Embracing Causality in Specifying the Indirect Effects of Actions*

Fangzhen Lin
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4
Email: fl@cs.toronto.edu

Abstract

This paper considers the problem of specify-
ing the effects of actions in the situation cal-
culus using domain constraints. We argue that
normal state constraints that refer to only the
truth values of fluents are not strong enough
for this purpose, and that a notion of causation
needs to be employed explicitly. Technically, we
introduce a new ternary predicate C'aused into
the situation calculus: Caused(p,v,s) if the
proposition p is caused (by something unspec-
ified) to have the truth value v in the state s.
Using this predicate, we can represent not only
action-triggered causal statements such as that
the action load causes the gun to be loaded, but
also fluent-triggered ones such as that the fact
that the switch is in the up position causes the
lamp to be on. The former is convenient for
representing the direct effects of actions, and
the latter the indirect effects.

1 Introduction

We consider the problem of formalizing the effects of
actions in the situation calculus [McCarthy and Hayes,
1969]. To motivate the needs for a notion of causality in
this endeavor, let us consider the following problem.

Imagine a suitcase with two locks and a spring loaded
mechanism which will open the suitcase when both of
the locks are in the up position. Apparently, because of
the spring loaded mechanism, if an action changes the
statuses of the locks, then this action may also cause, as
an indirect effect, the suitcase to open.

The problem of how to describe the spring loaded
mechanism by a constraint and use it to derive the indi-
rect effects of actions is an instance of the ramification
problem [Finger, 1986], which has been recognized as
one of the central problems in reasoning about the ef-
fects of actions. In the situation calculus, the constraint
that this spring loaded mechanism gives rise to can be

*This research was supported by grants from the Govern-
ment of Canada Institute for Robotics and Intelligent Sys-
tems, and from the National Science and Engineering Re-
search Council of Canada.

represented as follows:!

up(L1,s) Aup(L2,s) D open(s). (1)

Although summarizing concisely the relationship among
the truth values of the three relevant propositions at any
particular instance of time, this constraint is too weak
to describe the indirect effects of actions. For instance,
suppose that initially the suitcase is closed, the first lock
in the down position, and the second lock in the up po-
sition. Suppose an action is then performed to turn up
the first lock. Then this constraint is ambiguous about
what will happen next. According to it, either the suit-
case may spring open or the second lock may get turned
down. Although we have the intuition that the former is
what will happen, this constraint is not strong enough to
enforce that because there is a different mechanism that
will yield a logically equivalent constraint. For instance,
a mechanism that will turn down the second lock when
the suitcase is closed and the first lock is up will yield
the following logically equivalent one:

up(L1,s) A —open(s) D —up(L2,s).

So to faithfully represent the ramification of the spring
loaded mechanism on the effects of actions, something
stronger than the constraint (1) is needed. The pro-
posal of this paper is to appeal to causality: (through
the spring loaded mechanism) the fact that both of the
locks are in the up position causes the suitcase to open.
The goal of this paper is then to make precise causal
statements like this, and show how they can be used
effectively to describe the effects of actions.

This paper is organized as follows. Section 2 briefly
describes the version of the situation calculus used in
this paper. Section 3 shows in detail how the suitcase
example is solved using causality. Section 4 generalizes
the method used in section 3 to a general class of the-
ories. Section 5 applies the method of section 4 to an
example to further illustrate some of the fine points of
our approach. To simplify our presentation, we shall
defer discussions of related work, in particular that of
[Lifschitz, 1987] and that of [Haugh, 1987, to section 6.

Finally section 7 concludes this paper.

!We use the convention that in displayed formulas, free
variables are implicitly universally quantified. See the next
section for a precise description of the version of the situation
calculus used in this paper.

2 The Situation Calculus

We have already seen the situation calculus in action in
the introduction section. We hope the notations used
there are familiar and/or intuitive enough for everyone
to follow. In any event, they are defined in this section.

The language of the situation calculus is a many sorted
first order one. We assume the following sorts: situation
for situations, action for actions, fluent for propositional
fluents, truth-value for truth values true and false, and
object for everything else.

