agent must be able to predict the
system state after execution of an action. Here however these
predictions must account for the possible occurrence of exoge-
nous events. A common technique for incorporating events
is to “roll in” the probability of exogenous event occurrences
and their effects into the action description. For example,
when the robot considers the effect of Go�, not only will it
know that its location changes, it expects mail to arrive with
some probability as well. However, the natural specification
of the problem suggests that a user should be permitted to
specify exogenous events and their effects independently of
the action specification. So in addition to the eight actions,
we assume that the three events described above (denoted
ArrM, ReqC, and Mess) are specified independently in much
the same format as actions. Unlike actions, whose occurrence
is controlled by the agent, events must also come with a de-
scription of the conditions under and probabilities with which
they may occur. For instance, we might assume that ArrM
occurs with probability 0:2 at any “stage” (see below).

In order to construct a plan or policy, we can automatically
“roll in” the event probabilities and effects into the action
descriptions. This is usually a straightforward process; but
problems arise when an action and an event affect the same
variable in different ways. For instance, suppose the action
PuM is executed at a certain stage in the plan (causing M)
and the event ArrM occurs at the same stage (causing M).
There are no general principles by which the “true” effect of
the action-event pair can be constructed from the information
provided. Thus we assume that for any such conflicts, the

user is willing to specify the “net effect” on the variable in
question. In our domain, most action-event pairs have pre-
dictable effects on variables and the few contentious cases are
resolved explicitly; for example if ArrM occurs concurrently
with PuM, M is true (there is more mail to pick up). We
describe action-event merging formally in the next section.

Also taking on added importance in process-oriented mod-
els is the representation of goals and objectives. If goals are
classical (discrete propositions), how should one represent the
fact that one goal should be achieved before another, or that a
goal has been achieved and that the next can be pursued? In
a decision-theoretic setting, how should one assign rewards
or costs to fulfillment of objectives (or lack thereof)? In a
process-oriented problem, the usual approach of assigning
rewards to states in which objectives are satisfied becomes
problematic — since the objective may remain true in sub-
sequent states, there is a danger of “over-compensating” an
agent for satisfying an objective once. On the other hand, as-
sociating rewards with state transitions (e.g., a transition to a
good state from a bad one) has its own difficulties. We discuss
these issues in detail in (Boutilier and Puterman 1995).

For this problem, and many in which there are separate
objectives to be balanced, a useful reward model is one where
penalties are associated with states in which objectives are
unsatisfied. For instance, at any state where there is an out-
standing user request CR, the agent is penalized. Such request
variables become false when the objective (in this case, suc-
cessful coffee delivery) is met. The magnitude of the penalty
reflects the relative importance of the objective. In our ex-
ample, we associate (additive) penalties with the following
propositions: CR (an outstanding coffee request); M _ HRM
(undelivered mail); and Tn if n < 4 (with penalties varying
with degree of tidiness). The magnitudes of the penalties cap-
ture the relative priority of mail, coffee and tidiness. Optimal
plans vary considerably with the relative importance of these
objectives. For example, the robot may move to the mailroom
if there are no current tasks and mail has high priority.

3 MDPs and their Representation

We model a DTP problem as a completely observable MDP.
These are ideal for representing stochastic domains without
classical goals, and especially process-oriented problems. We
assume a finite set of states S, a set of actions A and a re-
ward function R. An action takes an agent from one state
to another, with each transition corresponding to a stage of
the process. The effects of actions cannot be predicted with
certainty; hence we write Pr(s1; a; s2) to denote the proba-
bility that s2 is reached given that action a is performed in
state s1. These transition probabilities can be encoded in anjSj � jSj matrix for each action.3 Complete observability
entails that the agent always knows what state it is in. We
assume a bounded, real-valued reward functionR, withR(s)
denoting the (immediate) utility of being in state s.4 For our
purposes an MDP consists of S, A, R and the set of transition
distributions fPr(�; a; �) : a 2 Ag.

A plan or policy is a mapping � : S ! A, where �(s) de-
notes the action an agent will perform whenever it is in state

3We assume any action can be attempted in any state.
4Costs can also be associated with actions in general.

