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Abstract

We pursue the perspective of Reiter that in the situation calculus one can formalize primi-
tive, determinate actions with axioms which, among others, include two disjoint sets: a set
of successor state axioms and a set of action precondition arioms. We posed ourselves the
problem of automatically generating successor state axioms, given only a set of effect axioms
and a set of state constraints. This is a special version of what has been traditionally called
the ramification problem. To our surprise, we found that there are state constraints whose
role is not to yield indirect effects of actions. Rather, they are implicit axioms about action
preconditions. As such, they are intimately related to the classical qualification problem. We
also discovered that other kinds of state constraints arise; these are related to the formaliza-
tion of strategic or control information. This paper is devoted to describing our results along
these lines, focusing on ramification and qualification state constraints. More specifically,
we propose a two step procedure for determining an axiomatization which monotonically
solves our versions of the ramification and qualification problems. We justify the first step
semantically by appealing to a suitable minimization policy. Step two we justify by simple
Clark predicate completion.

1 Introduction

We pursue the perspective of Reiter ([20]), that in the situation calculus one can for-
malize primitive,! determinate actions with axioms which, among others, include two
disjoint sets: a set of successor state arioms and a set of action precondition arioms.
Reiter shows how to obtain these successor state axioms by purely syntactic manipu-
lations of the effect axioms (or “causal rules”, as they are sometimes called). He does
not, however, address the ramification problem; his approach fails in the presence of
state constraints. In an attempt to remedy this, we posed ourselves the problem of
automatically generating successor state axioms, given a set of effect axioms and a set
of state constraints. To our surprise, we found that there are state constraints whose
role is not to yield indirect effects of actions. Rather, they are implicit azioms about
action preconditions. Such constraints relate to the qualification problem in much the
same way as indirect effects do to the ramification problem. We later learned that
the same observation had been made by Ginsberg and Smith [5]. We also discov-
ered that other kinds of state constraints arise; these are related to the formalization
of strategic or control information. This paper is devoted to describing our results
along these lines, focusing on those constraints relevant to indirect effects and action
preconditions. In particular, we propose a two step procedure for determining an
axiomatization which monotonically solves our versions of the ramification and qual-
ification problems. We justify the first step semantically by appealing to a suitable
minimization policy. Step two we justify by simple Clark predicate completion.

1TRoughly speaking, an action is primitive if it is not defined in terms of other actions. See
Lespérance, Levesque, Lin, Reiter, and Scherl (forthcoming) for an approach to complex actions in
the situation calculus.



2 The Problem

We illustrate with an example. In this paper, all free variables in a formula are
considered to be universally quantified from the outside. Consider the painting blocks
world in which we have the action paint(z,y) which paints block = with color y, as
represented by the following effect aziom:

Poss(paint(z,y), s) D color(z,y, do(paint(z,y), s)), (1)

where for any action a, Poss(a, s) means that action a is possible in s. A robot can
perform paint(z,y) only if it is close to x, and has the necessary paint:

Poss(paint(z,y), s) D nearby(x, s) A haspaint(y, s). (2)
The only state constraint is that a block can have just one color:
color(z,y1, ) A color(z,y2, 8) D ¥ = Ya. (3)

It is well known that in addition to the above axioms, we need so-called frame azioms.
In this case, for the property color we have:

Poss(paint(z,y),s) D [(Vz',y).x £2' D
color(z',y', do(paint(z,y), s)) = color(z',y', s)]. 4)

However, these axioms are still not enough since axiom (2) only allows us to infer
when it is not possible to do paint(z,y). In order to act, we need a guarantee of
when it is possible to do paint. Normally, no absolute guarantee will exist. For
example, in order to do paint(z,y), the block 2 must be clear, the paint must not
be frozen, etc. This dilemma is an instance of what has traditionally been called
the qualification problem (McCarthy [12]). The assumption we need for solving this
problem for this particular example is that every condition that prevents a robot from
executing paint(z,y) is implied by the axioms. Thus in this case, we have, by simple
predicate completion (Clark [2]):

Poss(paint(z,y), s) = nearby(x, s) A haspaint(y, s). (5)

One might expect that formally, this can be done by minimizing - Poss, as in (Lifschitz
[8]). Unfortunately, in the general case, the minimization is not straightforward,
especially in the presence of the frame problem. In particular, which do we solve first:
the frame problem or the qualification problem? The answer in [8] is that we should
solve the qualification problem first. However, if the axioms about Poss all have the
form (2), which was implicitly assumed in [8], the order does not really matter. In
general, we shall assume that one first has to have the necessary frame axioms before
one can compute Poss. We shall see the motivation behind this assumption later.
The same assumption is implicitly made in (Ginsberg and Smith [5]).

The qualification problem gets complicated when not all axioms about Poss are
explicitly given as in (2). Traditionally, state constraints are considered to yield
indirect effects of actions, and are the sources of the ramification problem (Finger
[4]). However, as we shall see, many state consirainis are in fact implicit azioms



about Poss. These state constraints complicate the qualification problem in much the
same way as indirect effects do for the frame problem.

Imagine an ancient kingdom where yellow is reserved for the emperor. Thus for a
robot, the world respects the rule:

—color(z, yellow, s). (6)

As a result, a robot has to make sure that initially, no block is yellow, and he is not
allowed to paint any block yellow:?

—Poss(paint(z, yellow), s),

which is simply a logical consequence of the effect axiom (1) and the constraint (6).
Other such state constraints are not as straightforward, and are more fun. Imagine a
more lenient emperor who tolerates a single yellow block but no more:

color(z1, yellow, s) A color(zq, yellow, s) D 1 = z5. (7)

The poor robot this time has to make sure that initially not more than one block can
be yellow, and if there is already a yellow block, he cannot paint another block yellow
without first painting the yellow block a different color:

(Fz")(color(z’, yellow, s) Az # z') D =~ Poss(paint(z, yellow), s). (8)

Notice that this time, the necessary condition for executing paint(z,y) cannot be
deduced from the effect axiom (1) and the state constraint (7) only. To derive it, we
must use the frame axiom (4) as well. This is why we need to have determined the
frame axioms before computing Poss.

This example illustrates the importance of distinguishing indirect-effect yielding
state constraints such as (3) and other state constraints such as (7). Syntactically, the
constraints (3) and (7) are very similar. But their pragmatic roles are very different.
If, for example, we were to use (7) to compute the indirect effect of paint(z,y), we
would conclude as a logical consequence of (1) and (7) that painting a block yellow
will “cause” an existing yellow block to change its color:

Poss(paint(z, yellow), s) D
(color(z’, yellow, s) Az # z') D —color(z’, yellow, do(paint(z, yellow), s)).

On the other hand, if (3) were not taken into account in generating the frame axiom,
then from the effect axiom (1), by the law of inertia, we have

Poss(paint(z,y),s) D[y 2y D
color(z',y', do(paint(z,y), s)) = color(z',y', s)].

