A Situation Calculus Semantics for the Prolog Cut
Operator

Fangzhen Lin
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4
Email: fl@cs.toronto.edu

Tel. (416) 978 6277 Fax (416) 978 1455

Abstract

Given a definite logic program with cut, we proceed in two steps to give
it a semantics. First, we delete cut from the program, and construct the
basic action theory for the resulting cut-free program in the situation cal-
culus according to (Lin and Reiter [3]). We then formalize the effects of
cut by adding to the basic action theory a situation calculus sentence that
characterizes the set of situations (derivations) that are not eliminated by
cut. We show that our semantics is well-behaved when the logic program
is properly stratified. We also show that according to this semantics, the
usual implementation of the negation-as-failure operator using cut is prov-
ably correct.

Keywords. Semantics of logic programs. Cut. The situation calculus. Control
strategies. Negation as failure.

A Situation Calculus Semantics for the Prolog Cut Operator!

Fangzhen Lin
University of Toronto

Abstract. Given a definite logic program with cut, we proceed in two steps
to give it a semantics. First, we delete cut from the program, and construct
the basic action theory for the resulting cut-free program in the situation
calculus according to (Lin and Reiter [3]). We then formalize the effects of
cut by adding to the basic action theory a situation calculus sentence that
characterizes the set of situations (derivations) that are not eliminated by
cut. We show that our semantics is well-behaved when the logic program
is properly stratified. We also show that according to this semantics, the
usual implementation of the negation-as-failure operator using cut is prov-
ably correct.

1 Introduction

Given a definite logic program P that contains cut (!), we proceed as follows to
provide a semantics for P. First, we ignore cut, and delete all occurrences of ! in
P. This will give us a program that does not mention !, so a situation calculus
action theory D for it can be constructed according to (Lin and Reiter [3]). In
D, situations are like proofs and derivations. However, due to the presence of !,
some situations may not be reachable. A logical characterization of cut is then
achieved by adding to D a situation calculus sentence that axiomatizes the set of
reachable situations.

This paper is organized as follows. Section 2 briefly reviews the basic concepts
in the situation calculus and logic programming. Section 3 reviews the situation
calculus semantics of (Lin and Reiter [3]) for cut-free logic programs. Section 4
considers the semantics of cut. Section 5 proves some properties of our semantics
for cut. Specifically, we show that our semantics is well behaved for properly
stratified logic programs, and that the usual implementation of negation by cut
is provably correct according to our semantics. Section 6 concludes this paper.

2 Logical Preliminaries

2.1 The Language of the Situation Calculus

The language £ of the situation calculus (McCarthy and Hayes [6]) is a many-
sorted first-order one with equality. We assume the following sorts: state for
situations, action for actions, and object for everything else. We also assume the
following domain independent predicates and functions:

'Thanks to Ray Reiter for useful discussions about the subject of this paper, and for his
comments on an earlier draft of this paper. This work was supported by grants from the

NSERC of Canada, the IRIS of Canada, and the ITRC of Ontario.

e A constant Sy of sort state denoting the initial state.

A binary function do - do(a, s) denotes the state resulting from performing
action @ in state s.

e A binary predicate Poss - Poss(a, s) means that action a is possible (exe-
cutable) in state s. In this paper we shall assume that actions are always
executable, i.e. (Va,s)Poss(a,s). So technically, there is no real need for
this predicate in this paper. We keep it however in order to be consistent
with the general framework of (Reiter [7] and Lin and Reiter [4]).

e A binary predicate (partial order) < over states. Following convention, we
write < in infix form. By s < s’ we mean that s’ can be obtained from s
by a sequence of executable actions. As usual, s < s’ will be a shorthand
fors<s'Vvs=s\

e Another binary predicate (partial order) C over states. We also write C in
infix form. By s C s’ we mean that s can be obtained from s’ by deleting
some of its actions. Similarly, s C s’ stands for s C s’ V s = &',

Following [6], we define fluents to be predicate symbols of arity object™ x state,
n > 0.

