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Abstract

Many AI tasks, such as product configuration, decision support,
and the construction of autonomous agents, involve a process of con-
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strained optimization, that is, optimization of behavior or choices sub-
ject to given constraints. In this paper we present an approach for
constrained optimization based on a set of hard constraints and a pref-
erence ordering represented using a CP-network—a graphical model
for representing qualitative preference information. This approach of-
fers both pragmatic and computational advantages. First, it provides a
convenient and intuitive tool for specifying the problem, and in partic-
ular, the decision maker’s preferences. Second, it admits an algorithm
for finding the most preferred feasible (Pareto optimal) outcomes that
has the following anytime property: the set of preferred feasible out-
comes are enumerated without backtracking. In particular, the first
feasible solution generated by this algorithm is Pareto optimal.

1 Introduction

The problem of finding a satisfying assignment of values to a set of vari-
ables given a collection of constraints is a well-studied problem in AI and
other fields, and has a wide variety of practical applications. In some of
these domains, a user may be satisfied with any solution satisfying the set
of constraints. In others, however, the user has preferences over the set of so-
lutions, and would like to obtain the best satisfying assignment—or at least
a good assignment—with respect to these preferences. This latter problem,
that of finding a solution to a constraint satisfaction problem that is opti-
mal with respect to a user’s preferences, is often referred to as constrained
optimization.

How one approaches constrained optimization depends critically on the
representation of preferences one adopts. If user preferences are captured
using some quantitative objective function defined over problem variables,
standard constraint-based optimization techniques can be used (e.g., stan-
dard linear- or integer-programming packages). Alternatively, depending on
the nature of the constraints (e.g., their logical form), methods derived from
constraint satisfaction algorithms can be applied. For example, some soft
constraint representation (Bistarelli, Montanari, & Rossi, 1997; Bistarelli,
Fargier, Montanari, Rossi, Schiex, & Verfaillie, 1999; Schiex, 1992; Fargier,
Lang, & Schiex, 1993; Freuder & Wallace, 1992; Freuder, 1989) could be
used to represent both feasibility constraints and preferences.

Unfortunately, in many situations, quantitative utility information cap-
turing a user’s preferences may be very difficult to obtain; decision analysts
have recognized for decades that people have a hard time accurately as-
sessing their preferences quantitatively (French, 1986). Fortunately, users
are often much more comfortable assessing their preferences qualitatively,
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by ordering or ranking full outcomes, or instantiations of subsets of vari-
ables. Furthermore, unless uncertainty exists in the outcomes of decisions,
quantitative utility information provides no benefit over simple ordering in-
formation.

In this paper, we consider the problem of constrained optimization with
qualitative preference information. Specifically, we adopt CP-networks (Boutilier,
Brafman, Hoos, & Poole, 1999; Boutilier, Brafman, Domshlak, Hoos, &
Poole, 2003) to represent a user’s qualitative preferences over variable assign-
ments, and address the problem of optimization using this representation.
Apart from providing a natural, concise, graphical representation of pref-
erences, we show that CP-nets support effective techniques for constrained
optimization. In particular, we derive a branch-and-bound algorithm for
producing the set of Pareto optimal solutions satisfying a collection of con-
straints that exploits the CP-net structure for computational advantage.
This algorithm also has an important anytime property: the collection of
solutions it produces is guaranteed to contain only Pareto-optimal solutions
at any point in time (i.e., no solutions will be retracted as new solutions are
discovered).

1.1 Motivation for the Approach

We begin with some motivation for the general approach we adopt. We con-
centrate on constrained optimization problems, defined over a finite set of
variables with finite domain size. Such problems are exemplified by configu-
ration tasks, decision support problems and the construction of autonomous
agents. As an example, consider the problem of adapting rich-media mes-
sages to specific user devices.1 Rich-media messages contain multiple ele-
ments of distinct types, such as audio, video, text, image, and animation.
Each element can be displayed in multiple ways. For example, a video seg-
ment can be displayed at different rates, using different color resolutions,
and taking up different portions of the viewing area. Typically, the message
author has a single most preferred manner for presenting her message. But
this presentation may not be feasible on all user devices. For example, a
PDA with a black-and-white screen cannot display color. Similarly, buffer
size and screen size limit the types of elements that can be displayed simulta-
neously. To overcome this problem, the message transcoder needs to adapt
the message presentation to the particular capabilities of the user device
by finding a feasible presentation of the message. On the other hand, the

1This application is being developed by the STRIMM Consortium using the language
and tools presented in this paper (Brafman & Friedman, 2003).
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message author, who does not know at composition time on what devices
her message will be displayed, needs to provide information that will help
the transcoder select the best feasible presentation.

To help this process, we would like to provide the message author with
a language for annotating her message. Using this language the author
could rank different presentation options for various message elements. For
example, she may specify that she prefers that a particular video segment
be displayed in color rather than black and white. In addition, the author
may prefer that color be displayed using a smaller image size (because of
resolution problems) and black and white be displayed using a larger image
size. When the message recipient requests the message, his device submits
a description of device capabilities to the transcoder, which attempts to
select among the feasible presentations that which is most preferred by the
author. For example, given a user with a black-and-white PDA, the video is
constrained to be black and white, and a large image size is selected because
of the author’s preferences.2

Problems of this type can be viewed abstractly as follows: we assume
a finite set of variables, each with a finite domain (e.g., display color of a
particular message component, display size, etc.). Various constraints are
imposed on the value of these variables, such as the fact that video cannot be
displayed in color on a black-and-white device, that the total display size of
message components cannot exceed the size of the device display, and so on.
Finally, some preference relation on the possible assignments is provided, as
alluded to above. Our goal is to find assignments to the set of variables that
satisfy the constraints and are optimal with respect to our preferences.

Although the specification of a constraint satisfaction problem (CSP) is
quite standard, the specification of a preference relation on possible assign-
ments leaves more room for choice. In particular, there are two aspects of
the specification that we need to consider. First, we have to choose between
quantitative and qualitative preference representations. Second, we have to
choose between specifications that are coupled, where the same language is
used for preferences and constraints, and decoupled, where preferences and
constraints are treated as different sorts. We argue that for many appli-
cations, and in particular, customized product configuration problems, a
qualitative, decoupled approach is the most appealing.