Now if we were to use (3) to compute Poss, then from it and the above frame axiom,
we would conclude, incorrectly, that it is impossible to paint any block a different
color:

y # Yy Acolor(z,y,s) D = Poss(paint(z,y), s).

?But yellow paint may still be available for the purpose of, say, making orange paint.



We conclude that the state constraints (3) and (7) play different roles in our
axiomatization. (3) contributes to the ramifications of paint, while (7) contributes
new information about Poss. Moreover, reversing their roles leads to counterintuitive
results.

In the following, we shall call those indirect-effect yielding state constraints rami-
fication constraints, and those yielding action preconditions qualification constraints.
As in (Ginsberg and Smith [5]), we shall explicitly distinguish these two kinds of
constraints. In summary, ramification constraints cause complications, traditionally
called the ramification problem, to the frame problem. Qualification constraints cause
a symmetric problem to the qualification problem. In the next section we present our
version of the situation calculus. We then describe our approach to solving these
problems.

3 The Discrete Situation Calculus

It has become clear to us that any serious study of the situation calculus requires
foundational principles, analogous in many ways to the Peano foundational axioms for
number theory. While it is not obvious what counts as an appropriate axiomatization
of the “Peano situation calculus”, we have found the following axioms to be intuitively
appealing and useful in many ways. Formulating a “one and true” set of foundational
axioms and exploring their meta-mathematical properties remains an ongoing goal of
our research program.

As usual, we shall use a many-sorted language for the situation calculus. The two
domain independent sorts are situation and action. We emphasize that sort action is
for primitive actions. There is a unique situation constant symbol, Sp, denoting the
initial situation. It is like the number 0 in Peano arithmetic. Unlike Peano arithmetic
which has a unique successor function, we have a family of successor functions modeled
by the binary function do : action x situation — situation.

In place of the Peano axioms, we have the following:

So # do(a, ), 9)
do(ay, s1) = do(ag, s2) D (a1 = az A s1 = $2), (10)
(VP)[P(So) A (Va, s)(P(s) D P(do(a,s))) D (Vs)P(s)]. (11)

The first two axioms are unique names assumptions. They eliminate finite cycles,
and merging. The last axiom is second order induction. It amounts to the domain
closure axiom that every situation has to be obtained from the initial one by repeatly
applying the function do. For a discussion of the use of induction in the situation
calculus, see (Reiter [22]).

In reality, an action is not always executable in every situation. To formalize this,
we use a binary predicate Poss(a,s). We write s < s’ if s’ can be obtained from s by
a sequence of executable actions. Inductively, we have:

18 < So, (12)
s < do(a,s") = (Poss(a,s') ANs < &), (13)



where s < s’ is shorthand for s < s’ Vs = s'.

In the following, we shall denote by ¥ the set of axioms we have so far, including the
ones for <. It is clear that because of the second-order induction axiom, the situation
domain of any model of ¥ must be isomorphic to the smallest set S satisfying:

1. Sy €8.

2. If S eS8, and A € A, then do(A,S) € 8, where A is the domain of actions in
the model.

That is, X is categorical for the sort situation. These axioms have their origin in
(Reiter [19, 22]). Similar axioms are used in (Pinto and Reiter [18]). The following
proposition summarizes some simple consequences of X. All proofs are given in the
appendix.

Proposition 1

Transitivity:  (s1 < s3 A sa < s3) D 81 < $3.
Anti-reflexivity: s < s.
Unique names: §1 < 89 D 81 7£ 89.
Induction on <: (VP)[P(So) A (Va, s)(P(s) A Poss(a,s) D P(do(a, s))) D
(¥5)(So < 5 > P(s)].

In addition to the domain independent sorts, there may be other domain dependent
sorts. In the sequel, we shall assume a fixed additional sort object for objects in the
domain of interest. We shall use z, y, and their primed and subscripted versions
to denote variables ranging over the domain of object. An (n+1)-ary, n > 0, fluent
will be a predicate of arity: object™ x situation. An n-ary action prototype will be a
function of arity: object™ — action. In the following, we shall assume a set of unique
names arioms, denoted by Dynq, for actions. These axioms have the forms:

f(l‘l,...,;l‘n) = f(ylaayn) D (;131 =W /\/\In == yn):

f(xla "':l)m) ;é g(y1: "':yn):

where f and g are different action prototypes.

4 The Ramification Problem

This section deals with the frame problem in the presence of ramification constraints.
Several solutions have been proposed in the literature (cf. Baker [1], Lin and Shoham
[11], and others.), most of them based on circumscription (McCarthy [13]). There
seems to be a consensus that these different minimization semantics turn out to be
equivalent for determinate actions (cf. Costello [3], Kartha [7]).

This section defines precisely the minimization policy used in this paper. It is
based on the one in (Lin and Shoham [11]). There are however some differences.
First, in (Lin and Shoham [11]), the minimization is done with respect to a fixed
action. The minimization here is for all actions simultaneously. Secondly, the axioms



in (Lin and Shoham [11]) do not deal with Poss predicate. Reflecting our decision to
solve the frame problem first, our minimization policy shall fix Poss.

To motivate our minimization policy, consider a language with a single action,
and only two states: the initial one S;, and the resulting state after the action is
performed S, (cf. Lifschitz [9, 10]). For every fluent F', we replace F' by two predicates
F; and F,.. For every tuple (z1,...,2,), Fi(21, ..., z,) stands for F(zq, ..., 2, S;), and
Fo(z1,...,2y,) for F(zy,...,2n, Sp).

Now consider the action load that loads the gun. Suppose we have two unary
fluents loaded and alive. These two fluents yield the following four propositions:
loaded; (the gun is initially loaded), loaded, (the gun is loaded after performing
load), alive; (Fred is alive initially), and alive, (Fred is alive after performing load).
Let T consist of the following axioms:

loaded,
abl = —(loaded; = loaded,.),

ab2 = —(alive; = alive,).

Intuitively, we want to minimize abl and ab2 in T' to formalize the law of inertia.
Now the question is which predicates should be fixed, and which should be allowed to
vary. According to McCarthy’s original proposal, all predicates are allowed to vary,
and we conclude, counter-intuitively, that

=abl A —ab2,

which implies loaded; (the gun is loaded initially.). A little thought reveals that
we should fix the initial situation, i.e. loaded; and alive;, and allow the resulting
situation to vary. Formally, if we minimize abl and ab2 in T, with loaded; and alive;
fixed, we’ll conclude correctly that

(abl = —loaded;) A —ab2.

Now if we use, as we normally do, the situation calculus to formalize actions
whose effects depend only on the starting situation, i.e., the past and the future
are irrelevant, then it is sufficient to capture the effects of an action with respect to
two generic starting and resulting situations. As we have seen, this should be done
by minimizing changes with the starting situation fixed. This is exactly what the
following minimization policy does.

Recall that our language has three sorts: situation, action, and object. In the
following, we shall divide a variable assignment o into three parts: o;, o4, and o,.
The first assigns variables of sort situation, the second variables of sort action, and
the third variables of sort object.