2.2 The Discrete Situation Calculus

We shall consider only the discrete situation calculus with the following founda-
tional axioms:? 3

So # do(a, 5), (1)
do(ay, s1) = do(az, 53) D (ay = az A 51 = s3), 2)
(VP)[P(So) A (Ya, 5)(P(s) > P(do(a,))) > (¥s) P(s)] (3)
-5 < So, (4)
s < do(a, ') = (Poss(a,s') As < &), (5)

sC s =s2sAGH{(Vs1,5)(s1 < 53D fls1) < f(s2))A
(Va, 51)(do(a, 51) < 5 > do(a, f(s1)) < 5)}. (6)

The first two axioms are unique names assumptions for states. The third
axiom is second order induction. It amounts to the domain closure axiom that
every situation has to be obtained from the initial one by repeatly applying the
function do.* As we shall see, induction plays an important role in this paper.

The axioms (4) and (5) define < inductively. Generally, s < s if s’ can
be obtained from s by performing some executable actions. However, since we

*Except for the one about [, these axioms are taken from (Lin and Reiter [4]), which also
proves some useful properties about them.

®In this paper, free variables in displayed formulas are assumed to be universally quantified.

*For a detailed discussion of the use of induction in the situation calculus, see (Reiter [8]).

have assumed (Va, s) Poss(a, s), the partial order < in this paper reduces to the
“prefix” relation: Given a state S = do(ay,, do(a,_1, ..., do(aq, Sp)...)), S < S
iff there is a 1 < k& < n such that S’ = do(ay, do(ag—1, ..., do(aq, Sp)...)). In
particular, we have (Vs)Sy < s.

The axiom (6) is a second-order definition of C. Informally, S C S’ iff S can
be obtained from S’ by deleting some of its actions. More precisely, suppose S’ =
do(ay, ...,do(ay, Sp)...). Then S C S’ iff there are integers 1 <4y <--- < i <n
such that S = do(w;,, ..., do(a;,, Sp)...). For instance, the following is the set of
states C do(as, do(ag, do(ay, Sp))):

{do(as, do(az, Sy)), do(as,do(ay, Sp)), do(as,do(ay, Sp)),
do(alaSO)a dO(OQaSO)a dO(QBaSO)a SO}

To see that the axiom (6) formalizes this partial order, consider
do(as, do(aq, Sp)) C do(as, do(az, do(aq, Sp))).
Any function f that is monotonic wrt <, and satisfies

J(S0) = S0, [(do(a1,50)) = do(az, do(a, So)),
f(do(as, do(a1,S0))) = do(as, do(ag, do(au, So)))

can be used to prove this relation using the axiom (6). Notice that < is a special
case of C: if s < s’ then s C s’. As we shall see, the partial order T will play a
crucial role in this paper.

Notice the similarity between some of these axioms and the Peano founda-
tional axioms for number theory. However, unlike Peano arithmetic which has a
unique successor function, we have a class of successor functions here represented
by the function do. In the following, we shall denote by 3 the set of the above
axioms.

2.3 Logic Programs

We consider definite logic programs with cut.

An atom p is an expression of the form F(ty,...,t,), where F' is a fluent of
arity object™ X state, and ty,...,1, are terms of sort object. Notice that an atom
is not a formula in the situation calculus. It is an expression obtained from an
atomic formula by suppressing its state argument.

A goal G is an expression of the form

Lh &---&l,

where n > 0, and for each 1 < ¢ < n, [; is either an atom, an equality atom of
the form ¢t = ¢/, or !.
A clause (rule) is an expression of the form

F(zy,...,z,) - G.

where F is a fluent of the arity object™ X stale, x1, ..., x,, are distinct variables
of sort object, and GG is a goal. In the following, for any terms ¢y, ...,¢, of sort
object, we shall also write and call a clause an expression of the form

F(tl, ,tn) - G.