We use the following domain independent predicates
and functions:

e The binary function do - for any action a and any
situation s, do(a, s) is the situation resulting from
performing a in s.

e The binary predicate Holds - for any propositional
fluent p and any situation s, Holds(p, s) is true if p
holds in s.

e The binary predicate Poss - for any action a and
any situation s, Poss(a,s) is true if a is possible
(executable) in s.

e The ternary predicate C'aused - for any fluent p, any
truth value v, and any situation s, Caused(p, v, s)
is true if the fluent p is caused (by something un-
specified) to have the truth value v in the situation
s.

Notice that in the introduction, we wrote, for instance,
up(L1,s) instead of Holds(up(L1),s). We consider the
former to be a shorthand for the latter. We shall con-
tinue to do so in an effort to improve the readabil-
ity of our formulas. Formally, if F' is a fluent name
of arity object” — fluent, then we define the expres-
sion F'(t1,...,tn,ts) to be a shorthand for the formula
Holds(F(t1,...,tn),ts), where t1, - - -, t,, are terms of sort
object, and t; a term of sort situation.

We assume that all theories in this paper will include
the following basic axioms:

e For the predicate Caused, the following two basic
axioms:

Caused(p, true, s) D Holds(p, s), (2)

Caused(p, false,s) D ~Holds(p, s). (3)

e For the truth values, the following unique names
and domain closure axiom:

true # false A (Yv)(v = true Vv = false). (4)

e The unique names assumptions for fluent and action
names (we assume there are only finitely many of
them). Specifically, if Fy,..., F,, are all the fluent
names, then we have:

F;(Z) # F;(¥), ¢ and j are different,
(@) = R 57 =7
Similarly for action names.

e The foundational axioms in [Lin and Reiter, 1994]
for the discrete situation calculus. These axioms
characterize the structure of the space of situations.

For the purpose of this paper, it is enough to men-
tion that they include the following unique names
axioms for situations:

s # do(a, s),

do(a,s) =do(a’,s') D (a=d As=5s").

3 An Example

Consider again the suitcase example described in the in-
troduction section. Suppose that flip(z) is an action
that flips the status of the lock z. Its direct effect can
be described by the following axioms:?

Poss(flip(z),s) D

up(z, s) D Caused(up(z), false, do(flip(x),s)), (5)
Poss(flip(z),s) D

—up(z, s) D Caused(up(z),true, do(flip(z),s)). (6)

To perform flip(z), the object & must be a lock:
Poss(flip(z), s) D lock(z), (7)

where lock is a unary predicate symbol. We assume that
L1 and L2 are two distinct locks:

L1 # L2 Alock(L1) Alock(L2). (8)

The spring loaded mechanism is now represented by the
following causal rule:

up(L1,s) Aup(L2,s) D Caused(open,true,s). (9)

Notice that this causal rule, together with the basic ax-
iom (2) about causality, entail the state constraint (1).
Notice also that the physical, spring loaded mechanism
behind the causal rule has been abstracted away. For
all we care, it may just as well be that the device is
not made of spring, but of bombs that will blow open
the suitcase each time the two locks are in the up posi-
tion. It then seems natural to say that the fluent open 1s
caused to be true by the fact that the two locks are both
in the up position. This is an instance of what we have
called fluent-triggered causal statements in the abstract.
In comparison, causal statements like the effect axioms
(5) and (6) are action-triggered.

This finishes describing our starting theory for the do-
main. To describe fully the effects of the actions, we need
to add suitable frame axioms. Our version of the frame
axioms is: Unless caused otherwise, a fluent’s truth value
will persist:

Poss(a, s) D {—(3v)Caused(p, v,do(a, s)) D
[Holds(p,do(a, s)) = Holds(p, s)]}. (10)

For this frame axiom to make sense, obviously, we need
to minimize the predicate Caused. We shall circum-
scribe the predicate C'aused in the set of axioms intro-
duced so far. We shall do so with all the other predicates
(Poss and Holds) fixed, because we want to condition

?Recall that, for instance, up(=, s) is defined to be a short-
hand for Holds(up(z), s).