Let us consider the choice between quantitative and qualitative represen-

2This is just an illustrative example. In practice, there are more options, e.g., allowing
for different color resolutions. In addition, the user can choose presentation templates
that have built-in default preferences for different message aspects.
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tations. In classical decision theory and decision analysis a utility function
is used to represent the decision maker’s preferences. Utility functions are
a powerful form of knowledge representation. They provide a quantitative
measure of the desirability of different outcomes, capture attitude toward
risk, and support decision making under uncertainty. However, the process
of obtaining the type of information needed to generate a good utility func-
tion is time consuming and requires considerable effort on the part of the
user. In some applications, this effort may be worthwhile, for instance, when
uncertainty plays a key role, and when the decision maker and a decision
analyst are able and willing to engage in the required preference elicitation
process. One would expect to see such effort invested when, say, important
medical or business decisions are involved. However, there are many appli-
cations where: (a) uncertainty is not a crucial factor; (b) the user cannot
be engaged in preference elicitation for a lengthy period of time (e.g., in an
on-line product recommendation systems); or (c) the preference elicitation
process cannot be supported by a human decision analyst and must be per-
formed by a software system (e.g., due to replicability or mass marketing
aims). In such cases, elicitation of a quantitative utility function of suitable
accuracy and precision is not a realistic option.

When a utility function is unavailable or unnecessary, one can resort
to other, more qualitative forms of preference representation. Ideally, this
qualitative information should be easily obtainable from the user by non-
intrusive means. That is, we should be able to generate it from natural
and relatively simple statements about preferences obtained from the user,
and this elicitation process should be amenable to automation. In addition,
automated reasoning with this representation should be feasible and efficient.
For example, in an on-line product configuration or recommendation service,
a recommendation should be generated quickly.3

Next, let us consider the question of whether the specification of con-
straints and preferences should be coupled or decoupled. Certainly, in many
domains the specification of what people want is of a different sort than
the specification of what is possible. There is no reason why these should
be conflated, or specified using the same representation. One needs to seek

3An alternative that lies somewhere between quantitative and qualitative preference
representations is the use of imprecisely specified utility functions. In such work, bounds
(Wang & Boutilier, 2003; Boutilier, Patrascu, Poupart, & Schuurmans, 2003), constraints
(White, III, Sage, & Dozono, 1984; Blythe, 2002), or distributions (Chajewska, Koller, &
Parr, 2000; Boutilier, 2002) are placed on the (numerical) parameters of the underlying
utility function. These models still often require users to assess quantitative information
(such as tradeoff weights), though in a less precise fashion than full utility elicitation.
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the best representations for preferences and the best representations for
hard constraints; there is no a priori reason to assume that these should
be similar, or to insist that they be the same. Furthermore, the decoupled
perspective is often very natural: those most familiar with the constraints
underlying a particular decision problem are different from the person most
familiar with the preferences. This is especially true when one considers
the use of systems that make or recommend decisions on behalf of multiple
users—the constraints are known by (i.e., encoded within) the system, while
the preferences vary from user to user. Consider, for example, customized
product configuration (Haag, 1998; Sabin & Weigel, 1998), embodied, say,
as a web site that assembles components for some type of system. In this
class of problems, we typically have two parties involved, the manufacturer
and the consumer. The manufacturer brings product expertise, and with it
a set of hard constraints on possible system configurations. We expect that
the manufacturer has knowledge of feasibility constraints regarding which
parts fit together, and what functionality results from various combinations
of parts. The builders of the web site, however, can’t anticipate the specific
preferences of individual users. The individual users, in contrast, do know
their own preferences, but may be unaware of the hard constraints that
define the set of feasible system configurations. In this situation there is a
natural decoupling of the preferences and constraints. However, when choos-
ing a system, both the constraints and the preferences need to be taken into
account—by finding the most preferred, feasible product configuration—to
provide the user with maximal satisfaction.

A primary example of a coupled representation is the soft constraints
formalism (see, e.g., Bistarelli et al. (1997, 1999)), developed to model con-
straint satisfaction problems that are either overconstrained, and thus “un-
solvable” (Freuder & Wallace, 1992), or that suffer from imprecise knowledge
about the actual constraints (Fargier & Lang, 1993). In the soft constraints
formalism, the constrained optimization problem is presented in the form
of a set of preference orderings over assignments to subsets of variables, to-
gether with some operator for combining these local preference relations to
form a preference relation over the assignments to the complete set of vari-
ables. Each such subset of variables corresponds to an original constraint
that now can be satisfied to a different extent by different variable assign-
ments. There is much flexibility in how such local preferences are specified
and combined: various soft-constraints models, such as weighted (Bistarelli
et al., 1999), fuzzy (Schiex, 1992), probabilistic (Fargier & Lang, 1993), and
lexicographic (Fargier et al., 1993) CSPs, are discussed in the literature on
constraint satisfaction.
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Some soft-constraint models have corresponding notions in standard
decision-theoretic preference representations. For example, weighted CSPs—
in which weight functions are associated with subsets of variables, and the
aggregation is done via summation—correspond to the notion of additively
decomposable utility functions (Keeney & Raiffa, 1976; Bertelè & Brioschi,
1972; Dechter, Dechter, & Pearl, 1988; Jensen, Jensen, & Dittmer, 1994),
while fuzzy CSPs are grounded in the framework of possibilistic logic (Dubois
& Prade, 1988). Unfortunately, while being very expressive, these quantita-
tive models of soft constraints suffer from the elicitation disadvantages we
noted above. Purely qualitative soft-constraint models that have been stud-
ied usually take the form of (unweighted) Max-CSP, that is, the CSP variant
in which the goal is to satisfy as many constraints as possible. However, the
expressivity of Max-CSP (and thus its expected practical usefulness) is very
limited.

1.2 Overview

The main contribution of this paper is a qualitative, decoupled specifica-
tion method for constrained optimization problems by means of an intuitive
qualitative preference specification together with an efficient optimization
algorithm. Our preference specification technique is based on CP-networks
(Boutilier et al., 1999, 2003), a qualitative graphical formalism for specifying
preference orders. CP-nets capture sets of conditional ceteris paribus (CP)
preference statements, such as “I prefer that a large display size be used if
video clip 17 is played in black and white and no other images are displayed.”
Under the ceteris paribus semantics (“all else being equal”), this statement
asserts that given two message displays that differ only in the display size of
clip 17, and both containing no other image and a black and white display
of the clip, we prefer the message in which clip 17 is given more screen size.
As argued by many philosophers (see Hansson (1996, 2001) for an overview)
and AI researchers (Doyle, Shoham, & Wellman, 1991; Doyle & Wellman,
1994), most of the preferences that we express or act upon seem to be of this
type.