Definition 2 A model M of a theory W is minimal iff there is not another model
M’ of W, and a variable assignment to situations oy such that

1. M and M’ have the same universe.

2. M and M’ differ only in their interpretations of fluents. In particular, they
interpret Poss the same.



3. For any assignment o,, and any fluent F'(zq, ..., 2p, 5),

M,os,0, E F(21,...,20,8)

iff
M' os,0, = F(z1,..., 20, s).
4. For any assignments o, and o,, and any fluent F(z1,..., 2,,s), if
M,05,04,0, |= Poss(a, s) A—ab(a, F(z1, ..., 2,,8)),
then
M' os,04,0, E —ab(a, F(zq,...,2z,,5)),
where ab(a, F'(z1, ..., 2y, 8)) is a shorthand for
SF(21,... 20, 8) = F(21, ..., 2, do(a, s)).
5. There are two assignments o, and o,, and a fluent F'(z1, ..., 2,, s) such that
M,05,04,0, |= Poss(a, s) Aab(a, F(x1,...,2n,8))
but

M' os,04,0, |E —ab(a, F(zq,...,z,,5)).

4.1 A Circumscriptive Specification for the Ramification Prob-
lem

With the above minimization policy in hand, we are now in a position to provide what
we take to be a semantic specification of what counts as a solution to the ramification
problem. To do so, we must precisely characterize the axioms to be minimized. In
general, we suppose that, in addition to the foundational axioms ¥ and the unique
names axioms for actions Dy, 4, we are given the following two sets of axioms:

1. A set D,; of effect axioms of the form
Poss(a,s) D [¥t D F(zy, ..., z,,do(a, s))],
and of the form
Poss(a,s) D [¥~ D ~F(x1,..., 2,,do(a, s))],

where F is an (n+1)-ary fluent, and ¥+ and ¥~ are simple state formulas
whose free variables are among a,s,z1,...,2,. A simple state formula is one
which does not mention Poss, <, or any situation term other than a unique
situation variable.

2. A set D, of ramification constraints of the form:
RC(s),

where RC is a simple state formula with a unique free variable s.



With these axioms in hand, we identify a solution to the ramification problem with
those minimal models of ¥ U Dype U Dram U D,y

In the next section, we give an independently motivated syntactic procedure which,
given YUDypaUDramUD,y, computes a certain monotonic theory and we show that,
under suitable circumstances, this monotonic theory is logically equivalent to the
above minimal model nonmonotonic theory.

5 How to Compute Successor State Axioms (Some-
times)

In [20] Reiter shows how to address the frame problem in the absence of state con-
straints. The idea there was to use the given effect axioms to compute a set of
explanation closure azioms (Schubert [23]). On the assumption that the given effect
axioms completely describe the causal laws of the domain being axiomatized, these
explanation closure axioms can be seen intuitively to have the force of frame axioms.
Moreover, under a natural consistency assumption on these axioms, the effect and
explanation closure axioms can be shown to be logically equivalent to a set of suc-
cessor state arioms. These have a particularly simple and computationally useful
form, as we shall describe below. In other words, when all the effect axioms are in
hand, [20] provides a conceptually and computationally simple solution to the frame
problem. Unfortunately, this solution to the frame problem no longer applies in the
presence of ramification state constraints. The reason is that this solution relies on
the prior availability of all the effect axioms; these must be explicitly in hand be-
fore the explanation closure, and hence the successor state axioms, can be computed.
When state constraints are present, it might be possible to derive new effect axioms
from the old effect axioms together with the constraints. In other words, one can no
longer be certain that all the effect axioms will be explicitly in hand for the purpose
of determining successor state axioms. It is this possibility of implicit effect axioms
that makes the frame problem so difficult when there are state constraints present. If
we could make all these implicit effect axioms explicit (through deduction) using the
given effect axioms and ramification constraints, we could then compute the succes-
sor state axioms, thereby solving the frame problem. This is the intuition behind the
approach to the frame problem of this section.

Given an axiomatization ¥ U Dype U Dram U Dy as described above, our task is

to generate a successor state axiom (Reiter [20]) for each fluent F'(z1, ..., 2y, s):
Poss(a,s) D F(z1, ..., xzn,do(a,s)) = ®p, (14)
where ®p is a simple state formula whose free variables are among s,a,z1, ..., Z,.

Having explicit successor state axioms is desirable for two reasons. First, as shown by
Reiter [20], successor state axioms are computationally appealing in that they allow
regression (Waldinger [25], Pednault [16], and others), a property we shall shortly
exploit. Secondly, it is clear that having a set of successor state axioms completely
formalizes the effects of actions on the fluents.

The discussion at the beginning of the section suggests that for every (n+1)-ary
fluent F(z1,..., 2, s), we should determine all positive effect axioms for F' derivable



from the state constraints and the effect axioms (including, of course, the effect axiom
for F' of D,y itself):

YUDunaUDey UDram E
(Ya, s, zq, ..., 2,). Poss(a, s) D [p1(z1, ..., &n,a,8) D F(z1, ..., 2, do(a, 5))],

S UDuna UDes UDyam =
(Ya,s,zq, ..., 2p). Poss(a, 8) D [er(21, ..., Zn,a,8) D F(x1, ..., 2n,do(a, s))],

where ¢1, ..., g are simple state formulas. When we are sure that we have got them
all, we collect them into a single effect axiom:

YUDunaUDes UDrom E
(Va, s, z1,...,2,).Poss(a,s) D [¥p D F(z1,...,2n,do(a, s))], (15)

where Up (21, ..., &, a, s) is a simple state formulas equivalent to ¢1 V- -V . Simi-
larly, we find a single negative effect axiom for F:

EUY)una UDef UDNLTTL IZ
(Va, s, zq, ..., 2p). Poss(a,s) D [¥op D F (21, ..., 24, do(a, s))]. (16)

Now if p (U_.p) is indeed the most general condition under which 7' will be true
(false) in situation do(a, s), then the argument given in (Reiter [20]) yields the follow-
ing successor state axiom for F:

Poss(a,s) D F(z1,...,2n,do(a,8)) = [Tp V (F(21,...,2n,8) AT p)].

But how are we to know when we have determined all the positive and negative effect
axioms for F' or, what amounts to the same thing, when ¥p (¥, p) is indeed the most
general condition under which F' will be made true (false)? The following theorem
gives sufficient conditions under which the successor state axioms determined in this
way are indeed correct with respect to the minimal model semantics of Section 4.