Formally, however, this expression is taken to be a shorthand for the following
clause:

F(z, .ty im21=1, & -+ & zp,=1, & G.

where 21, ..., z,, are fresh variables not in G and #q, ..., ¢,.
Finally, a (definite) program is a finite set of clauses. The definition of a fluent
symbol F in a program P is the set of clauses in P that have F' in their heads.
Since a goal is not a situation calculus formulas, we need a way to refer to
its truth values. Given a goal G =1y & --- & [,,, and a state term st, we define
([st], the truth value of G at the state st, to be the situation calculus formula

Li[st] A -+ Aly[st],
where for each 1 <7 < n:
1. If l;is F(ty,...,t,), then [;[st] is F(ty,...,tp, st).
2. If I; is t = ¢/, then [;[st] is I;.
3. If [; is 1, then [;[st] is the tautology true.

For example,
(z=a&y=">0&parent(z,y) & ! & parent(z, z))[So]

is
r=aAy="DbAparent(z,y,So) Atrue A parent(z, z, Sp).

3 A Logical Semantics

This section considers the semantics of a logic program when ! is ignored. It is
basically a review of that in (Lin and Reiter [3]).

We mentioned that the first step in our efforts to provide a semantics for cut
is to delete it from the underlying program. However, since we have defined ![s]
to be a tautology for any state s, as we shall see, there is no need to do the
physical deletions.

Given a clause of the form

Suppose that A is an action (function) symbol of the arity object” — action
in our situation calculus language. Then the clause is like a description of the
following effect of A on F: if G holds initially, then F’ will hold after the action
is performed. In the situation calculus, this effect of A can be formalized by the
following axiom:

—

(FE)Gls] D F(&, do(A(7), 5)),
where 7 is (z1, ...,), and gis the tuple of variables that are in G but not in .
Consider the following clause:

ancestor(x,y) :- parent(x,z) & parent(z,y).

Suppose that gp(z,y) is the action for this clause, then we have the following
effect axiom:

(3z)[parent(z, z, s) A parent(z,y, s)] D ancestor(z,y, do(gp(z,y),s)).

In the following, we shall write on the left hand side of a clause its corre-
sponding action. For instance, the above ancestor clause and its corresponding
action can be written as:

gp(z,y): ancestor(x,y) :- parent(x,z) & parent(z,y).

Now suppose that P is a program and F a fluent. Suppose the definition of
Fin Pis
Al(f) F(.Z) M Gl.
A(Z): F(Z) :- Gy.
Then we have the following corresponding effect axioms for the fluent F:

(3y1)Ghls] D (7, do(Ay(7), 5)),

(3yk)Grls] O F(Z, do(Ax(7), s)),

where y;, 1 < i < k, is the tuple of variables in G; which are not in #. We then
have the following successor state axiom (Reiter [7]) for F:
F(Z,do(a,s)) ={a= A1(Z) A (Fy1)Gils] V-V
(a = Ar(Z) A (3uk)Gr[s]) vV F(Z,s)}. (7)
Notice the similarity between this axiom and Clark’s completion of the predicate
Fin P.
Intuitively, the successor state axiom for F' says that the fluent is true in a
successor state iff either it is true initially or the action is one that corresponds

to a clause in the definition of F' and the body of the clause is satisfied initially.
In particular, if the definition of F' in the program P is empty, then (7) becomes

F(Z,do(a,s)) = F(Z,s).

In the following, we call (7) the successor state axiom for F wrt to P.
Given a logic program P, the set of successor state axioms wrt P, together
with some domain independent axioms, is then the “pure logical meaning” of P:

Definition 1 The basic action theory D for P is
D =3 UDss UDypn, UDg,
where

e 3 is the sel of foundatlional axioms given in Section 2.2.
o Dy, is the set of successor state axioms for the fluents according to P.

® Dyng is the following set of unique names axioms:

[(@) #9(9) (8)

for every pair f, g of distinct function symbols, and

@ =ry>7=9 (9)

for every function symbol f. Notice that D,,, includes unique names az-
toms for actions.

e Dg, is:
{F(%,5S0) = false | F is a fluent}.

Definition 2 Let P be a program, and D ils corresponding basic action theory.
A state term st is called a plan for a goal G iff D = G[st]. A substilution o is
an answer for G iff D = (3Is)Go[s], where Go is the goal resulting from G by
simultaneously substituting for its variables according to o.