Caused on them. It is easy to see that the circumscrip-
tion [McCarthy, 1986] yields the following causation az-
1oms:

Caused(open,v,s) =
v =true Aup(L1,s) Aup(L2,s), (11)
Caused(up(z),v,s) =
{v = true A (3s')[s = do(flip(z),s') A
Poss(flip(z),s') A —up(z,s')] Vv (12)
v = false A (3s')[s = do(flip(z),s’) A
Poss(flip(z),s') A up(z,s')]}.

Notice that these axioms entail the two direct effect ax-
ioms (5, 6) and the causal rule (9). In fact, they are
obtained by applying the Clark completion [1978] to the
predicate C'aused in these clauses. As we shall see in
the next section, this will be true for a general class of
theories.

Having computed the causal relation, we now use the
frame axiom (10) to compute the effects of actions. It
is easy to see that from the frame axiom (10) and the
two basic axioms (2, 3) about causality, we can infer the
following pseudo successor state ariom [Reiter, 1991]:

Poss(a, s) D {Holds(p,do(a,s)) =
Caused(p,true,do(a, s)) V (13)
Holds(p, s) AN ~Caused(p, false, do(a, s))}.

From this axiom and the causation axiom (12) for the
fluent up, we then obtain the following real successor
state axiom for the fluent up:

Poss(a, s) D {up(z,do(a,s)) =

(a = flip(z) A —up(z, s)) V (up(z, s) Aa # flip(x))}.

Similarly for the fluent open, we have

Poss(a, s) D {open(do(a, s)) =
[up(L1,do(a, s)) A up(L2,do(a,s))] V open(s)}.

Now from this axiom, first eliminating up(L1,do(a, s))
and up(L2,do(a, s)) using the successor state axiom for
up, then using the unique names axioms for actions, and
the constraint (1) which, as we pointed out earlier, is a
consequence of our axioms, we can deduce the following
successor state axiom for the fluent open:

Poss(a, s) D {open(do(a,s)) =
a = flip(L1) A —up(L1,s) Aup(L2,s)V
a = flip(L2) A —up(L2,s) Aup(L1,s)V
open(s)}.

Obtaining these successor state axioms solves the frame
and the ramification problems for the suitcase example.

Finally it remains to be shown how Poss is computed.
This is an instance of the qualification problem [Mc-
Carthy, 1977], and the standard default assumption one
uses is that an action is always executable unless explic-
itly ruled out by the theory. In other words, we want to
maximize the predicate Poss in the theory we have so
far, including the frame axiom and the causality axioms.

To determine what policy we shall use in maximizing
Poss, we first have to be clear what we expect from
the maximization. For us, after the maximization, we
want, for each action A(Z), an action precondition axiom

[Reiter, 1991] of the following form:
Poss(A(Z), s) = ®(&, s),

where ®(Z,s) is a formula which refers to only the
truth values of the fluents in s. In other words,
the preconditions of an action should be expressed in
terms of the truth values of the fluents in the cur-
rent state. This means that we should maximize
Poss(a, s) with Holds(p, s) fixed while allowing C'aused
and Holds(p,s') As # s’ to vary. Model-theoretically,
this means that an intended model is one in which the
extension of Poss(a, s) cannot be made larger by chang-
ing the interpretation of the predicate C'aused and the
truth values of the fluents at states other than s.

It turns out there is a procedure based on the Clark
completion for computing the maximization. The pro-
cedure is outlined in the next section. For this example,
it yields the clark completion of (7):

Poss(flip(x), s) = lock(z),

Having this action precondition axiom solves the quali-
fication problem for the suitcase example.

This concludes our solution to the suitcase problem.
The method used in this example can be generalized to
a general class of theories, as we shall see in the next
section.

4 The Method

The procedure we followed in solving the suitcase prob-
lem can be summarized as follows:

1. Start with a theory 7' that includes all the effect
axioms and state constraints.

2. Minimize Caused in T'. Let T" be the resulting the-
ory.

3. Add to T’ the frame axiom (10). Let 7" be the
resulting theory.3

4. Maximize Poss in T" to obtain the final action the-
ory.

Clearly, the tractability of this approach depends cru-
cially on the form of the initial theory 7. In the fol-
lowing we consider a special class of theories for which
the Clark completion is enough to compute the result of
minimizing C'aused and that of maximizing Poss.