Theorem 3 Let D, be a set of the successor state axioms, one for each fluent, of
the form:

Poss(a,s) D F(z1,...,xzn,do(a,8)) = [¥p V (F(z1,...;2n,8) AT p)]. (17)

where F(z1, ..., Zn, 8) is an (n+1)-ary fluent, and ¥p and ¥.p satisfy (15) and (16),
respectively. Suppose further that:

1. The following consistency condition (Reiter [20]) holds for each F":
Duna = (Ys,a,21, ..., 20)7(Tp AV p). (18)

2. The ramification constraints relativised to states accessible from Sy are derivable
from the successor state axioms:

Y UDuna UDss U{RC(So)} = (Vs).So < s D RC(s) (19)
for every (Vs)RC(s) € Dram-



Then a first-order structure is a minimal model of
E U Duna U Dram U Dé’f

iff it 1s a model of
Y UDuna UD,, UDS,, UDS

ram ram’

where D, is the set of ramification constraints relativised to states which are not

accessible from Sy:
Drum = {(Vs).S0 £ s D RC(s) | (Vs)RC(s) € Dram},
and P3o

20, 18 the set of ramification constraints restricted to the initial state:

D30 = {RC(So) | (Vs)RC(s) € Dram}.

1. The theorem says that under conditions (18) and (19), the nonmonotonic theory
Y UDung UDram UDgs (according to the minimization policy of Section 4) is
captured by the monotonic theory

Y UDuna UD,, UDS,, UDS

2. More generally, it can be shown that for any initial state description Dg,, if
Ds, = D20, and the conditions of the theorem are satisfied, then the non-
monotonic theory

Y UDungUDram UD; UDg,

is equivalent to the monotonic one

Y UDyna UDs, UD,

ram

UDs,.

3. Notice that D, must be included in the monotonic theory because the suc-
cessor state axioms characterize action effects only when the action is possible.
In practise, this turns out to be of no consequence because normally, the mono-
tonic theory will be used to derive entailments which are relativised only to
situations accessible from Sy. For example, for Al planning applications, one is
concerned with deriving entailments of the form (3s).Sy < s A G(s) where G(s)
defines a goal state (Green [6], Reiter [20]). In database applications (Reiter
[21]), one is concerned with querying a database following an update transaction
sequence T. Such queries have the form Q(do(T, Sp)) where do(T, Sp) denotes
that database state resulting from performing the sequence of updates T start-
ing in the initial database state So. Normally, the state do(T, Sp) will be known
to be accessible from Sp, which is to say, the preconditions for “executing” the
transaction sequence T will be known to be true (Reiter [21] calls such states
legal states). For both these settings (planning problems, database query eval-
uation), the entailments of interest are relativised only to situations accessible
from Sy. It should be clear that for the purpose of deriving entailments of this
kind, the sentences in D, have no role to play:

For the purpose of deriving entailments which are relativised only to situations
accessible from Sy, D, can be ignored; il is sufficient to use the monotonic
theory X UDypq UDss UDg,.

10



We shall consider the general case of the above theorem in greater detail in a
moment. First, we treat an important special case. If D,4,, = 0, then the elemen-
tary syntactic manipulations in (Reiter [20]) are provably correct with respect to our
minimal model semantics:>

Corollary 4 [Correctness of Successor State Axioms in the Absence of
State Constraints (Reiter [20])] Suppose Dyom = 0, and without loss of gen-
erality, for each fluent F', suppose that D.; contains exactly one positive effect axiom
for F as given by (15), and exactly one negative effect axiom for F' as given by (16).
Then the successor state axiom defined in (Reiter [20]) for F' is exactly (17). More-
over, if the consistency condition (18) holds for each F', then a first-order structure is

a model of
YU Dyna UDss

iff it 1s a minimal model of
Y UDyng UD;.

We now return to the general case of Theorem 3. The theorem suggests the
following approach to the derivation of successor state axioms when given ramification
constraints D4, and effect axioms D.;:

1. Using Dram and Dy, derive a set of effect axioms of the forms (15) and (16),
and compute the corresponding successor state axioms (17).

2. Stop deriving new effect axioms whenever it has been verified that the entail-
ments (18) and (19) hold. In this case, if Dy, are the corresponding successor
state axioms, then the equivalent monotonic theory is

YU Duna UDss UDZ  UDS0

ram ram:

Clearly, this procedure is not guaranteed to terminate. Pinto [17] studies some simple
classes of state constraints for which a set of successor state axioms can be effectively
computed. Here, we shall only consider some examples. Before doing so, we prove a
lemma to facilitate the proof of condition (19), which will normally require induction
on situations (Reiter [22]), using Proposition 1. The lemma we are about to present
“precomputes” the induction proof, reducing the theorem proving task (19) to a very
simple entailment using only unique names axioms for actions.

To formulate the lemma, we first require the concept of the regression of a for-
mula U: Rp_ [¥], the regression of ¥ under the set of successor state axioms Ds,
(cf. Waldinger [25], Pednault [16], and Reiter [20]), is the result of substituting
Dp(ty, ..., tn, a, o) for every subformula F(t1,...,1,, do(c, 0)) mentioned by ¥, where
this substitution is performed for every fluent F' mentioned by ¥. Here, ®p(z1, ..., 2, a, )
is as in the successor state axiom (14). We shall write Rp_ [¥] as R[¥] when there
is no possibility of confusion. For instance, if we have the following successor state
axiom:

Poss(a, s) D [F(do(a, s)) = (—F(s) Aa = flip) V (F(s) Na # flip)],

3This was shown independently for propositional fluents by Steven Shapiro [24].

11



then the regression of F(do(flip, So)) is
(=F(So) A flip = flip) V (F(So) A flip # flip),
and the regression of (V¥s)(3a).F(s) D —F(do(a, s)) is
(Vs)(3a).F(s) D =[(=F(s) Aa = flip) v (F(s) Aa # flip)].

Notice that regression is a purely syntactic manipulation, and may not preserve logical
properties. For instance, the regressions of the two logically equivalent formulas,
(Vs).F(s) and (Vs,a).F(s) A F(do(a, s)), are generally not equivalent.

Lemma 5 For any ramification state constraint RC(s),
Y UDyna UDss U{RC(So)} = (Vs).So < s D RC(s)

iff
Duna = (¥s,a).RC(s) A Poss(a, s) D R[RC(do(a, s))].

Example 6 We now derive a set of successor state axioms for our painting example.
First, we rewrite the causal rule (1) as

Poss(a, s) D a = paint(z,y) D color(z,y,do(a, s)). (20)
Now rewrite the ramification constraint (3) as
color(z,y,s8) Dy #y D —color(z,y,s).
From these two axioms, we infer

Poss(a, s) D
(3Y).(a = paint(z,y') Ay # y') D —color(z, y, do(a, s)).

Using this axiom and the causal rule (20), with W o0, as
a = paint(z,y),

and ¥ 10, as
(3Y).a = paint(z,y') Ny #
we get the successor state axiom
Poss(a, s) D {color(z,y,do(a,s)) =
a = paint(z,y) V [color(z,y, s) A ~(Fy')(a = paint(z,y') Ay # ¥')]}.

Since there are no effect axioms about nearby(z, s), we let W, cqrpy and ¥opeqrsy be
False. Thus we get

Poss(a,s) D
nearby(z, do(a, s)) = [False V (nearby(z, s) A ~False)],
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which is equivalent to
Poss(a, s) D nearby(z, do(a, s)) = nearby(z, s).
Similarly for haspaint, we have
Poss(a, s) D haspaint(z,do(a, s)) = haspaint(z, s).