To appear, Proc. Fourteenth Inter. Conf. on AI (IJCAI-95),
Montreal, August, 1995s.5 Policies naturally encode strategies suited for process-
oriented problems; there is no notion of a finite sequence of
actions or termination condition as in the classical setting.
Given an MDP, an agent ought to adopt a policy that maxi-
mizes the expected value of its (potentially infinite) trajectory
through the state space. Typically value depends in a com-
positional way on the states (in particular, the rewards R(s))
through which an agent passes. The most common value (and
optimality) criterion in DTP for infinite-horizon problems is
discounted total reward: the current value of future rewards
is discounted by some factor � (0 < � < 1); and we want
to maximize the expected accumulated discounted rewards
over an infinite time period. The expected value (under this
measure) of a fixed policy� at any given state s can be shown
to satisfy (Howard 1971):V�(s) = R(s) + �Xt2S Pr(s; �(s); t) � V�(t)
The value of � at any initial state s can be computed by
solving this system of linear equations. A policy � is optimal
if V�(s) � V�0 (s) for all s 2 S and policies �0.

Techniques for constructing optimal policies for discounted
problems have been well-studied. While algorithms such as
modified policy iteration (Puterman and Shin 1978) are often
used in practice, an especially simple algorithm is value it-
eration, based on Bellman’s (1957) “principle of optimality.”
We discuss value iteration because it can, under certain con-
ditions, be used directly for average-reward problems as we
describe below. Algorithms such as policy iteration may be
much more complex in average-reward settings.

We start with a random value functionV 0 that assigns some
value to each s 2 S. Given value estimate V i, for each states we define V i+1(s) as:V i+1(s) = maxa2AfR(s) + �Xt2S Pr(s; a; t) � V i(t)g
The sequence of functions V i converges linearly to the op-
timum value in the limit. After some finite number n of
iterations, the choice of maximizing action for each s forms
an optimal policy � and V n approximates its value.6

The above specification of MDPs requires that one spell out
the transition matrices for each action and a reward function
over the explicit state space S. Even for a relatively simple
problem like the “gopher” example, with 400 states this can be
prohibitive. Clearly, we do not expect users to specify prob-
lems in such an explicit form. Recently, a number of action
representations such as STRIPS and influence diagrams have
been applied to the problem of representing stochastic actions
and MDPs generally (Kushmerick, Hanks and Weld 1994;
Boutilier and Dearden 1994; Tatman and Shachter 1990).
We adopt the “two-slice” temporal Bayes network (Dean and
Kanazawa 1989). For each action, we have a Bayes net with
one set of nodes representing the system state prior to the
action (one node for each variable), another set representing
the world after the action has been performed, and directed
arcs representing causal influences between the these sets (see

5Such policies are stationary: action choice depends only on
the state, and not the stage. For the problems we consider, optimal
stationary policies always exist.

6We discuss stopping criteria in Section 4; see (Puterman 1994).

(Boutilier, Dearden and Goldszmidt 1995) for a more detailed
discussion of this representation).

Figure 1 shows the specification of the action network for
PuM, describing the effect of PuM independent of any event
occurrences. The tables for the postaction variables describe
the effects of the action. Nodes labeled Persist are unaf-
fected and retain their preaction value (persistence tables are
constructed automatically).

The event network for ArrM in Figure 1 has a somewhat
different form. While the effects of events are specified as
with actions (we omit persistence variables for conciseness),
we must also indicate the probability of the event occurring.
The ArrM network contains a double-circled node denoting
the occurrence of the event in question, with an unconditional
probability table. The parents of event nodes (though this
example has none) are those variables that influence the prob-
ability of the event occurrence (e.g., ArrM could depend on
the time of day).