In this paper we show that CP-nets are not only an intuitive tool for
structuring one’s preferences, but they also support an efficient optimization
process. In fact, given preferences specified using this formalism, the prob-
lem of obtaining a single preferentially non-dominated satisfying assignment
is, in some sense, no harder than the problem of solving the underlying CSP.
Moreover, our algorithm has a useful anytime property—the set of solutions
it holds at any time during the search process contains only Pareto-optimal
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solutions. To the best of our knowledge, these properties are not common
to other constrained optimization frameworks.

The paper is structured as follows. In Section 2 we describe the CP-
network preference representation. In Section 3 we describe a branch-and-
bound algorithm that, given a CSP and a CP-net, computes the set of
Pareto-optimal solutions (i.e., those solutions of the CSP for whose no other
solution is provably preferred). Section 4 concludes the paper with a discus-
sion of future work.

2 Background

We begin with a discussion of the standard notions from decision theory that
we require and of the CP-network formalism for preference representation.

2.1 Preferential Independence Ceteris Paribus

We assume a set of variables V = {X1, . . . ,Xn} with finite domains D(X1), . . . ,D(Xn).
The decision maker wants to specify a preference ranking over complete as-
signments on V. Each such assignment can be seen as a possible outcome of
the decision maker’s action, where these could be some physical action or, as
in configuration problems, simply a choice of a value for each variable. The
set of all outcomes is denoted O. A preference ranking is a total preorder �
over the set of outcomes: o1 � o2 means that outcome o1 is equally as good
as or preferred to o2 by the decision maker. We use o1 � o2 to denote the
fact that outcome o1 is strictly preferred to o2 (i.e., o1 � o2 and o2 6� o1),
while o1 ∼ o2 denotes that the decision maker is indifferent between o1 and
o2 (i.e., o1 6� o2 and o2 6� o1). We use the terms preference ordering and
relation interchangeably with ranking.

Direct assessment of a preference relation is generally infeasible due to
the exponential size of O. Fortunately, a preference relation can be speci-
fied concisely, at least partially, if it exhibits sufficient structure—a property
on which much recent work in the area of preference elicitation (and AI in
general) focuses. Independence assumptions play a key role in such specifi-
cations.

Definition 1 A subset of variables X is preferentially independent of its
complement Y = V−X iff, for all x1,x2 ∈ D(X), y1,y2 ∈ D(Y) (where we
use D(·) to denote the domain of a set of variables as well), we have:

x1y1 � x2y1 iff x1y2 � x2y2
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If this relation holds, we say that x1 is preferred to x2 ceteris paribus (all
else being equal). This implies that one’s preferences for different values of X
do not change as other attributes vary. The analogous notion of conditional
preferential independence is defined as follows.

Definition 2 Let X, Y and Z be a partition of V into three disjoint non-
empty sets. X is conditionally preferentially independent of Y given z ∈
D(Z) iff, for all x1,x2 ∈ D(X), y1,y2 ∈ D(Y), we have:

x1y1z � x2y1z iff x1y2z � x2y2z

In other words, the preferential independence X of Y holds if Z is as-
signed to z. If such a relation holds for all assignments on Z we say that
X is conditionally preferentially independent of Y given Z. Note that these
notions are standard in multi-attribute utility theory (Keeney & Raiffa,
1976), and can be viewed as qualitative variants of (arguably more familiar)
quantitative notions of utility independence.

2.2 CP-nets

CP-nets were introduced as a tool for compactly representing qualitative
preference relations (Boutilier et al., 1999). This graphical model exploits
conditional preferential independence in structuring a decision maker’s pref-
erences under a ceteris paribus assumption. Although reasoning about ce-
teris paribus statements has been explored within AI (Wellman & Doyle,
1991), CP-networks are the first graphical model based on the notions of
purely qualitative preferential independence captured by the ceteris paribus
assumption, and bear a superficial similarity to Bayesian networks (Pearl,
1988).4 However, the nature of the relationship between nodes within a
CP-net is generally quite weak compared with the probabilistic relations in
Bayes nets.

During preference elicitation, for each variable X, the decision maker is
asked to specify a set of parent variables Pa(X) that can affect her pref-
erences over the values of X. That is, given a particular value assignment
to Pa(X), the decision maker should be able to determine a preference or-
dering for the values of X, all other things being equal. Formally, X is
conditionally preferentially independent of V − {X,Pa(X)} given Pa(X).
This information is used to create the graph of the CP-net in which each

4Bacchus and Grove (1995) have developed undirected graphical preference and utility
models that bear some relation to CP-networks.
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node X has Pa(X) as its immediate predecessors. Given this structural
information, the decision maker is asked to explicitly specify her preferences
over the values of X for each assignment to Pa(X). This conditional pref-
erence ranking over the values of X is captured by a conditional preference
table (CPT) which annotates the node X in the CP-net. That is, for each
assignment to Pa(X), CPT(X) specifies a total order over D(X), such that
for any two values xi, xj ∈ D(X), either xi � xj or xj � xi.

Definition 3 A CP-net over variables V = {X1, . . . ,Xn} is a directed
graph G over X1, . . . ,Xn whose nodes are annotated with conditional pref-
erence tables CPT(Xi) for each Xi ∈ V. Each conditional preference table
CPT(Xi) associates a total order �i

u with each instantiation u of Xi’s par-
ents Pa(Xi) = U.

For simplicity of presentation, we insist that the ordering �i
u expressed

in the CPTs of the network be total. As such, conditional expressions of
indifference are not allowed. Nothing critical hinges on this, but algorithms
for processing CP-nets with statements of indifference are slightly more in-
volved. We refer to (Boutilier et al., 2003) for a discussion of this point.

Generally, nothing in the semantics forces CP-nets to be acyclic. How-
ever, acyclicity of a CP-net ensures that it specifies a consistent preference
order (Boutilier et al., 1999). We note in passing that cyclic CP-nets are
of potential interest in some domains, but their applicability is limited by
the fact that asymmetry of the induced preference relation is not always
guaranteed in the presence of cycles. A general effective algorithm for ver-
ifying the consistency of cyclic CP-nets does not yet exist, and we believe
that the problem is np-hard. The analysis of preference orderings induced
by cyclic CP-nets and the development of effective algorithms for testing
their consistency is an area of ongoing research, and some initial results on
these issues currently exist (Domshlak & Brafman, 2002; Domshlak, 2002).
In this paper we restrict the discussion to acyclic CP-nets. Likewise, for a
formal specification of the semantics of CP-networks and other properties
of this representation, we refer the reader to (Boutilier et al., 2003).