It remains to check conditions (18) and (19) of Theorem 3 to verify that the set of
successor state axioms obtained is the right one:

1. Consistency conditions:

Unique names axioms for actions entail =(W o100 A =¥ s0i0r ). (Tnearey AV anearsy)
and =(¥paspaint A 7¥-haspaint) arve identically True.

2. Deriving the ramification constraints:

There is only one state constraint; let us denote it by (Vs)RC(s), where RC(s) is

/

(Va,y,y").color(z,y,s) A color(z,y',s) Dy =1y
By Lemma 5, we need to show that
DunaU{RC(s)APoss(a, s)}U{R[color(z,y, do(a, s))Acolor(z,y',do(a,s)) ]} Ey=1y".
Using the above successor state axiom for color, which can be equivalently written as
Poss(a, s) D {color(z,y,do(a, s)) =
a = paint(z,y) V [color(z,y, s) A (Vy")a # paint(z,y")]},
we need to show that

Duna U{RC(s), Poss(a, s),
a = paint(z,y) V [color(z,y, s) A (Vy'")a # paint(z,y")],
a = paint(z,y') V [color(z,y', s) A (Vy'")a # paint(z,y")]}
Fy=y.

This can be proved by cases, as follows:

® Dyng U{RC(s), Poss(a, s),a = paint(z,y) A a = paint(z,y")} E y = y'. This
follows from the unique names axioms for actions.

® DyundU{RC(s), Poss(a, s),a = paint(z,y)Acolor(z,y', s)ANVy")a # paint(z,y")} |E
y = 3. This holds since the premises are inconsistent.

e DynaU{RC(s), Poss(a, s),a = paint(z,y )Acolor(z,y, s)AN(Vy'")a # paint(z,y")} =
y = ¢'. This holds again by the inconsistency of the premises.

® DyndU{RC(s), Poss(a, s), color(z,y, s)Acolor(z,y, s)AN(Vy")a # paint(z,y")} |E
y = y'. This follows from RC(s) and color(z,y,s) A color(z,y, s).

13



In general, the proof-theoretic procedure is not complete simply because there
may be multiple minimal models. Even if the minimal model is unique, it may not
be captured by a set of successor state axioms. In fact, it may not even be captured
by any first-order theory.

Example 7 Let P(z,y,s) and R(z,y, s) be ternary fluents, and A an action constant.
Consider D = (D¢, Dram), Where

1. Def 18
Poss(A,s) D [P(z,y,s) D R(z,y,do(A,s))].

2. Dyam 18
R(z,z,s),

R(z,y,s) D R(y, =, s),
[R(z,y,8) AN R(y, z,8)] D R(z, z,s).

There cannot be a first-order theory capturing the minimal model of D. Otherwise,
the theory together with the following first-order sentence

(Va, s).Poss(a, s) A (Va,y).~R(z,y, So)

will entail the transitive closure of P(z,y, Sp), which is well-known not to be first-order

definable.

6 Determining Action Precondition Axioms

This section concerns the qualification problem, and is to a large degree independent of
the last section. We assume that by whatever means, we have succeeded in obtaining
a set of successor state axioms Ds;. Symmetric to our treatment of the ramification
problem, we assume that we are given the following two sets:

1. A set D, of direct necessary conditions for Poss of the form:
Poss(A(z1,...,xp),s) D 4,

where A(z1,...,2,) is an n-ary action prototype, and T4 is a simple state for-
mula whose free variables are among s, z1, ..., Zp.

2. A set Dyyq of qualification constraints of the form:
QRC(s),
where QQC' is a simple state formula with a unique free variable s.

Our goal is to generate a set of action precondition azioms, one for each action pro-
totype, of the form:
Poss(A(z1,...,2pn),8) = Oa, (21)

where ©4 is a simple state formula whose free variables are among s, z1, ..., .

14



If (Vs).QC(s) is in Dyyar, that is, a qualification constraint, then it is clear that
for each action A(z1, ..., 2y):

Dss |E (Vau,...,2p, 8).Poss(A(z1, ..., 2n),8) D
(R[IQC(do(A(z1, ..., 2n), 8))] = QC(do(A(z1, ..., 2n), 8))),
where R is the regression operator as defined in section 5. Therefore we have
Dss UDguat = (Y21, ..., 24, 8).Poss(A(z1, ..., 2,), 8) D R[QC(do(A(z, ..., zn), 5))].

The formula R[QC(do(A(z1, ..., 2,), )] as defined is usually unwieldy. In most cases,
it will need to be simplified by using Dyyar and the unique names axioms in Dynq, as
we shall see later in an example. Let IIgc be a simple state formula such that

Duna UDguar E Va1, ..., 25, 8). R[QC(do(A(21, ..., 2,), 5))] = ge.
Then
Duna UDss UDgyai E (Vau, ..., 25, 5). Poss(A(zy, ..., 2,),s) D e

Now, without loss of generality, suppose that the only necessary condition axiom for
Ain D,,.. 1s:
Poss(A(z1, ...,xn),8) D 4.

Then we obtain the following action precondition axiom by predicate completion

(Clark [2]) of Poss:
Poss(A(z1,...,25),8) =4 A /\HQC; (22)

where the big conjunction ranges over the state constraints in Dy 1. Let Dy, be the
set of action precondition axioms thus obtained.

Theorem 8 Let D;,, Dyuar and Dy, be as given above. Let D, be the following
domain closure axiom for actions:

(Va)((FZ)a = A1 (D) V- -V (T a = A (¥)),

where Ay, ..., A, are action prototypes. For every qualification constraint (Vs)QC(s) €
unala

Y UDuna UDss UDp,r. UDys = QC(So) D (Vs).So < s D QC(s).
Proof Use the principle of induction on < in Proposition 1
Corollary 9
Y UDyna UDss UDpre UD s UDS,  UD = Dyuat,

qua qua

where Dq‘ual is the set of qualification constraints relativised to states which are not
accessible from Sgy:

Dyar = {(¥5).50 £ 5 2 QC(s) | (Vs)QC(s) € Dyuar},

and ngal is the set of qualification constraints restricted to the initial state:

Dy = {QC(So) | (V$)QC(s) € Dyuar}-

15



Why is this corollary of interest? It tells us that provided the initial state Sp
satisfies all the qualification constraints (Vs)QC(s), i.e. that QC(Sp) is entailed by
Ds,, the axioms specifying the initial state, then these constraints are entailed by the
background theory

Y UDuna UDss UDpr. UDy, UD,, ,; UDg, .

qua

This means that the ramification constraints can now be discarded; their effects have
been “compiled” into the action precondition azioms (22). This highlights the dif-
ference between our solution to the qualification problem and that of (Ginsberg and
Smith [5]). In [5], action qualifications are never stored, and have to be computed
each time an action is attempted. Finally, notice that the background axioms for
Corollary 9 include Dq‘ual, the original qualification constraints relativised to states
inaccessible from Sp. Recall that precisely the same situation arose in our earlier
treatment of ramification constraints (Theorem 3), where D, had to be included
in the monotonic theory equivalent to the nonmonotonic minimal model semantics.
We observed there that whenever the theory is used to derive entailments which are
relativised only to situations accessible from Sy (the normal case), the axioms D,
will play no role and can be discarded. Exactly the same observation applies in the

case of Corollary 9:

For the purpose of deriving entailments which are relativised only to situations acces-
sible from Sy, Dyl can be ignored; 1t is sufficient to use the background azioms

Y UDyng UDss UDpre UDys UDs, .