Finally, the net effect network for PuM is shown: we no-
tice that its effect on Loc, HRC and HRM is the same. Its
effect on CR and T is altered, corresponding to the events
ReqC, Mess; but the combination is derivable automatically.
The contention between the effect of PuM and ArrM on the
variable M has to be resolved by the user — in this case, we
assume more mail arrives (i.e., the robot picks up mail at the
beginning of the period). Implicit in this type of specification
is the modeling assumption that the action and event networks
simply describe what hold at the endpoints of a given stage.
The action network for PuM says that if the robot is in the
mailroom and there is mail at the beginning of a stage, the
robot has the mail at the end of the stage. It makes no assump-
tions about how this effect is manifest during the intervening
interval. Therefore, when combined with the event ArrM (in-
terpreted similarly), we cannot predict the interactions of their
effect on the contentious variable M : the user must resolve
the conflict. We do, however, assume that explicit effects take
precedence over “persistence” variables.

We note that these tasks should not be viewed as classical
goals. Depending on the event probabilities and the impor-
tance of it objectives, under some circumstances tasks can
be ignored. For example, if mail is far more important than
tidiness and mail constantly arrives, the robot will never stop
to tidy the lab under the optimal policy.

4 Average Reward Optimality
With goal-oriented problems, there is a straightforward mea-
sure of success. In many decision-theoretic problems, such as
finite-horizon influence diagrams, one can sum the expected
utilityper stage of the policy. But for infinite-horizonprocess-
oriented problems, the total accumulated reward typically di-
verges, making any direct comparison between policies mean-
ingless. Thus discounting factors are often introduced. With
a discounting rate less than one, total discounted reward will
be bounded and comparisons can be carried out.

Unfortunately, the choice of discounting rate can have a
drastic influence on optimal policies. A discounting rate such
as 0:9 is hard to justify in our robot example, and can induce
an unacceptable bias toward quick rewards. This essentially
means that a unit reward achieved at stage n + 1 of the pro-
cess is (currently) worth 90% of the value of a unit reward
achieved at stage n — the motivation for discounting is pri-

To appear, Proc. Fourteenth Inter. Conf. on AI (IJCAI-95),
Montreal, August, 1995

n(n) n-1

T(0) 1.0 0.0
T(1) 0.9 0.1 *
T(2) 0.8 0.2 *
T(3) 0.7 0.3 *
T(4) 0.6 0.4 *

Loc M M’
0.2T **LM

LM F 0.2 *
LM T 1.0
LM F 0.2 *

Mail Mail

ArrM
Arr M M’

F F 0.0

T T 1.0
T F 1.0
F T 1.0

ArrM
0.2

Loc M Hrm Hrm’

LM T T 1.0
LM T F 1.0
LM F T 1.0
LM F F 0.0
LM T T 1.0
LM T F 0.0
LM F T 1.0
LM F F 0.0

CR

HRC

Loc

Mail

HRM

Tidy

Persist

Persist

CR CR’

Tidy Tidy’

CR

HRC

Loc

Mail

HRM

Tidy

T 1.0
F 0.1 *

As Before

Action Network: PuM Event Network: ArrM Net Effect Network: PuM

Loc M M’
TLM

LM F

LM T 1.0
LM F

0.0
0.0

0.0

CR

HRC

Loc

Mail

HRM

Tidy

Persist

CR

HRC

Loc

Mail

HRM

Tidy
Persist

Persist

Persist

Figure 1: Action, Event and Net Effect Networks

marily economic. But it is difficult to provide an economic
justification for discounting in problems such as these.

In process-oriented problems, we are primarily interested in
the steady-state performance of our agent. As such, expected
average reward per stage is the most appropriate measure of
a policy. By choosing discount rates very close to one, op-
timal discounted policies may be similar to average-optimal
policies; however, discounted algorithms may converge very
slowly (e.g., value iteration) or involve ill-conditioned sys-
tems (e.g., policy iteration). Furthermore, directly computing
average-optimal policies conforms closely to our intuitions
about long-term processes. We present a brief summary of
average-optimality and its computation, but refer to (Puter-
man 1994) for a detailed exposition.