2.3 The Induced Preference Graph

The preference information captured by an acyclic CP-net N can be viewed
as a set of logical assertions about a user’s preference ordering over complete
assignments to variables in the network. These statements are generally not
complete, that is, they do not determine a unique preference ordering. Those
orderings consistent with N can be viewed as possible models of the user’s
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preferences, and any preference assertion that holds in all such models can
be viewed as a consequence of the CP-net. More precisely, we say that the
preference o � o′ is a consequence of N , written N |= o � o′, iff o � o′ holds
in all preference orderings consistent with the ceteris paribus preference
statements encoded by the CPTs of N (Boutilier et al., 2003).

The set of consequences o � o′ of an acyclic CP-net constitutes a partial
order over outcomes: o is preferred to o′ in this ordering iff N |= o � o′.
This partial order can be represented by an acyclic directed graph, referred
to as the induced preference graph:

(i) The nodes of the induced preference graph correspond to the complete
assignments to the variables of the network, and

(ii) there is an edge from node o′ to node o if and only if the assignments
at o′ and o differ only in the value of a single variable X, and given
the values assigned by o′ and o to Pa(X), the value assigned by o to
X is preferred to the value assigned by o′ to X.

In turn, the transitive closure of this graph specifies the (asymmetric) partial
order over outcomes induced by the CP-net. More precisely, we have that
N |= o � o′ iff there is a directed path from o′ to o in the induced preference
graph for N .

We illustrate the CP-net model and the induced preference graph using
the following simple example. For simplicity of presentation, all variables in
this example are Boolean. However, the semantics of CP-nets is defined for
variables with arbitrary finite domains.

Figure 1(a) illustrates a CP-net that expresses my preferences for evening
dress. This network consists of three variables J , P , and S, standing for
the color of my jacket, pants, and shirt, respectively. I unconditionally
prefer black to white as a color for both the jacket and the shirt, while my
preference between red and white shirts is conditioned on the combination
of jacket and pants: if they are the same color, then a white shirt will make
my outfit too colorless, thus I prefer a red shirt. Otherwise, if the jacket and
pants are different colors, then a red shirt will probably appear too flashy,
thus I prefer a white shirt.

Figure 1(b) shows the graph corresponding to the partial order over
outcomes that this CP-net induces. The top element (Jw ∧ Pw ∧ Sw) is the
worst outcome while the bottom element (Jb ∧ Pb ∧ Sr) is the best. Arrows
are directed from less preferred to more preferred outcomes according to the
immediate preference relations specified by CPT(P ), CPT(P ) and CPT(S).
Finally, the transitive closure of this graph precisely captures everything
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that can be proven about my preference relation for alternative evening
dress given the information present in the CP-net.

Jb � Jw Pb � Pw
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���� ���� ��Jb ∧ Pb ∧ Sr

(b)

Figure 1: “Evening Dress” CP-net.

2.4 Reasoning with CP-nets

The main purpose of any preference representation is to support answering
various queries about the preferences of the decision maker. Two fundamen-
tal types of queries are:

1. Outcome optimization—determining the best outcome consistent with
certain evidence (or one of the nondominated outcomes, if the best
outcome is not unique).

2. Outcome comparison—preferential comparison between a pair of out-
comes.

General procedures for both of these tasks with respect to a CP-net have
been introduced (Boutilier et al., 1999, 2003). However, while outcome op-
timization with respect to a CP-net has been shown to be computationally
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easy, there are both polynomial and np-hard cases of outcome comparison.
In this section we briefly overview relevant results on reasoning about pref-
erences modeled by a CP-net (Boutilier et al., 2003).

2.4.1 Outcome optimization queries

Given an acyclic CP-net N , we can easily determine the best outcome among
those preference rankings that satisfy N . Such a query is called outcome
optimization. Intuitively, we simply need to sweep through the network from
top to bottom (i.e., from ancestors to descendants) setting each variable to
its most preferred value given the instantiation of its parents. Indeed, while
the network does not usually determine a unique ranking, it does determine a
unique best outcome.5 More generally, suppose that we are given evidence
constraining possible outcomes in the form of an instantiation z of some
subset Z ⊆ V of the network variables. Determining the best completion of
z (that is, the best outcome consistent with z) can be achieved in a similar
fashion.

More precisely, outcome optimization queries can be answered using the
following forward sweep procedure, taking time linear in the size of the
network. Given an acyclic CP-net N over a set of variables V, and an
assignment z to some Z ⊆ V, denote by Comp(z) the set of all assignments
over V in which Z takes the value z. The goal is to determine the (unique)
o ∈ Comp(z) such that N |= o � o′ for all o′ ∈ Comp(z) − {o}. This can be
effected by a straightforward sweep through the network. Let X1, . . . ,Xn

be any topological ordering of the variables in V with respect to the graph
of N . We set Z = z, and iterate from X1 to Xn, assigning each Xi 6∈ Z in
turn to its most preferred value given the instantiation of its parents. This
procedure exploits the considerable power of the ceteris paribus semantics
to easily find an optimal outcome given certain observed evidence.

2.4.2 Outcome Comparison Queries

Outcome optimization is not the only task that should be supported by a
preference representation. Another basic query with respect to such a model
is preferential comparison between outcomes. Two outcomes o and o′ can
stand in one of three possible relations with respect to a CP-net N : either
N |= o � o′; or N |= o′ � o; or N 6|= o � o′ and N 6|= o′ � o. The

5We refer the reader to (Boutilier et al., 2003) for a discussion on partial CP-nets that
specify more than one best outcome. Determining the set of all best outcomes with respect
to such acyclic CP-nets is linear in the size of the output (i.e., the set of best outcomes).
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third case, specifically, means that the network N does not contain enough
information to prove that either outcome is preferred to the other (i.e., there
exist preference orderings satisfying N in which o � o′ and in which o′ � o).
There are two distinct ways in which we can compare two outcomes using a
CP-net:

1. Dominance queries – Given a CP-net N and a pair of outcomes o and
o′, ask whether N |= o � o′. If this relation holds, o is preferred to o′,
and we say that o dominates o′ with respect to N .

2. Ordering queries – Given a CP-net N and a pair of outcomes o and
o′, ask if N 6|= o′ � o. If this relation holds, there exists a preference
ordering consistent with N in which o � o′. In other words, it is
consistent with the knowledge expressed by N to order o “over” o′

(i.e., to assert that o is preferred to o′). In such a case we say o is
consistently orderable over o′ with respect to N .