Before we describe this special class of theories, we
first define a terminology that will be used throughout
this section. Let s be a situation variable. We call a for-
mula ®(s) a simple state formula about s if & does not
mention Poss, Caused, or any situation term other than
possibly the variable s. For example, lock(L1)AL1 # L2
(mentions no situation term) and up(z, s) A a = flip(x)

3 Alternatively, instead of simply adding (10), one can min-
imize the formula:

—(Holds(p, s) = Holds(p,do(a, s)))
in the theory T'. See [Lin and Reiter, 1994].

(mentions only s) are simple state formulas about s,
but up(z, do(a, s)) and up(z, s') are not since the former
mentions the compound situation term do(a, s), and the
latter mentions the situation variable s’ which is differ-

ent from s.

Step 1. For each action A(Z), formalize the direct effects
of A by axioms of the form:

Poss(A(F),s) D
®(s) D Caused(F(y),v,do(A(F),s)), (14)

where I is a fluent name, and ®(s) is a simple state
formula about s. For instance, the direct effect axiom
(5) for the action flip can be rewritten as;

Poss(flip(z),s) D
r=yAv= false ANup(y,s) D
Caused(up(y), v, do(flip(z), s)).

Step 2. TFor each action A(Z), formalize the ezplicit
qualifications of A by axioms of the form:

Poss(A(Z),s) D P(s) (15)

where ®(s) is a simple state formula about s. For in-
stance, the qualification axiom (7) for the action flip is
of this form.

Step 3. Formalize all causal rules, the constraints that
will be used to derive the indirect effects of actions, by
axioms of the form:

B(s) A Caused(py,v1,8) A--- A Caused(pn, vn, 8) D
Caused(F(Z),v,s), (16)

where F' is a fluent, and ®(s) a simple state formula
about s. The causal rule (9) in the suitcase example can
be rewritten straightforwardly as axioms of this form.
For an example of a causal rule in which the predicate
Caused also appears in the left hand side of the impli-
cation, suppose that we add a new fluent called down
to our suitcase example so that down(z, s) is true if the
lock z is in the down position. Clearly this new fluent is
an antonym of up, so one of them is caused to be true
iff the other is caused to be false:

Caused(up(z),true, s) = Caused(down(z), false, s),
Caused(up(z), false, s) = Caused(down(z),true, s).

Notice that adding the fluent down and the above causal
rules to the suitcase example will not affect the causa-
tion axiom for the fluent up, although the minimization
will no longer be computable by the Clark completion
(see Step 5).

Step 4. Formalize all other domain knowledge by ax-
ioms of the form:

(V5)C(s), (17)
where C'(s) is a simple state formula about s. In the suit-
case example, the axiom (8) will be included in this step.
State constraints that are used to derive implicit action
qualifications will also be included here. For instance, in
the blocks world, the state constraint (Va)—on(z,z,s),

which says that a block cannot be on top of itself, will
be included in this step. This constraint implies that the
action stack(z,y), which puts 2 on y, will not be exe-
cutable when x = y. For more examples of such qualifi-
cation state constraints, see [Ginsberg and Smith, 1988;

Lin and Reiter, 1994].

The above four steps yield a starting theory 7' about
the dynamic domain of interest. Of course, in addition
to the axioms given in steps 1 to 4, T also contains the
axioms given in section 2. The remaining steps apply
nonmonotonic logic to T" to solve the frame, the ramifi-
cation, and the qualification problems.

Step 5. The goal of this step is to compute for each
fluent F' a causation axiom of the following form:

Caused(F (Z),v,s) = ¥, (18)
where ¥ is a formula which does not mention the predi-
cate Caused.