The expected average reward or gain of a policy is:g�(s) = limn!1 1nV n� (s)
where V n� (s) is the expected total reward when � is used forn stages starting at state s. Intuitively, the gain describes the
steady-state average reward one can expect of a policy when
starting in state s. A policy is average (or gain) optimal if it is
not dominated by another policy in the usual sense, according
to this measure.7 In our finite state setting, average-optimal
stationary policies always exist.

Computing average-optimal policies involves a number of
subtleties that make approaches such as policy-iteration rather
complex. However, one of the interesting aspects of this
optimalitymeasure, which can be exploited for computational
gain, is its sensitivity to the chain or communicating structure
of the MDP. We can classify an MDP according to the Markov
chains induced by the stationary policies it admits. For a fixed
Markov chain, we can group states into maximal recurrent
classes such that each state reaches every other state in that
class eventually; states belonging to no recurrent class are
called transient. An MDP is recurrent if each policy induces
a Markov chain with a single recurrent class. An MDP is
unichain if each policy induces a single recurrent class with
(possibly) some transient states. An MDP is communicating

7We assume this limit exists. This may not be the case if the
MDP admits policies that are periodic; in this case, the definition
may use a slightly more robust Cesaro limit (Puterman 1994).

if for any pair of states s; t, there is some policy under whichs can reach t. We call other policies noncommunicating.8

Unichain and recurrent MDPs are especially well-behaved:
the gain of every stationary policy is constant (i.e., g�(s)
is identical for all s 2 S), and methods such as policy and
value iteration can be used in a relatively straightforward way.
But planning problems will seldom exhibit this structure. To
be recurrent, we must know the agent will visit each state
infinitely often no matter what policy it adopts. It will almost
always be the case that an agent can choose to avoid certain
states. As soon as we have a domain where an agent can move
to a certain sections of the state space and remain there (e.g.,
Stay), the MDP will not be unichain or recurrent.

While not quite so well-behaved, communicating models
have the nice feature that optimal policies (though not all
policies) must have constant gain. While policy iteration be-
comes much more complicated in this case, value iteration
can be used directly. To construct an optimal policy, we
run value iteration as described above with � = 1, stopping
when the span9 of the difference between two consecutive
estimates is small; in other words, value iteration stops when
Sp(V i+1 � V i) � " for some small ". Thus when the differ-
ence between two value estimates is nearly constant, we are
close to an average optimal policy. However, this algorithm
can only be used under conditions when we know the optimal
gain is constant; otherwise the algorithm may not converge.10

Otherwise more complex methods are required. Thus, the
identification of the underlying chain structure of an MDP
becomes an important computational tool for constructing
average optimal policies.

We note that the techniques of (Boutilier, Dearden and
Goldszmidt 1995) can be applied in this setting, allowing
value iteration to work on groups of states instead of com-

8In the full paper we discuss weakly communicating MDPs,which
share nice features with communicating MDPs.

9The span of a function V on S is defined as Sp(V) =
maxs2S V (s)�mins2S V (s).

10The algorithm may also not converge if the MDP admits peri-
odic chains; but aperiodicity transformations that introduce a small
amount of noise can be used. Note also that setting � = 1 is not
problematic; relative value iteration can be used if undiscounted
values get too large. See (Puterman 1994) for these details.

To appear, Proc. Fourteenth Inter. Conf. on AI (IJCAI-95),
Montreal, August, 1995

puting over an explicitly enumerated state space, if it can be
factored (e.g., using a Bayes net). Thus, our representation
can be exploited for computational gain as well.

4.1 Discovering Communicating Structure

We expect many DTP problems to be communicating. These
problems are such that an agent could with positive probability
reach any state from any other state. However, noncommu-
nicating problems are not rare in planning domains (e.g., if
there are “irreversible choices”, such as a robot going down
“unclimbable” stairs, or an agent breaking an egg). Thus,
we must take care to classify an MDP before attempting to
construct an average optimal policy. If the MDP is communi-
cating, value iteration can be used directly. The classification
algorithm we use has the added advantage that it can be used
to apply value iteration (piecewise) to general MDPs (as we
sketch below).