Ordering queries are a weak version of dominance queries, but they are
sufficient in many applications where, given a pair of outcomes o and o′,
one can be satisfied by knowing only that o′ 6� o. For example, consider a
set of products that a human or automated seller would like to present to
a customer in decreasing order of customer preference. In this case, there
seems to be no difference between sorting the products according to a strong
relation �, or according to its weaker counterpart 6≺. Ordering queries with
respect to acyclic CP-nets can be answered in time linear in the number of
variables (Boutilier et al., 2003). Informally, ordering a pair of outcomes
o and o′ is based on a procedure that, given a query N |= o 6� o′, returns
in linear time either “yes” or “don’t know”. However, if o 6= o′, then this
procedure returns “yes” for at least one of the two queries N |= o′ 6� o and
N |= o 6� o′. In what follows, we refer to this procedure as the ordering
procedure.

In some applications ordering queries are not sufficient. Indeed, the con-
strained optimization algorithm presented later requires the ability to answer
dominance queries. An understanding of the computational properties of
dominance queries is an important part of the research on CP-nets (Domsh-
lak & Brafman, 2002; Domshlak, 2002). Comparisons between outcomes
that differ in the value of a single variable X only are easy: we simply check
the CPT of X and determine which outcome sets it to a more preferred value.
We can view the improved outcome as a product of a single improving “flip”
in the value of X. The only current technique for solving more general dom-
inance queries is based on the idea of a flipping sequence (Boutilier et al.,
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1999). An improving flipping sequence is a sequence of progressively better
outcomes, each obtained from its predecessor via a single value flip.

Definition 4 Let N be a CP-net over variables V, with X ∈ V, U the
parents of X, and Y = V − (U ∪ {X}). Let ux′y ∈ D(V) be any outcome.
An improving flip of outcome ux′y with respect to variable X is any outcome
uxy such that x � x′ given u in network N . Note that an improving flip
with respect to X may not exist if x′ is the most preferred value of X given
u.

An improving flipping sequence with respect to network N is any se-
quence of outcomes o1, . . . , ok such that oi+1 is an improving flip of oi with
respect to some variable (for each i < k). An improving flipping sequence
for a pair of outcomes o′ and o is any improving sequence o1, . . . , ok with
o′ = o1 and o = ok.6

Informally, each improving flipping sequence from an outcome o′ to an
o corresponds to a directed path from the node o′ to the node o in the
preference graph induced by N . It is intuitively clear that the existence
of an improving flipping sequence from o′ to o implies that all the total
orderings of the outcomes that are consistent with N must prefer o′ to o. It
is also not too difficult to show that the lack of a flipping sequence from o′

to o implies the existence of such a total ordering in which o′ is preferred to
o.

Indeed, given a CP-net N and a pair of outcomes o and o′, we have
that N |= o � o′ if and only if there is an improving flipping sequence with
respect to N from o′ to o (Boutilier et al., 1999). It turns out that answering
dominance queries even with respect to CP-nets with only Boolean variables
is hard in general. In particular, we have that (Boutilier et al., 2003):

• When the binary CP-net forms a directed tree, the complexity of dom-
inance testing is quadratic in the number of variables.

• When the binary CP-net forms a polytree (i.e., the induced undirected
graph is acyclic), dominance testing is polynomial in the size of the
CP-net description.

• When the binary CP-net is directed-path singly connected (i.e., there
is at most one directed path between any pair of nodes), dominance

6Worsening flips and worsening flipping sequences are defined analogously. Obviously,
any worsening flipping sequence is the inverse of an improving flipping sequence, and vice
versa.
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testing is np-complete. The problem remains hard even if the node
in-degree in the network is bounded by a small constant.

• Dominance testing remains in np-complete if the number of alterna-
tive paths between any pair of nodes in the CP-net is polynomially
bounded.

3 Constrained Optimization over CP-nets

In Section 2.4.1 it was shown that, given an acyclic CP-net and a (possibly
empty) partial assignment to its variables, determining the optimal outcome
is straightforward and can be done in time linear in the number of variables.
However, if some of the variables are mutually constrained by a set of hard
constraints, then the optimal outcome with respect to a CP-net may not be
feasible. In this case, our goal should be to determine either one, some, or
all outcomes that are (i) feasible (i.e., consistent with the hard constraints),
and (ii) not dominated by any other feasible outcome. Given a set of feasible
outcomes S, an outcome o ∈ S is said to be Pareto optimal with respect
to preference order � if and only if there is no o′ ∈ S such that o′ � o.
Determining the set of Pareto-optimal feasible outcomes is not trivial, since
for general sets of constraints without preferences the problem is np-hard.
In this section we introduce a branch-and-bound algorithm for determining
such a set of outcomes, given an acyclic CP-net and a set of hard constraints
on its variables, and analyze various computational properties of this algo-
rithm.

3.1 An Algorithm for Constrained Optimization

Formally, the problem is defined by an acyclic CP-net Norig, and a set
of hard constraints Corig, posed on the variables of Norig. The Search-CP
algorithm (depicted in Figure 2) is recursive, and each recursive call accepts
three arguments:

1. A CP-net N , which is a subnet of the original acyclic CP-net Norig,

2. A set C of hard constraints among the variables of N , which is a subset
of the original set of constraints Corig restricted to the variables of N ,
and

3. An assignment K to all variables in Norig −N .
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The initial call to Search-CP is done with Norig, Corig, and {}, respectively.
The Search-CP algorithm works as follows:

1. Search-CP starts with an empty set of solutions, and continuously ex-
tends it by adding new non-dominated solutions.

2. At each stage of the algorithm, the current set of solutions serves as a
lower bound for future candidates.

3. A new candidate at any point is compared to all solutions generated
up to that point. If the candidate is dominated by no member of the
current solution set, then it is added into this set.

The most important property of this algorithm is that the set of iteratively
generated solutions never shrinks. It means that the Search-CP algorithm
has a clear anytime behavior (Dean & Boddy, 1988; Horvitz & Seiver, 1997;
Zilberstein, 1993)—at any moment we can stop the execution of the algo-
rithm, and the solution set generated to that point will be a subset of the set
of all problem solutions.7 This property of the algorithm is very important,
since the entire set of non-dominated feasible solutions can be exponential in
the number of variables. Without this property, we would have to maintain
a potentially unmanageable set of candidate solutions. As far as we know,
this property of the CP-net model together with the Search-CP algorithm is
unique in the area of preference-based constrained optimization.