This is achieved by circumscribing the predicate
Caused in T with all the other predicates fixed. How-
ever, since all the axioms in T" other than those given in
Step 1 and Step 3 either do not mention C'aused or men-
tion it negatively, by a standard result in circumscrip-
tion, the circumscription of C'aused in T is equivalent
to the union of T" and the circumscription of Caused in
the set of axioms given in Step 1 and Step 3. But these
axioms are definite clauses about C'aused. So the cir-
cumscription always has a unique minimal model. Fur-
thermore, if the theory T is stratified, then the circum-
scription can be computed using the Clark completion.
Formally, we say that T is stratified if there are no flu-
ents Iy, I, ..., F, such that Fy —» Fy — - — F, — I,
where for any fluents F' and F', F/ — F (F depends on
F') if there is a causal rule in 7" such that F appears in
the right hand side, and F’ appears in the left hand side
of the causal rule. For instance, the theory in the suitcase
example is stratified because up — open is the only de-
pendency relation that holds for this theory. However,
if we add the fluent down, and the above causal rules
relating up and down, then the resulting theory will no
longer be stratified because we’ll have up — down — up.

Proposition 4.1 Let T" be the union of the arioms in
section 2, the arioms given in Step 2 and Step 4, and the
Clark completion of the predicate C'aused in the clauses
given in Step 1 and Step 3. If the theory T 1s stratified,
then T' is the result of circumscribing Caused in T with
the other predicates fired, i.e. for any structure M, M
is a minimal model of T iff M is a model of T"'.

However, as it is well known in logic programming
community, the Clark completion may be too weak if
there are cycles or recursion in the causal rule (16). The
following is an example of cycles:

Caused(up(z),v,s) D Caused(up(z),v,s),

and the following an example of recursion:

Caused(heap(z), true, s) D Caused(heap(f(z)),true,s).

This i1s only natural because the Clark completion is
first-order, but to capture cycles and recursion we need
second-order logic.

Step 6. Assume that for each fluent ' we have com-
puted a causation axiom of the form (18), the goal of
this step is to compute for each fluent F' a successor
state aziom [Reiter, 1991] of the form:

Poss(a, s) D
F(Z,do(a,s)) = (®(s) V (F(Z,s) A®'(s))), (19)

where ® and ®' are simple state formulas about s.

This is achieved by replacing the occurrences of
Caused in the pseudo successor state axiom (13) ac-
cording to (18), as we have done in the suitcase example.
Generally, we can obtain a successor state axiom for each
fluent this way if the theory T is stratified:

Proposition 4.2 If T is stratified, then there is a sim-
ple rewriting procedure by which we can obtain a suc-
cessor state ariom for each fluent using the causation
axioms and the pseudo-successor state axiom.

Having computed for each fluent a successor state
axiom solves the frame and the ramification problems.
Successor state axioms are desirable because they have
many appealing computational properties (see [Reiter,
1991]), and are the foundations underlying much of the
Cognitive Robotics research project at the University of
Toronto.*

We want to point out that even if we have computed
for each fluent F' a causation axiom of the form (18), it is
not guaranteed that we’ll have for each fluent a successor
state axiom of the form (19). This is due to cycles such
as

open(s) D Caused(open,true, s), (20)

and recursion such as the following transitive closure ax-
iom:

R(z,z,8) A R(z,y,s) D Caused(R(z,y),true,s).

To handle recursion, we’ll have to use second-order suc-
cessor state axioms which are ones still of the form (19)
but with the formulas ® and &’ allowed to be second-
order. However, cycles cause problems in this case. For
instance, given (20), we’ll have a causation axiom for
open of the form:

Caused(open, v, s) = v = true A open(s) V -

So the pseudo successor state axiom will yield something

like
Poss(a, s) D {open(do(a, s)) = open(do(a,s)) V -},

which is not very useful. Fortunately, there seems to
be a sense that these cycles should never arise. Some
authors, for example Shoham [1990], have insisted that
causation be anti-reflexive. In other words, the causes of
a fact should never include the fact itself. So it is wrong
to write causal rules like (20). In any event, we have yet
to see an example where this kind of cycle arises natu-
rally.