An efficient algorithm for classifying Markov chains known
as the Fox-Landi algorithm (FL) (Fox and Landi 1968) can
be extended to the classification of MDPs by considering the
“reachability” matrix for the MDP. Roughly, we construct
a single transition matrix that assigns positive probability to
entry i; j if there is any action that moves the process from statei to state j with nonzero probability. FL works by constructing
paths through the state space using this reachability matrix,
producing a labeling and grouping of all states. Roughly, a
start state i is chosen and a path is constructed by adding a
state j reachable from i, a state reachable from j, and so on. If
the path ever loops, the entries in the loop are merged into one
“superstate.” Note a path can always be extended, although
it might form a cycle. If the cycle (or superstate) cannot be
extended (i.e., all states reach only other states in the cycle),
then the states in the cycle are grouped into the same recurrent
class. All states on the path leading to (but not part of) the
cycle are classified as transient. Then a new unclassified start
state is chosen. If, in path extension, a previously classified
state (either recurrent or transient) is ever reached, all states
on the path are transient, and we begin again. If FL classifies
all states as recurrent and puts them in the same recurrent
class, then the MDP is communicating and value iteration can
be used to solve it.

This form of the FL algorithm requires explicit enumera-
tion of the state space, and fails to exploit regularities captured
in our representation of the system dynamics. To avoid this,
we present a structured Fox-Landi algorithm (SFL) that uses
the action descriptions directly. SFL can be used to classify
an MDP directly, or more generally classify any compactly
represented Markov chain. Furthermore, in conjunction with
a structured implementation of value iteration, it can be used
to compute average-optimal policies for arbitrary MDPs (re-
gardless of chain structure).

Schematic states and paths: The key feature of the SFL
algorithm is its use of a schematic representation for states,
paths and cycles, allowing entire groups of paths to be ex-
tended in a single operation. The schematic path building
and cycle detection operation then itself involves a number of
crucial components, which we briefly describe.

Schematic states (s-states) represent groups of states corre-
sponding to a partial variable assignment. For example, we
use hLL � � � ��i to capture a state where LL (lab) is true, and
the other variables (M;T , etc.) have some fixed value. In

general, an s-state consists of n slots to represent values ofn domain variables. A slot can be filled in various ways. It
can have a fixed value such as LL, or an arbitrary fixed value
from a certain set, denoted (LL; LO). This represents any
fixed state with one of the specified values. We abbreviate all
values of a variable using a dot as shown above; and we use
an overline to denote the complement of the value set.

Schematic paths (s-paths) are constructed by applying ac-
tions to s-states — since actions have local effects, only certain
portions of an s-state are affected. This can be viewed as im-
plicitly extending every state consistent with the s-state. For
example, in Figure 2(a) the s-state above is extended to the
state hLO � � � ��i. This is reached by applying action Go�
(whose effect can be read from its network). This s-path of
length two actually represents the 80 true paths induced by
assignment to the variables. An s-path with fixed values rep-
resents the set of paths where the variable has some fixed
value everywhere in that path (unless a different value occurs
later in the path). We can also represent cycles schematically
as single states. The notation fT1; T0g in Figure 2(c) means
that any value in that set is “reachable” from any other value.
Thus, it captures a cycle between states where T0 and T1 hold
(all else equal). fL�g abbreviates a cycle among all possible
values of variable Loc (see Figure 2(a)).

A key element in path construction and cycle detection is
unification, to test whether two s-states intersect (i.e., share
states). Unification is straightforward – it identifies the states
shared by two s-states (the unifier), as well as those they do
not, in a symbolic fashion. It is used to join two s-paths or
form a cycle; but in general, when two paths are joined at
an s-state, the unification is not complete (i.e., there will be
states that are not shared). In this case, the s-paths will split: a
concatenated s-path will be formed using the unifier (common
states), and the remaining states will be split off symbolically,
leaving two more specific s-paths (we see this below). A
detailed exposition of path splitting is not possible here.