The algorithm proceeds by assigning values to the variables in a top-down
manner according to a topological ordering of the CP-net; this ordering is
determined in the recursive steps of the program. In each call, the values
for a topmost variable X in the current subnetwork N (i.e., X has no par-
ents in N ) are considered according to the preferential ordering induced by
the assignment to Pa(X) (where Pa(X) is defined in Norig). Whenever a
variable X is assigned a value xi, the current set of constraints C is strength-
ened into Ci (line 5). As a result of this propagation of X = xi, values for
some variables (at least for X) will be fixed automatically. The resulting
partial assignment K′ will extend the current context K and this extended
context K ∪ K′ will be used in subsequent recursive calls of the algorithm.
The CP-net induced by this partial assignment K′ to the variables of N is
denoted by Ni. Note that our algorithm is independent of the constraint
propagation technique being used to determine K′.

7Using Zilberstein’s (1993) terminology, this algorithm is anytime with respect to the
specificity quality measure: the intermediate result is always correct, but the level of detail
(e.g., completeness) is increased over time.
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After strengthening the set of constraints C by X = xi to Ci, some
pruning can take place in the search tree. Suppose that the set of constraints
Ci is at least as restrictive as some other set of constraints Cj = C∪{X = xj}
where j < i. We claim that there is no point pursuing the branch X = xi, as
any feasible assignment with X = xi will be dominated by some previously
achieved assignment in which X = xj . While the formal claim is provided
by Lemma 2 in Section 3.3, informally, this is not difficult to see: given K,
for any feasible assignment oi consistent with xi, the assignment oj, which
is identical to oi except that xi is replaced by xj, is also feasible. This is
because Ci is at least as restrictive as Cj . However, xj is preferred to xi given
K, so oj is preferred to oi. This justifies the second condition of line 6.

The generated partial assignment K′ may cause some of the constraints
and some of the edges of the CP-net to become redundant. Intuitively, K′
makes a constraint C redundant if, for each variable X involved in C, ei-
ther we have K′ instantiating X, or K′ refines the domain of X to contain
only values permitted by C. In turn, edges in the CP-net become redun-
dant because one’s conditional preferences may not depend on some of the
conditioning variables in certain contexts. As a simple example, consider a
variable X ∈ N with two parents Y and Z. It may be the case that if Y
is assigned the value y1, one prefers x1 to x2 regardless of the value of Z,
while if Y is assigned y2, one prefers X = x1 iff Z = z1. Thus, although
X depends on both Y and Z, if Y is assigned y1, the edge from Z to X is
redundant.8 Note that the extent of such problem refinement (with respect
to both constraints and preferential dependencies) depends on the depth of
constraint propagation performed in step 5.

If Ni, the network obtained from projecting K′ on N , is disconnected
with respect to both the edges of the network and the constraints, then
each connected component invokes an independent search in the extended
context K ∪K′. This is because optimization of the variables within such a
component is independent of the variables outside that component. The m
separate cases of lines 9–14 reflect these independent components.

Note that when the nondominated solutions for a particular subnet gen-
erated after the assignment X = xi are returned, each such solution is com-
pared to all nondominated solutions involving assignments that are more
preferred in the current context K, that is, those corresponding to the as-
signments X = xj, for all j < i (line 14). The key point is that a solution

8This reflects a form of context-specific independence often used in the representation
of conditional distributions in Bayesian networks (Boutilier, Friedman, Goldszmidt, &
Koller, 1996).
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involving X = xi cannot dominate any solution involving X = xj , j < i; this
follows from the ceteris paribus semantics. However, such a pair of solutions
can be incomparable. This explains the need for dominance testing and the
dependence of the the Search-CP algorithm on the complexity of dominance
testing. It also justifies the claim that no solution has to be retracted. The
corresponding formal claim is provided by Lemma 3 in Section 3.3.

The complexity results for the CP-net based preferential comparison be-
tween the outcomes (presented in Section 2.4.2) induce the following, some-
what surprising, computational property of constrained optimization over
the preference relation described by a CP-net.

1. If we are interested in getting any single non-dominated solution for the
given set of constraints (which is often the case), then we can output
the first feasible outcome generated by the Search-CP algorithm. Note
that no dominance queries will be required in this case since there is
nothing to compare with the first generated solution. Thus, although
it is hard to compare the complexity of a decision problem (CSP)
with an optimization problem, in some sense we can say that this
constrained optimization problem is no harder than the underlying
constraint satisfaction task. Of course, we are constrained to assign
values to variables in a topological order, and this order may not be
optimal for solving the underlying CSP quickly.

2. If we are interested in getting all, or even some non-dominated so-
lutions for the given constrained optimization problem then, gener-
ally, we need to compare different solutions. The overhead of the
required dominance queries makes our problem (at least in a practi-
cal sense) much harder than the corresponding CSP, except for cases
in which dominance testing in the given CP-net is polynomial (see
Section 2.4.2).

However, it is worth noting that in many cases, the dominance query
required in step 14 of Search-CP can often be solved quickly. This
follows from the fact that when comparing K∪o′ and K∪o, we actually
want to determine whether K∪o′ 6� K∪o, and not whether K∪o′ � K∪
o. This can sometimes be resolved by a simple, linear-time, ordering
query (Boutilier et al., 2003), as discussed in Section 2.4.2.

3.2 Example Application of Search-CP

We now illustrate the execution of the Search-CP algorithm on an example.
Consider the CP-net Norig over six Boolean variables {A,B,C,D,E,F},
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represented by the nodes and the (solid) directed arcs in Figure 3(a), while
the CPTs of the variables appear in Figure 3(b). Suppose that the set of
hard constraints Corig consists of three binary constraints, represented by
the dashed, undirected arcs in Figure 3(a), as follows:

c(A,E) : {A = a} ↔ {E = e}
c(C,E) : {C = c} ↔ {E = ē}
c(D,F ) : {D = d} → {F = f̄}

For instance, the constraint between the variables A and E asserts that if
A takes the value a, then E has to take the value e, and vice versa.

The initial call to Search-CP (numbered as call 0) has arguments: N =
Norig, C = Corig, and the empty partial assignment K0 = {}. The candidates
for variable selection in step 1 are A, C and E. Let us suppose that A has
been chosen. The variable A is preferentially independent of all others, and
a � ā is the preference ordering of its values. Therefore, first we perform
steps 5–14 with the value a, then with the value ā.