Example 10 We now derive action preconditions for our painting example. D,
consists of axiom (2):

Poss(paint(z,y), s) D nearby(x, s) A haspaint(y, s).

We shall consider the world where not more than one yellow block is allowed; thus
Dgyuar consists of (7). Write the qualification constraint as (Vs)QC'. Then QC(s) is

(Y1, zq).color(zy, yellow, s) A color(za, yellow, s) D x1 = .

Let Ds;s be the set of successor state axioms generated by Example 6. By the unique
names axiom for actions:

paint(x1,y1) = paint(zz,y2) D (21 = 22 Ay1 = y2),
R[QC(do(paint(z,y),s))] can be simplified to
(Vz1,2q). {[(x = 21 Ay = yellow) V
(color(zq, yellow, s) A=(Fy')(z =21 Ay =y Ay # yellow))] A
[(z = 22 Ay = yellow) V
(color(za, yellow, s) A=(Fy')(z = za Ay =y Ay # yellow))]} D

r1 = X9.
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By using Dyyar, this can be further simplified to

(Vz1,22). [(& = 21 Ay = yellow A color(zq, yellow, s)) V
(x = 29 Ay = yellow A color(zq, yellow, s))] D

1 = T2,
which is equivalent to
(Vz1).(color(zy, yellow, s) Ay = yellow D & = x1).

Therefore we can let e (z,y, s) be the above formula, and obtain the following
action precondition axiom which entails (8):

(Vz,y,s). Poss(paint(z,y),s) = [nearby(z,s) A haspaint(y, s) A
(Vz1).(color(z1, yellow, s) Ay = yellow Dz = x1)].

Notice that our procedure for computing action precondition axioms, and Theorem
8 above, explicitly relies on regression, and hence on the prior availability of a set of
successor state axioms D,;. We assume that these have been computed using the
methods of Section 5. This having been done, we apply the method of Section 6 to
compile the qualification constraints. The resulting set of sentences

Y UDuna UDss UDpre UDs UDs, .

is what we take to be the monotonic theory “solving” the frame and ramification
problems.

7 Examples of Qualification Constraints

Given a theory including a set of successor state axioms, the generation of action
precondition axioms is straightforward using regression, as we have seen in the last
section. This result, although simple, has many potential applications.

For every action, there may be some conditions for this action to be carried out
physically. For example, in order to move a block, the block must be clear, and in
order to turn off a light, the robot must be near the switch. As we observed earlier,
this kind of precondition should be encoded directly as a necessary action precondition
axiom. Still, there are cases when even such conditions are best formalized as state
constraints. For example, in the block world, no block can be put on top of itself:

-On(z, z,s).

Other kinds of preconditions are naturally encoded as qualification constraints.
These restrict the behavior of a robot by putting constraints on what the desired
states should be. For example, in robot motion planning, we don’t want the robot
running into obstacles:

obstacle(xz) D —contact(z, s).

4We thank Vladimir Lifschitz for the example.
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In the tower of Hanoi, it is against the rules of the game to have a bigger disc on top
of a smaller one:

bigger(z,y) D —on(z,y,s).
In an employee-salary database, it may be the company’s policy that an employee’s
salary cannot exceed her supervisor’s:

sal(z,u, s) A sal(y, v, s) A supervisor(z,y,s) D u > v.

So far we have considered only state constraints represented by simple state for-
mulas. These are what are called static integrity constraints in database theory. (See
(Reiter [21]) for a situation calculus treatment of database updates.) Tt is particularly
interesting that other kinds of formulas can also be used to constrain action precondi-
tions. For example, the standard dynamic integrity constraint “an employee’s salary
must never decrease” can be represented as:

sal(z,u, s) A sal(z,v,do(a, s)) D v > u.

Suppose we have the following successor state axiom for salary update, where change(z, u)
means change z’s salary to u:

Poss(a, s) D {sal(z,u,do(a,s)) =
[a = change(z,u) V (sal(z,u, s) A—~TJv(a = change(z,v) Au # v))]}.

Then by regressing the dynamic integrity constraint, we get a necessary condition for
Poss(change(z, u), s):

Poss(change(z,u),s) D [(Vv).sal(z,v,s) D u > v].

Finally, some general remarks about the necessity of qualification constraints. If
the purpose of a qualification constraint is to generate necessary conditions for Poss,
one may ask, why not just supply such conditions directly? After all, one might argue,
the intuition for deciding that a constraint is a qualification one is that the constraint
should be enforced through action preconditions. There are several reasons why we
don’t want to list action preconditions explicitly:

1. This does not entirely eliminate the need for the constraints because we still
have to check that the initial state satisfies the constraint (Corollary 9).

2. As Ginsberg and Smith argued in [5], there are both computational and episte-
mological reasons why listing action preconditions explicitly won’t work.

3. Generating preconditions from state constraints results in a modular and generic
theory.

To illustrate the last point, suppose we want to tell a robot that there is a crack on the
floor of a room, and there is no way for him to cross it. We could examine the robot’s
knowledge base, find all actions that change his position, and add a precondition to all
these actions that for them to be executable, the robot’s destination must be on the
same side of the crack as his starting position. But a much more uniform, modular
and elegant way to do this is to tell the robot the following “dynamic constraint”
which can be considered to be the “semantics” of the crack:

at(robot, z, s) A at(robot, y,do(a, s)) D sameside(x, y),

and have the robot generate the correct preconditions by himself.
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8 Other Kinds of State Constraints

We remarked earlier that there are state constraints which are different from both the
ramification and the qualification ones. At the moment, we don’t have a full story
about them. However, there are some clear examples.

Certain control strategies seem to be best formalized as state constraints whose
purpose is neither to compute the effects of actions, nor to generate action precondi-
tions. For example, it is absolutely useless to repeat a state:

s < s’ A Equiv(s,do(a,s')) D Dont(a,s'),

where Dont(a, s) means “don’t do the action a in s”, and Equiv(s, s') means that s
and s’ are equivalent from the robot’s point of view. For instance, if the only relevant
fluent for the robot is color(z,y, s), then we have

Equiv(s, s') = (Va,y).[color(z, y, s) = color(z,y, s')].

Notice that a difference between Poss and Dont is that we assume that the robot
can’t carry out an action unless Poss is satisfied. However, even if Dont is true, the
robot can still carry out the action, although this may not be in his best interest.
Therefore if a robot is unaware that painting a red block red again achieves nothing,
there is nothing to prevent him from doing that.