Step 7. Assume that for each fluent F' we have com-
puted a successor state axiom of the form (19), the goal

4See

ftp://ftp.cs.toronto.edu/pub/cogrob/README.html

of this final step is to compute for each action A an ac-
tion precondition azriom [Reiter, 1991] of the form:

Poss(A(Z), s) = ®(s), (21)

where @ is a simple state formula.

For each action A, this is achieved by maximizing
the relation Poss(A(F),s) with Holds(p,s) fixed but
Caused and Holds(p,s') A's’ # s allowed to vary. The
precise definition of this maximization policy will be
given in the full version of this paper.® It turns out that
there 1s a procedure to compute the result of the maxi-
mization using regression and the Clark completion. The
procedure is a generalization of that in [Lin and Reiter,
1994], and can only be outlined here due to the space
limitation. But we’ll see an example in the next section.

From each causation axiom of the form (18), deduce
first the following two axioms by eliminating the predi-
cate Caused:

U (v/true) D F(Z,s),
U (v/false) D ~F (¥, s),

where W(v/true) is the result of replacing the free vari-
able v in ¥ by true, and similarly for ¥(v/false). Now
for each action A, apply regression to these axioms and
the constraints (17) given in Step 4 to generate all (non-
vacuous) qualification axioms of the following form:

Poss(A(Z,s) D ®(s),

where @ is a simple state formula about s, and is not a
consequence of the axioms we have so far. Finally apply
the Clark completion to these axioms to obtain an action
precondition axiom of the form (21).

So to summarize, we have:

Theorem 1 Ifthe theory T given by steps 1 to 4 is strat-
ified, then there is a procedure by which we can obtain a
successor state ariom for each fluent, and an action pre-
condition ariom for each action. The procedure is based
on simple syntactic manipulations, and is provably cor-
rect with respect to our nonmonotonic semantics.

5 Another Example

Having described the general procedure in last section,
we now apply it to an example involving walking and
shooting. This example is of interest because it has a
constraint which yields an indirect effect for one action,
but an implicit qualification on another.

Imagine an agent who can perform the following three
actions: start-walk, end-walk, and shoot. We follow the
seven-step procedure given in the last section.

Step 1. Direct effect arioms:

Poss(start-walk, s) D
Caused(walking,true, do(start-walk, s)),

Poss(end-walk, s) D
Caused(walking, false,do(end-walk, s)),
Poss(shoot, s) D Caused(dead, true, do(shoot, s)).

5But see [Lin and Shoham, 1991] or [Lin and Reiter, 1994]
for the definition of a similar policy.

Step 2. Ezxplicit action qualification arioms:

Poss(start-walk, s) D ~walking(s),
Poss(end-walk, s) D walking(s).

Step 3. Causal rules:

dead(s) D Caused(walking, false,s). (22)

Step 4. There are no other domain constraints.

Step 5. Clearly, the theory generated by the above steps
is stratified, so Proposition 4.1 is applicable. The Clark
completion of Caused in the clauses in steps 1 and 3
yields:
Caused(dead, v, s) =
v = true A (3s')[s = do(shoot, s') A Poss(shoot, s')],
Caused(walking, v, s) =
v = false A dead(s) V
v = false A (3s')[s = do(end-walk,s") A
Poss(end-walk, s')] v
v = true A (3s')[s = do(start-walk,s") A
Poss(start-walk, s')].
Step 6. From the pseudo successor state axiom (13)

and the above causation axiom for the fluent dead, we
obtain the following successor state axiom:

Poss(a, s) D {dead(do(a,s)) = a = shoot V dead(s)}.

For the fluent walking, similar reasoning yields the ax-
iom:

Poss(a, s) D {walking(do(a, s)) =
a = start-walk V

walking(s) A a # end-walk A ~dead(do(a, s))}.

Using the successor state axiom for dead, we can obtain
the following successor state axiom for walking:

Poss(a, s) D {walking(do(a, s)) =

a = start-walk Vv

walking(s) A ~dead(s) A a # end-walk A a # shoot}

Notice that the causal rule (22) has been used to derive
the following indirect effect of shoot:

Poss(shoot, s) D —~walking(do(shoot, s)).