Finally, because an s-path represents a group of paths, and
can be split into more specific s-paths, we must keep track of
partially constructed s-paths that have not been extended to
completion. Unlike ordinary FL, which only ever builds one
path, we must keep an open list of such partial s-paths. When
extending the current path, we will try to unify the head with
earlier states in the path (to create cycles) or an existing path
on the open list. By creating cycles whenever possible, the
problem representation tends to stay compact.

Structured Fox-Landi Algorithm: We give a high-level
sketch of the SFL algorithm (Figure 3), and describe its ap-
plication to our example (Figure 2). We defer a detailed
description to (Boutilier and Puterman 1995) along with more
formal definitions and a proof of correctness. The example
here blurs a number of steps in the algorithm for conciseness.

We begin by choosing the initial s-state in Figure 2(a). It
is called the current path, and the main loop of the algorithm
constantly extends the current path by applying an action and
choosing some possible outcome of that action. In this case
the action Go� is applied several times, extending the path to
length 5. The sixth application returns to the initial state in
the path. This is detected by the unification procedure during
cycle detection. Whenever the current path is extended, the
new head state is compared to all (unclassified) visited s-
states, either those earlier in the path or those on the open list.

To appear, Proc. Fourteenth Inter. Conf. on AI (IJCAI-95),
Montreal, August, 1995

{L*}(T0)----

{L*}(T0,T1)----

LL-----

LO-----

LC-----

LH-----

LM-----

LL-----

{L*}-----

becomes

Current

(a)

OpenList

(b)

becomes

becomes

becomes

becomes

 empty list

{L*}(T3,T4)----

{L*}T4----

Current

{L*}T3----

{L*}T4----

{L*}T0----

Current

{L*}T3----

{L*}T4----

LL,T3----

{L*}T0----

{L*}T1----

{L*}T2----

(c)

{L*}{T*}M---

{L*}{T*}M---

Current OpenList

becomes

{L*}{T*}M---

becomes

 empty list

Current

becomes

{L*}T0----

{L*}T1----

{L*}T2----

{L*}{T3,T4}----

(d) (e)

LM{T*}M,HRM--

{L*}{T*}M,HRM--

{L*}{T*}M,HRM--

{L*}{T*}{M*}HRM--

{L*}{T*}M,HRM--

{L*}{T*}M,HRM--

{L*}{T*}{M*}HRM--

LO,{T*}M,HRM,--

{L*}{T*}{M*}{HRM*}--

Figure 2: The Structured Fox-Landi Algorithm

1. Initialization: Set current path to be some s-state.

2. Termination: If all states labeled, exit.

3. Path Extension: Extend the current path:

(a) Choose an action and apply to currentstate (specialize currentstate
if needed, and split current path, adding residual to open list)

(b) Add outcome to head of current path

4. Recurrent Class Detection: If no action extension is possible (i.e., cannot leave
cycle): a) label cycle (head) as recurrent and rest of path as transient; b) choose
new current path from open list (or choose an unvisited state).

5. Classification: If current state unifies with a labeled state, classify (possibly
specialized) current path as appropriate (splitting path as in 3, if needed)

6. Cycle Detection: If current state unifies with a previous state on current path,
form cycle at head of path (possibly splitting path as in 3)

7. Path Joining: If current state unifies with a state on open list, append (part of)
path on open list to current path (possibly splitting both paths as in 3)

Figure 3: Sketch of Structured Fox-Landi

In this case a cycle is detected and the path is collapsed into
the s-cycle at the bottom of Figure 2(a). Thus, the robot can
(with nonzero probability) reach any location from any other
without disturbing other variables.

We continue in Figure 2(b) by specializing this cycle (the
head of the current path) with the value T4. The “rest” of
the s-cycle is still valid: it is split from the current path
and added to the open list for extension in the future. We
apply the action Stay several times under which the lab (with
nonzero probability) gets messier, giving us the current path
in Figure 2(b). At each point, one fewer “instance” ofT is left
on the open list, since the head state at each path extension
step unifies with a specialization of the s-state on the open list
(detected in path joining). By the end, the open list is empty.