As further examples of this kind of “control-oriented” state constraints, consider
game playing. A player should avoid any move which will certainly result in a loss:

loss(do(a, s)) D Dont(a, s),
and as an example of two-step look ahead in a 2-player game:
[(3b).Poss(b,do(a, s)) Aloss(do(b, do(a, $)))] D Dont(a,s).

This kind of lookahead is analogous to alpha-beta pruning, minimax, etc.

9 Conclusions

9.1 What Have We Achieved?

We began by observing, as had Ginsberg and Smith before us, that there are at least
two kinds of state constraints, one corresponding to ramifications, the other to qual-
ifications. The former contribute indirect effects of actions; the latter are implicit
axioms about Poss. We then proposed a two step procedure for determining an ax-
iomatization which monotonically solves the ramification and qualification problems:

1. First determine, using the given effect axioms and ramification constraints, a
set of successor state axioms. This is done by computing a set of new effect
axioms using the old ones and the constraints, then completing the resulting
set of effect axioms using the method of (Reiter [20]). There is a sufficient
condition (Theorem 3) for determining when enough new effect axioms have
been determined. At this point, the given ramification constraints are discarded
in favour of the successor state axioms.
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2. Secondly, by appealing to regression (using the successor state axioms computed
in step 1) and the given qualification constraints, determine a set of action pre-
condition axioms. At this point, the given qualification constraints are discarded
in favour of the action precondition axioms.

We justified step 1 semantically by appealing to the minimization policy of (Lin and
Shoham [11]). Step 2 we justified by simple Clark predicate completion.

The end result of this two step process is our proposed axiomatization for mono-
tonically solving the ramification and qualification problems:

Y UDuna UDss UDpr. UDys UDs,.
Here,
e Y consists of foundational axioms for the situation calculus.
e Dy, are unique names axioms for actions.

e Dy, are the successor state axioms computed in step 1.

Dpre are the action precondition axioms computed in step 2.

D.1s 1s a domain closure axiom for actions.

e Dg, are initial state axioms which include the ramification and qualification
constraints restricted to the initial state.

So far as we know, this is the first attempt in the literature to solve the ramification
and qualification problems by providing an explicit, concise, and monotonic axioma-
tization.

9.2 What Haven’t We Achieved?

In our two step approach to solving the ramification and qualification problems we
computed successor state axioms first, ignoring the qualification constraints and the
axioms giving explicit necessary conditions for Poss. Only in the second step were
these axioms taken into account. This means that, semantically, we are applying a
two step minimization policy. It is conceivable that there is a more appropriate uni-
form minimization policy, which would result in simultaneously computing successor
state and action precondition axioms. Unfortunately, we have no idea at the moment
how this can be correctly done. Our two step process is justified, informally, by our
intuition that if performing an action leads to a state that violates a qualification
constraint, then that action will be impossible to carry out in the real world. How-
ever, in order to know whether performing an action will lead to a violation of the
constraint, we need relevant knowledge about the effects of the action, which is to
say, we need the frame axioms. Technically, this means that we should compute Poss
from state constraints by using regression, which relies on the prior availability of a
set of successor state axioms.

Another problematic aspect of our solution is that we did not provide a syntactic
way of distinguishing ramification from qualification constraints. This is a perplexing
and unsatisfying situation made even worse by the fact that conjoining a ramification
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constraint and a qualification constraint leads to a syntactically acceptable constraint
of neither type.

Finally, we observed that there are other kinds of state constraints distinct from
ramifications and qualifications; these appear to be control-oriented. Our intuition is
that they are intimately related to various deontic notions ([14, 15]), but we have yet
to explore this idea in depth.
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Appendix Proofs
Proposition 1

Transitivity:  (s1 < s3 A sa < 83) D 81 < 3
Anti-reflerivity: —s <s
Unique names: 51 < s3 D 81 # 83
Induction on <: (VP)[P(So) A (Ya, s)(P(s) A Poss(a,s) D P(do(a,s))) D
(¥3)(S0 < 5 > P(s))]

Proof Transitivity. We apply induction on s3. If s3 is Sy, then the sentence is
entailed by axiom (12). Inductively, assume that s; < s2 A sa < s3 D 51 < s3. We
prove that s1 < sa2 A s < do(a,s3) D s1 < do(a,ss). Suppose that s1 < s3 A sy <
do(a, s3). We prove that s; < do(a, s3). By axiom (13), s2 < do(a, s3) is equivalent to
Poss(a, s3) A sy < s3. Thus we have s3 < s3V s3 = s3. By the inductive assumption,
the first disjunct and s; < sp (assumed) implies s1 < do(a, s3). The second disjunct
and s; < sg implies s1 < s3, and together with Poss(a, s3), implies s1 < do(a, s3) as
well. Therefore, by induction axiom (11), the transitivity axiom holds.

Anti-reflezivity. Use induction on s, applying transitivity and axiom (13) in the
inductive step.

Unique names. Follows from anti-reflexivity by rewriting it as s;1 = s2 D =151 < $2.

Induction on <. Let P'(s) stand for Sy < s D P(s); instantiate induction axiom
(11) on P’

Before proving Theorem 3, we prove Lemma 5.

Lemma 5 For any ramification state constraint RC(s),

S U Duna UDss U{RC(S0)} = (Vs).S0 < s D RC(s)
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Duna = (¥s,a).RC(s) A Poss(a, s) D R[RC(do(a, s))].

Proof The “if” part is straightforward by induction (Proposition 1). We prove the
“only if” part. Suppose

Y UDuna UDss U{RC(S0)} E (Vs).So < s D RC(s). (23)
We prove that
Duna = (¥s,a).RC(s) A Poss(a, s) D R[RC(do(a, s))].

Suppose M is a model of Dypq. Suppose o5 and o, are variable assignments for state
and action variables, respectively, such that M, o5, 0, |= RC(5)A Poss(a, s). We show
that M, 05,0, |E R[RC(do(a, s))]. To that end, construct M’ such that

1. M’ and M share the same domains for sort action and for sort object.

2. M’ interprets every state independent predicate and every state independent
function the same as M.

3. M'EYX.

4. For every variable assignment for object variables o,, and for every fluent

F(Z,s), M' o, |= F(Z,S0) iff M,05,0, | F(Z,s).
5. M' = (VYa, s)Poss(a, s).
6. M' = D,,.

Clearly,
M' 04 E X UDyne UDss U{RC(Sp)} U {Poss(a, So)}.

Therefore by our assumption (23), M’ o, |E RC(do(a, Sp)). Now since M’ |= Ds,
and M' o, = Poss(a,Sp), we have that M’ o, = RC(do(a,So)) iff M' o, =
R[RC(do(a, Sp))]. But R[RC(do(a, Sp))] is the same as the result of replacing s
in R[RC(do(a, s))] by Sg, thus by our construction

M' o4 |E R[RC(do(a, So))] iff M, o5, 0, ER[RC(do(a,s))].