Step 7. From the causation axioms for dead and
walking, we can deduce the following axioms:

(3s')[s = do(shoot, s') A Poss(shoot,s')] D dead(s),

(3s')[s = do(end-walk, s') A\ Poss(end-walk,s')] D
—walking(s),

(3s')[s = do(start-walk, s') A Poss(start-walk, s')] D
walking(s),

(23)

dead(s) D ~walking(s).
Consider the first one. This axiom is equivalent to

Poss(shoot, s) D dead(do(shoot, s)).

However, this is not an action qualification axiom since
dead(do(shoot, s)) is not a simple state formula about s.
So we replace it using its successor state axiom (regres-
sion), and obtain:

Poss(shoot, s) D (shoot = shoot V dead(s)).

But this yields a vacuous action qualification axiom since
the right hand side of the implication is a tautology.

Similar efforts on the second and the third axioms end
up in vain as well. So we are left with the fourth one.
To see if it entails any implicit action qualifications, we
instantiate it to do(a, s):

dead(do(a, s)) D ~walking(do(a, s)). (24)

Now regress both dead(do(a,s)) and walking(do(a, s))
according to their respective successor state axioms, we
get

Poss(a, s) D {[a = shoot V dead(s)] D

—la = start-walk Vv

walking(s) A —~dead(s) A a # end-walk A a # shoot]}.

So we have:

Poss(start-walk, s) D ~dead(s). (25)

But this is a non-vacuous qualification axiom on
start-walk. Tt can be explained intuitively as follows: If
dead holds in state s, then start-walk must not be pos-
sible, otherwise, since it does not affect the truth value
of dead but makes walking true, the resulting state will
violate the constraint (24). But this constraint is derived
from the causal rule (22), so we see here that this causal
rule is used to derive both the indirect effect (23) for the
action shoot, and the implicit qualification (25) on the
action start-walk.

Now since we have considered all four consequences of
the causation axioms, and there are no other constraints
in step 4, the correctness of the procedure in the last
section guarantees that (25) is the only implicit action
qualification axiom. So we obtain the following action
precondition axioms using the Clark completion:

Poss(start-walk, s) = ~walking(s) A ~dead(s),
Poss(end-walk, s) = walking(s),
Poss(shoot, s).

6 Related Work

Much of the work on reasoning about action concerns
causality. We shall attempt to review only those that
make explicit and formal use of this notion.

Before us, Lifschitz [1987] and Haugh [1987] have also
proposed using causality to formalize the effects of ac-
tions in the situation calculus. However, they consider
only what we called action-triggered causation, so can
only represent the direct effects of actions. In fact, both
of the causation predicates in [Lifschitz, 1987] and in
[Haugh, 1987] take an action but no state argument, and
both of the efforts have difficulties handling the ramifica-
tion problem. Similar remarks apply to [Elkan, 1992] as
well despite the fact that the causation predicate there
has a state argument. This is because the causation

predicate in [Elkan, 1992] continues to have an action
argument, and the state argument is introduced only to
help expressing complex preconditions.

Whereas we treat causality as a predicate, Geffner
[1990] and McCain and Turner [1995] treat it as modal
operators. Nonetheless, it seems that this work and
that of [McCain and Turner, 1995] have much in com-
mon. The causal theories of [Geffner, 1990], however, are
aimed at general default reasoning. Although [Geffner,
1990] includes an example of how the general framework
can be applied to reasoning about action, it is not clear
if this can be done in general. In particular, it is not
clear if a distinction can be made between ramification
and qualification constraints in this framework.

Whereas we use causality as a primitive notion,
Shoham [1990], and Iwasaki and Simon [1986] attempt to
derive it from an acausal theory. In particular, Iwasaki
and Simon consider deriving the causal relations from a
set of acausal equations. It is not clear if this approach
can be ported into the situation calculus.

Pearl [1988] argues about the need for a primitive no-
tion of causality in general default reasoning. This paper
obviously echoes the same theme. In fact, the title of this
paper follows that of [Pearl, 1988].