Let us consider the iteration with A = a. The branch of the search
tree corresponding to the assignment A = a is depicted in Figure 4. Since
A = a participates in constraint c(A,E), in step 5 the constraint set C is
strengthened to Ca, implying E = e. The pruning step 6 is not relevant in
this iteration since a is the first (i.e., best) value of A, and Ca is consistent.
We continue with steps 7–8, resulting in K′0 = {a, e} and Na as in Figure 3(c-
d). Since Na consists of only one connected component, in steps 10–11 we
perform only one call (call 1) to Search-CP with N = Na, C = Ca, and
K = {a, e}.

The candidates for variable selection step 1 in call 1 are B, C and F . Let
us suppose that B has been chosen. Given the value of A in K1 = {a, e},
b � b̄ is the preference ordering of the values of B. Therefore, we start with
the iteration corresponding to B = b. Again, we skip the pruning part of step
6, and since B does not participate in any of the hard constraints, we have
Cb = C and K′1 = {b}. The network Nb achieved after step 8 is presented in
Figure 3(e-f). Observe that Nb consists of two connected components, since
D is preferentially independent of C given B = b. Thus, in steps 10–11 we
perform two (unordered) calls to Search-CP: call 2 with N 1

b (consisting of C),
and call 3 with N 2

b consisting of D and F . Both these calls are performed
with the (unchanged from call 1) set of constraints C = Cb and with the
context K = {a, e, b}.

In call 2 the network consists of a single, preferentially independent node
C, and the preferential ordering of the C values is c � c̄. Here, the first
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iteration with c fails at step 6 since Cc implies E = ē, which contradicts
K2 = {a, e, b}. (The corresponding (leftmost) branch of the search tree
appears as

⊗
.) The second iteration with c̄ is successful, and, since Nc̄ is

empty, call 2 terminates by returning the local result set R2 = {c̄}.9
In call 3 the network consists of two, preferentially independent nodes D

and F . Suppose that D has been chosen in step 1, and consider the first it-
eration with D = d. The strengthened constraint set Cd consistently implies
F = f̄ , resulting in K′3 = {d, f̄}, and the empty network Nd. Therefore, this
iteration extends the empty set of local results R3 to R3 = {df̄}. The next
iteration is with D = d̄; we have Cd̄ = ∅ and K′3 = {d}. The reduced network
Nd̄ consists of a single node F , thus the only call (call 4) to Search-CP is
with N = Nd̄, C = Cd̄, and K = {a, e, b, d̄}.

In call 4 the preferential ordering of the values of F , given the value of
its parent E in K4 = {a, e, b, d̄}, is f � f̄ . The first iteration with F = f
extends the (empty so far) local set of results to R4 = {f}. Now consider
the next iteration with F = f̄ . This iteration terminates at step 6 due to the
pruning technique, since Cf̄ = Cf (= C = ∅) and f̄ ≺ f . (The corresponding
branch of the tree in Figure 4 appears as ᵀ). Note that this is the first time
that the pruning condition was effective, but later we show that, at least in
this particular example, this condition prunes most of the search tree.

The returned set of results {f} from call 4 is received as (the only)
S1

d̄
in steps 10–11 of the iteration with d̄ in call 3. Recall that, at this

stage of call 3, we have R3 = {df̄}, K3 = {a, e, b}, and K′3 = {d̄}. The
cross product K′3 × S1

d̄
provides us with {d̄f}, and in step 14 we test the

assignments abdef̄ and abd̄ef for dominance with respect to the original
CP-net Norig minus the variables that are not involved in the query. These
two outcomes are incomparable in Norig, thus we extend the set of local
results to R3 = {df̄ , d̄f}, and return it back to call 1.

Now, after we finished with call 2 and call 3, we are back in call 1, moving
to the steps 11–14 with S(1)

b = R2 = {c̄} and S(2)
b = R3 = {df̄ , d̄f}. Recall

that at this stage we have R1 = {}, K1 = {a, e}, and K′1 = {b}. The
cross product K′1 × S(1)

b × S(2)
b provides us with {bc̄df̄ , bc̄d̄f}. Now, since

R1 = {}, i.e., there is nothing to compare with, we extend the set of local
results to R1 = {bc̄df̄ , bc̄d̄f}, and move to the next iteration. However,
the next iteration terminates at step 6 due to the pruning technique, since

9Note that a simple forward checking procedure would have immediately restricted the
domain of C to {c̄} when variable E was set to e. This would have eliminated C as a
variable upon which to branch. We note that this and other domain pruning methods can
easily be incorporated into our algorithm without difficulty.
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Cb̄ = Cb and b̄ ≺ b. Returning back to the initial call 0, we extend the
(empty so far) local set of results R0 to contain the result of call 2 extended
by K′0 = {a, e}; that is, R0 = {abc̄def̄ , abc̄d̄ef}, and continue with the next
iteration corresponding to A = ā.

The branch of the search tree corresponding to the assignment A = ā is
depicted in Figure 5. We omit a detailed, step-by-step discussion of this part
of the search, but we would like to emphasize several points with respect to it.
First, it is easy to see from the illustration that the order in which the values
of the variable B are processed in the subtree A = ā is different from the
search branch corresponding to A = a. In general, this order can be different
for all the variables of a CP-net. Second, during the processing of this branch
we test three candidate solutions. However, only one of these candidates,
āb̄cdēf̄ , is successfully added to the set of solutions, while the other two
candidates are found to be dominated and thus pruned: āb̄cd̄ēf̄ is pruned
since it is dominated by āb̄cdēf̄ , and āb̄c̄d̄ef is dominated by abc̄d̄ef . Note
that this example emphasizes the need to compare a new candidate to all
solutions generated so far, since āb̄cdēf̄ is the only solution that dominates
āb̄cd̄ēf̄ , and abc̄d̄ef is the only solution that dominates āb̄c̄d̄ef .

3.3 Formal Properties of Search-CP

Our main claim is the correctness of the algorithm:

Theorem 1 Given a CP-net N and a set of hard constraints C over the
variables of N , an outcome o belongs to the set R generated by the algorithm
Search-CP if and only if o is consistent with C, and there is no other outcome
o′ consistent with C such that N |= o′ � o.

To prove this theorem, we prove two main lemmas. First, we show that
the pruning technique is sound—specifically, that no undominated solution
is pruned. This means that we generate a superset of all undominated
solutions. To show that our solution set is precisely the set of undominated
solutions it is enough to demonstrate that if o were added to the generated
set of solutions after o′ then it is not the case that o � o′. This implies that
a newly generated solution cannot dominate an existing solution.