Therefore M, 05,0, |E R[RC(do(a,s))]. This proves the “only if” part, thus the

lemma.

Theorem 3 Let D be a set of the successor state arioms, one for each fluent, of
the form:

Poss(a,s) D F(x1,...,xn,do(a,8)) = [¥p V (F(z1, ...,2n,8) AT p)]. (24)
where F(x1,...,2n, 8) is an (n+1)-ary fluent, and ¥p and V_p satisfy (15) and (16),

respectively. Suppose further that:
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1. The following consistency condition (Reiter [20]) holds for each F':

Duna = (Vs,a,21, ..., 20)=(Tp AV p). (25)

2. The ramufication constraints relativised to states accessible from Sy are derivable
from the successor state arioms:

S U Duna UDss U{RC(S0)} = (V5).S0 < s D RO(s) (26)

for every (Vs)RC(s) € Dyram.-
Then a first-order structure is a minimal model of
Y UDuna UDram UD,;
iff it is a model of
Y UDuna UD,, UDS,,, UDS

where D, . is the set of ramification constraints relativised to states which are not

accesstble from Sy:

Dy = 1(¥s).So £ s D RC(s) | (Vs)RC(s) € Dyram },
and D22, is the set of ramification constraints restricted to the initial state:
D;2, = {RC(So) | (Vs)RC(s) € Dyam}.

Proof Let M be a model of

Y UDuna UD, s, UD,, UDS . (27)
We show that M is a minimal model of
b UDuna UDef UDram- (28)

We first show that M is a model of the theory. Consider any fluent . Suppose
(Va, s, #).Poss(a,s) D ¥ D F(do(a, s))

is in D.;. Recall that by our construction, ¥r is equivalent to a formula of the form
01 V-V, such that for some i, @; is ¥t. Thus

Y UDuna = (VYa,s,2).9T D Up.
Therefore
Y UDuna UDss = (Va, s, 7). Poss(a,s) D ¥t D F(do(a, s)).

Similarly, by using in addition the consistency condition (25), we can show that for
any fluent F', if
(Va, s, ¥).Poss(a,s) D ¥~ D —~F(do(a, s))
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is in Dy, then
Y UDuyna UDss = (VYa, s,Z).Poss(a,s) DV~ D —F(do(a,s)).

Thus
Y UDynaUDss =Dy

Now by (26), we have
xu D“"a U Dss U Dr_am U ngm ': Dﬂlm'

Therefore, (27) implies (28). By the assumption, M is a model of (28), so it is also a
model of (28). Suppose that M’ is a model of (28), and o5 a variable assignment for
situations such that

1. M and M’ have the same universe.
2. M and M’ differ only in their interpretations of fluents.
3. For any assignment o, of object variables, and any fluent F'(z1,..., 2y, s),
M,os5,0, E F(21,...,20,8)
iff
M' os,0, = F(z1,..., 20, s).

Now for any assignments o, and o, of action and object variables, respectively, and
any fluent F'(21,..., 2y, s), suppose

M,o5,04,0, = Poss(a, s) Aab(a, F(z1,...,2n,8)).
Then since M is a model of D, either
MﬂUSaUCLJUO ': _'F/\\IIF

or
M,os,00,00 E FA-VUp AVU_p.

Either way, since Up and U p satisfy (15) and (16), respectively, and M’ is a model
of (28) and so a model of the left hand side of (15) and (16), we conclude that

M' os,04,0, = ab(a, F(z1, ..., n, 5)).

From our definition of minimal models in Section 4, we conclude that M is a minimal
model of (28).

Let M be a minimal model of (28). We show that it is a model of (27). To that
end, construct a structure M’ as follows:

1. Let the universe of M’ be the same as that of M. Let M’ and M interpret
everything the same except for the truth values of fluents.
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2. Let M' and M interpret the fluents the same in Sy, i.e. for every assignment
o, and every fluent F'(zq,...,2n, s),

M' o, = F(z1,...,2p,S0)

iff
M,o, = F(21,...,2n,S0).

3. Inductively, for any variable assignment o, if M, o |= = Poss(a, s), then for every
fluent F(z1,..., 2,),
M' o= F(zy,...,zp,do(a, s))
iff
M,o |E F(21,...,2n,do(a, s)).
If M,o |= Poss(a, s), then for every fluent F(z1, ..., 2,, s), and for every assign-
ment ¢’ if ¢/(s) = o(s), and ¢'(a) = o(a), then

M' o' E F(z1,...,2n,do(a, s))
iff
M' o' EVpV (F(z1,....,20,8) A=V F),

where ¥p and ¥_p are as in (24).

Clearly, M’ is well-defined. We claim that it is a model of (27). It is clear that we only
need to show that it is a model of D,,,,,. In fact, we claim that it is a model of D, 4y, .
This we prove by induction. Let (Vs)RC(s) € Dram. By construction, M’ agrees
with M on Sp, so it satisfies RC(Sp). Let o5 be an assignment of situation variables.
We assume inductively that M’ o5 | RC(s); we show that for any assignment o, of
action variables,

M’ os,0, = RC(do(a,s)).
There are two cases. If M’ o, 0, |E 7 Poss(a,s), then by construction, M’ agrees

with M on do(a, s), and so satisfies RC(do(a, s)). Now suppose M', 05,0, = Poss(a, s).
By condition (26) and Lemma 5,

Duna = (Ya,s).RC(s) A Poss(a, s) D R[RC(do(a, s))].

Therefore M’ 0,0, E R[RC(do(a,s))]. But M’ os,0, = {Poss(a,s)} UDss, thus
M' 05,04 = RC(do(a,s)). So by induction, M’ |= (Vs)RC(s). Therefore M’ =
Dram-

We now show that M = M’. This we do by induction. By the construction of
M’ they agree on Sy. Let o5 be an assignment of situation variables. Inductively, we
assume that M and M’ agree on s:

M' os,0, E F(z1,...,20,8)

iff
Ma 05,00 ': F(Il, "')xn:S)a
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for every assignment o, of object variables. We show that
M' os,04,0, = F(21,...,%n,do(a, s))
iff
M,o5,04,00 = F(21, ..., 2n,do(a, 5)),

for every assignments o, and o, of action and object variables, respectively. There
are two cases. If M, 05, 04,0, = 7 Poss(a, s), then this follows from the construction
of M'. Now assume that

M,o5,04,0, = Poss(a, s).

Since M’ is a model of (27), as we have proved above in the first part of of our proof,
if
M' o5,04,0, = ab(a, F(z1, ..., zn, s))

then
M,05,04,0, = ab(a, F(21,...,2n,s))

as well. But M 1s minimal, so

M' o5,04,0, = ab(a, F(z1, ..., 2n, s))
iff

M,o5,04,0, = ab(a, F(x1,...,2,,8)).

But M and M’ agree on s, so they also agree on do(a,s). By induction, we have
M = M'. Therefore M is a model of (27).
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