7 Conclusions

We have argued that acausal state constraints like (1)
are not adequate for representing the indirect effects of
actions, and proposed a solution using causal rules like
(9). By embracing causality, we are able to use only
simple nonmonotonic formalisms for solving the frame,
the ramification, and the qualification problems. This
enables us to describe a general class of theories for which
our approach is computationally tractable. In fact, we
are currently working on a planner that can take as input
causal theories of the form specified by steps 1 to 4 in
section 4.

Acknowledgements

My thanks to Alvaro del Val, Norman Foo, and Yan
Zhang for stimulating discussions related to the subject
of this work. This work owes much to Ray Reiter. In
fact, it is an outgrowth of our ongoing discussions on
the ramification problem and the situation calculus. 1
also thank G. Neelakantan Kartha, Yves Lespérance,
Vladimir Lifschitz, Norman McCain, and Ray Reiter for
very helpful comments on earlier versions of this paper.

References

[Clark, 1978] Keith L. Clark. Negation as failure.
In H. Gallaire and J. Minker, editors, Logics and
Databases, pages 293-322. Plenum Press, New York,
1978.

[Elkan, 1992] Charles Elkan. Reasoning about action
in first-order logic. In Proc. of the 1992 Canadian
Conf. on Artificial Intelligence, 1992.

[Finger, 1986] Jeff Finger. Ezploiting Constraints in De-
sign Synthesis. PhD thesis, Department of Computer
Science, Stanford University, Stanford, CA, 1986.

[Geffner, 1990] Hector Geffner. Causal theories for non-
monotonic reasoning. In Proceedings of the Eighth
National Conference on Artificial Intelligence (AAAT-
90), pages 524-530, 1990.

[Ginsberg and Smith, 1988] Matthew L. Ginsberg and
David E. Smith. Reasoning about action II: the qual-
ification problem. Artificial Intelligence, 35:311-342,
1988.

[Haugh, 1987] Brian Haugh. Simple causal minimiza-
tions for temporal persistence and projection. In Pro-
ceedings of the Sixth National Conference on Artificial
Intelligence (AAAI-87), pages 218-223, 1987.

[Iwasaki and Simon, 1986] Yumi Iwasaki and H.A. Si-
mon. Causality in device behavior. Artificial Intel-

ligence, 29:3-32, 1986.

[Lifschitz, 1987] Vladimir Lifschitz. Formal theories of
action. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence (IJCAI-
87), pages 966-972, 1987.

[Lin and Reiter, 1994] Fangzhen Lin and Raymond Re-
iter. State constraints revisited. Journal of Logic and
Computation, Special Issue on Actions and Processes,
4(5):655-678, 1994.

[Lin and Shoham, 1991]

Fangzhen Lin and Yoav Shoham. Provably correct
theories of action: Preliminary report. In Proceedings
of the Ninth National Conference on Artificial Intelli-
gence (AAAI-91), Anaheim, CA, 1991. Full paper to
appear in JACM.

[McCain and Turner, 1995] Norman McCain and Hud-
son Turner. A causal theory of ramifications and qual-
ifications. In This Volume, 1995.

[McCarthy and Hayes, 1969] John = McCarthy and
Patrick Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and
D. Michie, editors, Machine Intelligence 4, pages 463—
502. Edinburgh University Press, Edinburgh, 1969.

[McCarthy, 1977] John McCarthy. Epistemological
g
problems of Artificial Intelligence. In IJCAI-77, pages
1038-1044. Cambridge, MA, 1977.

[McCarthy, 1986] John McCarthy. Applications of cir-
cumscription to formalizing commonsense knowledge.

Artificial Intelligence, 28:89-118, 1986.

[Pearl, 1988] Judea Pearl. Embracing causality in de-
fault reasoning. Artificial Intelligence, 35:259-271,
1988.

[Reiter, 1991] Raymond Reiter. The frame problem
in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression.
In Vladimir Lifschitz, editor, Artificial Intelligence
and Mathematical Theory of Computation: Papers in
Honor of John McCarthy, pages 418-420. Academic
Press, San Diego, CA, 1991.

[Shoham, 1990] Yoav Shoham. Nonmonotonic reasoning
and causation. Cognitive Science, 14:213-252, 1990.