Lemma 2 The pruning technique of Search-CP (step 6) is sound.

Proof: Let X be the current instantiated variable and let K be the current
context. We know that all of X’s parents in the CP-net are in K. Suppose
that Ci, the set of constraints obtained after assigning xi to X, is equal
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to or contains Cj, the set of constraints obtained earlier when the branch
X = xj was processed. The algorithm specification ensures that xj is a
more preferred value for X than xi in context K. Because Ci ⊇ Cj , any
assignment to the remaining variables that satisfies Ci satisfies Cj . Consider
such a satisfying assignment oi. From the above, we know that oj which is
identical to oi except for the value of X is also a satisfying assignment. By
the CP-semantics, oj is preferred to oi. Hence, all solutions obtained in the
pruned branch are dominated.

Lemma 3 Search-CP generates solutions in a non-increasing order.

Proof: Let o and o′ be two solutions such that o was generated before o′.
Let X denote the earliest variable (in terms of instantiation order) on which
these outcomes differ. Since o was generated before o′, it must assign X
a more preferred value (say x) than does o′ (say x′) given the (identical)
values of X’s parents. We now show by induction on X’s position in the
instantiation order that there cannot exist an improving flipping sequence
from o to o′; hence, N 6|= o′ � o.

Suppose that X is the first variable in the instantiation ordering of
Search-CP; this requires that X be a root node in N . Since X is a root
node, there is no way to flip X from x to x′ while improving an outcome.
Hence there can be no improving flipping sequence from o to o′.

Suppose that the inductive hypothesis holds for any two outcomes whose
first difference (with respect to instantiation order) occurs in some variable
at any position p ≤ k−1 in the instantiation order. Let X occur at position
k. If an improving sequence exists from o to o′, at some point X must be
flipped from x to x′. However, since o and o′ agree on the values of the
parents of X, and since x is preferred to x′ given this parent instantiation,
this cannot occur in the sequence until some parent of X is flipped. This
implies that some ancestor of X must be flipped along any improving path
from o to o′, hence that some variable earlier in the instantiation order than
X must be flipped earlier in the path than X. Let o′′ be any outcome along
the improving sequence from o to o′ in which some variable earlier in the
instantiation order than X has a value distinct from that assigned by o′. By
the inductive hypothesis, we cannot have an improving sequence from o′′ to
o′; hence no improving sequence from o to o′ exists.

In particular, Lemma 3 implies the anytime property.

Lemma 4 (anytime property) At each point during Search-CP the cur-
rent set of solutions is contained in the set of all solutions.
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4 Summary and Future Work

In this paper we introduced a qualitative, decoupled framework for preference-
based constrained optimization problems, adopting CP-nets as the under-
lying preference representation. The core of this framework is an efficient
optimization algorithm which exploits the structure of user preferences and
behaves in an anytime fashion—at any point we can stop the algorithm’s
execution, and the current solution set will contain only Pareto-optimal so-
lutions.

Our work leaves open a number of important issues for future research.
Of particular importance to real-world product configuration systems is
the development of an interactive preference-based constrained optimiza-
tion process, some aspects of which we discuss below.

One assumption made in our framework is that user preferences (in form
of a CP-net) are specified before optimization is undertaken. Indeed, we saw
that preference information can drastically prune the search space. On the
other hand, by pre-computing the set of feasible outcomes, we can reduce
the degree of intrusion upon the user required for preference assessment. In
particular, in many circumstances, we may not need to rank all values of
a variable X. For instance, we could ask only for a “top” portion of the
ranking associated with a certain assignment to Pa(X), assuming (at this
stage) that any non-dominated feasible outcome will only involve these top
values. For similar reasons, we may not want to ask the user a priori to
assess the conditional rankings associated with each assignment to Pa(X).

If we start with some unranked assignments, the search algorithm may
find itself at some point lacking the information it needs to proceed. At
this point, an appropriate query should be posed to the user. In addition,
other queries could be posed. For instance, one could ask queries that are
expected to offer the greatest potential for pruning based on the information
about problem constrainedness obtained by the search algorithm so far.

Evidently, there is some tension between the two desiderata of minimiz-
ing user effort and reducing computation time, which points to a clear need
for interactive search algorithms in which user preference in a particular
region of the search space can be obtained through user queries in an at-
tempt to minimize computational effort. This observation is not novel (see
work, e.g., on interactive goal programming (Dyer, 1972)). There are clear
tradeoffs involved between the number and complexity of the user queries
required to prune part of the search space and the amount of search space
expected to be pruned. Further study of these issues is clearly of great
practical importance.
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Other practical issues include the detailed study of the computational
properties of our search algorithm. Refinements of the algorithm should
also be explored with an eye toward improved computational performance.
Possible refinements include adapting techniques for constraint satisfaction
to our problem. For example, specific variable and value ordering techniques
that depend on the underlying constraint set could be used in addition
to our current technique (which orders variables and values in a way that
reflects the preference structure). In addition, more sophisticated constraint
propagation methods could easily be incorporated into our algorithm.

References

Bacchus, F., & Grove, A. (1995). Graphical models for preference and utility.
In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pp. 3–10 Montreal, Canada.
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Search-CP
Input: Acyclic CP-net N , constraints C,

assignment K to the variables of Norig −N .
Output: Set of all solutions for C that are Pareto-optimal w.r.t. N .

1. choose any variable X with no parents in N
2. let x1 � . . . � xk be the preference ordering of D(X)

given the assignment to Pa(X) in K
3. R := ∅ (i.e., initialize the set of local results)
4. for i := 1 to k do
5. strengthen the constraints C by X = xi to obtain Ci

6. if Ci is consistent and Cj 6⊆ Ci for all j < i then
7. let K′ be the partial assignment induced by Ci

8. reduce N to Ni by removing the variables assigned by K′
9. let N (1)

i , . . . ,N (m)
i be the components of Ni that are connected either

by the edges of Ni or by the constraints Ci

10. for each j ∈ {1, . . . ,m} do
11. S(j)

i = Search-CP(N (j)
i , Ci,K ∪ K′)

12. if S(j)
i 6= ∅ for all j ∈ {1, . . . ,m} then

13. for each o ∈ K′ × S(1)
i × · · · × S(m)

i do
14. if K ∪ o′ 6� K ∪ o holds for each o′ ∈ R then add o to R

end if
15. i := i + 1

end for
16. return R

Figure 2: The Search-CP algorithm for acyclic CP-net based constrained
optimization.
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