In Figure 2(c), the action Tidy is applied at the head of the
current list. While Tidy only has the desired effect when LL
holds, the conditionfL�g ensures that the necessary condition
LL is reachable. But after the action, LL remain true. Cycle
detection discovers that this new state unifies with a previous
state on the path, and the new cycle is formed (the second
path in Figure 2(c)). With several more applications of Tidy,
we easily get to the state hfL�gfT�g � � � �i.

It is worth noting, at this point, that we have discovered that
the “subprocess” consisting of variables Loc and T is now
known to be communicating, although we haven’t explicitly
constructed a path through all 25 states (5 � 5) of this process.

Instead, we have shown that all values of Loc communicate
and that all values of T communicate under some value of
Loc. This simple subprocess illustrates the spirit of SFL. We
expect that problems that can be decomposed into groups of
variables that have strong mutual influence (within groups),
but relatively constrained influences between groups, will be
very well-suited for SFL (see “Heuristics” below).

We continue in Figure 2(d) by considering the variable M .
We start with value M , and extend it with Stay (making M
true due to possible mail arrival); this unifies with the initial
open list, making it empty. In an effort to form a quick cycle,
we apply action PuM. The condition LM is satisfied by fL�g,
and holds following the action. Another effect however in
HRM. This unifies with the initial state; but forces the current
path to split: only HRM becomes part of the cycle (nothing
in PuM can force the robot to lose the mail). The split chain
HRM stays apart from the cycle. Finally, in Figure 2(e) we
extend this chain with the DelM action: if LO holds then
HRM becomes false and the path collapses into a cycle. The
variables CR and HRC will behave similarly, and thus our
MDP is communicating.

For other problems, the algorithm is somewhat more com-
plex. Here we notice that each s-state can be extended to a
novel s-state by some action until the obvious final step. If
there are multiple recurrent classes, when we complete the
construction of a maximal cycle, some effort is required to
ensure that it is a maximal class. In particular, we must en-
sure that no action can move the system out of that class of
states. However, given the schematic representation of cy-
cles and paths and the structured action representations, this
can usually be verified quite readily. Even in the worst case
(with no exploitable structure), the effort is no more than that
needed to construct the reachability matrix for FL.

Heuristics: We note that in our example the algorithm
verifies the communicating structure in under 30 steps of path
extension. Even with the overhead of unification, this is con-
siderably better than the O(jSj2) steps (in this case, roughly
160,000) required by FL. Of course, we have exploited “good”
action and outcome choices in performing the algorithm here.
A crucial aspect of SFL is the use of heuristic information
encoded in the action representation when choosing the “di-
rection” in which to extend a path.

The main guiding principle is that we attempt to find the “lo-
cal communicating structure” of individual or small groups of

To appear, Proc. Fourteenth Inter. Conf. on AI (IJCAI-95),
Montreal, August, 1995

Loc Tidy

HRC CRMail HRM

Figure 4: Influence Graph for Example Problem

variables that are, to some extent, shielded from the influence
of other variables. In particular, we try to find short s-cycles
in small groups of variables, choosing particular variables and
outcomes that will unify with earlier states. We choose the
variables to extend using an influence graph that describes
influences between variables (see Figure 4). In our example,
Loc is expanded first since no other variables under any action
influence the probability of Loc (as indicated by the graph):
the structure of Loc is independent of any other conditions.
In our example, this means under all circumstances it can be
ignored when determining the structure of other variables. All
variables are partially ordered by the graph and are expanded
roughly reflecting this order.11

4.2 Exploiting Communicating Structure
Our algorithm has three outcomes of interest: either a sin-
gle recurrent class is discovered, a single class plus transient
states, or more than one recurrent class (plus possibly transient
states). If our aim is to simply categorize an MDP as commu-
nicating or not, the algorithm can be terminated as soon as any
transient states (or multiple recurrent classes) are identified.
If identified as communicating, a simple algorithm like value
iteration, or related methods based on structured representa-
tions (Boutilier, Dearden and Goldszmidt 1995), can be used
to determine the average optimal policy.

If the algorithm discovers more than one recurrent class
then the MDP is multichain (i.e., general). If a single recur-
rent class is discovered together with transient states, then it
may be weakly communicating or multichain. Weakly com-
municating MDPs also have constant gain and can be solved
using value iteration; however, determining this fact requires
examination of individual policies, something our algorithm
does not currently do. If the process is multichain, more
complex methods may have to be used.

However, Ross and Varadarajan (1991) have proposed a
method for decomposing general MDPs. We are currently
adapting this method for use with SFL to constructingaverage
optimal policies using (piecewise) value iteration. Roughly,
the recurrent classes identified by SFL can be “solved” inde-
pendently using value iteration (since they must have constant
gain). Then these states are “eliminated.” Transient states are
reclassified in this reduced MDP, and FL is run again on the re-
mainder of the state space (ignoring these recurrent classes).
The second level of FL provides new recurrent classes for
which optimal gain (in the sub-problem) is constant. These
can be pieced together with the previously classified states

11The precise meaning of the graph and its construction are de-
scribed in (Boutilier and Puterman 1995).

to determine a new policy: if the gain in the subproblem is
greater, these states adopt actions that keep them from the
earlier states. The procedure continues until all states are
classified.

5 Concluding Remarks
We have argued that many planning problems are process-
oriented and that special consideration must be given to these,
especially in the choice of reward and action representation.
We also claim that average-optimality is the most appropri-
ate measure of performance for many process problems, and
have presented the SFL algorithm to determine the communi-
cating structure of an MDP, an important part of constructing
average-optimal policies, using compact action representa-
tions. We are currently exploring further heuristics for the
algorithm, conducting experiments to determine general prob-
lem characteristics that predict good performance of SFL as
compared to standard FL, and extending our approach to mul-
tichain problems.

Future research includes applying these ideas to semi-
Markov models, where actions can take varying amounts of
time, and the use of more general modeling assumptions for
events. The discovery of weakly-communicating MDPs using
structured paths is also of interest.

References
Bellman, R. E. 1957. Dynamic Programming. Princeton U. Press.
Boutilier, C. and Dearden, R. 1994. Using abstractions for decision-

theoretic planning with time constraints. AAAI-94, pp.1016–
1022, Seattle.

Boutilier, C., Dearden, R., and Goldszmidt, M. 1995. Exploiting
structure in policy construction. IJCAI-95. This volume.

Boutilier, C. and Puterman, M. L. 1995. Communicating Struc-
ture and Average Optimal Policies. Tech. report, Univ. British
Columbia, Vancouver. (Forthcoming).

Dean, T., Kaelbling, L. P., Kirman, J., and Nicholson, A. 1993. Plan-
ning with deadlines in stochastic domains. AAAI-93, pp.574–
579, Washington, D.C.

Dean, T. and Kanazawa, K. 1989. A model for reasoning about
persistence and causation. Comp. Intel., 5(3):142–150.

Dean, T. and Wellman, M. 1991. Planning and Control. Morgan
Kaufmann, San Mateo.

Fox, B. L. and Landi, D. M. 1968. An algorithm for identifying the
ergodic subchains and transient states of a stochastic matrix.
Comm. of the ACM, 2:619–621.

Howard, R. A. 1971. Dynamic Probabilistic Systems. Wiley.
Kushmerick, N., Hanks, S., and Weld, D. 1994. An algorithm for

probabilistic least-commitment planning. AAAI-94, pp.1073–
1078, Seattle.

Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York.

Puterman, M. L. and Shin, M. 1978. Modified policy iteration algo-
rithms for discounted Markov decision problems. Management
Science, 24:1127–1137.

Ross, K. W. and Varadarajan, R. 1991. Multichain Markov decision
processes with a sample-path constraint: A decomposition ap-
proach. Math. of Op. Res., 16(1):195–207.

Singh, S. P. 1994. Reinforcement learning algorithms for average-
payoff markovian decision processes. AAAI-94, pp.700–705.

Tatman, J. A. and Shachter, R. D. 1990. Dynamic programming
and influence diagrams. IEEE Trans. Sys., Man and Cyber.,
20(2):365–379.