Therefore query answering in logic programs literally becomes planning in
the style of (Green [2]) in the situation calculus. This semantics has some nice
properties. It is closely related to a recent proposal by Wallace [9], and generalizes
the Clark completion semantics. For details, see (Lin and Reiter [3]).

Notice that for any program P, if P’ is the resulting program of deleting all
occurrences of ! in P, then the basic action theories for P and P’ are equivalent,
assuming that the corresponding rules in P and P’ have the same action name.
This is because by postulating (Vs)![s], occurrences of cut are effectively removed.

Example 1 Consider the following well-known example of an efficient encoding
of maz(z,y,2) (2 is the maximum of {z,y}) using ! (Lloyd [5]):

Aq(z,y, 2) max(x,y,z) :- le(x,y) & ! & z=y.
As(z,y, 2) max(x,y,z) :- z=X.

Bi(z,y): le(x,y) :- x=1 & y=2.

By(z,y) le(x,y) :- x=1 & y=1.

Bs(z,y) le(x,y) :- x=2 & y=2.

Here le(z,y) means that z is less than or equal to y, and 1 and 2 are constants.
We have the following two effect axioms about maa:

le(z,y,s) ANtrue Az =y D maz(z,y, z,do(A1(z,y, 2),s)),
z =2z D mazx(z,y,z,do(Ax(z,y, 2),s)).

Thus we have the following successor state axioms for maz:

maz(z,y, 2, do(a, s)) = {a = Ay (z,y,z) Nle(z,y,s) Nz =y V
(a = Az(z,y,2) Az =)V maz(z,y,z,5)}.

Similarly, we have the following successor state axiom for le:

le(z,y,do(a,s))={a=Bi(z,y) N\e =1Ay=2V
(a=Ba(z,y)Ahze=1Ay=1)V(a=Bs(z,y) Ne =2Ny=2)Vle(z,y,s)}.

From these successor state axioms, it is easy to see that performing first By (1, 2),
then Ay(1,2,2)in Sy will result in a state satisfying maz(1,2,2). Thus we have
the following desirable conclusion:

D E (Is)maz(1,2,2,s).

On the other hand, it is also clear that the action Ay (z, y, z) will make maz(z,y, z)
true, so we also have:

D |= (Va,y)(3s)maz(z,y, z,),

which is not so desirable. Of course, the reason is that the basic action theory
D does not take into account the effects of ! on the search space. According to
Prolog’s search strategy, which attempts rules in the order as they are given, the
second rule (Ajy) for maz will not be attempted if the subgoal le(z, y) before !
in the first rule for maa succeeds. Therefore the plan do(Az(x,y, x), So) will not
be considered if there is a plan for le(z,y), which is the case here if z = 1 and
y = 2. So the state do(Az(1,2,1),Sp), which is a plan for maz(1,2,1) in D, is
actually not reachable according to Prolog’s search strategy due to the presence
of ! in the first rule.

Our goal in defining a semantics for cut is then to characterize the set of
reachable (accessible) states. This is what we are going to do in the next section.

4 A Semantics for Cut
A clause containing cut:
cut(@): F(Z) :- Gy & ' & Gy
means that if there is a proof of Gy, then any proof of F(Z) must use either

1. A rule before this one; or

-~

2. This rule with the first proof of G;.

We now proceed to formalize this informal reading.

First, notice that we need two ordering relations: one on rules for deciding
the precedence of rules, and the other on states for defining “the first proof”.

In the following, we shall assume that we are given an ordering < on actions
(rules), and will define an ordering on states using <. Intuitively, if o < 3, then
during the search for a plan for a goal, the action a will be considered before the
action 3. For instance, according to Prolog’s ordering rule, for our maz example,
(VZ, §) AL (Z) < A2(7).

Given a partial order on actions, there are many ways states, i.e. sequences
of actions, can be ordered, depending on particular problem solving strategies.
In Prolog, a query is answered using a goal-directed search strategy, so if the
plan do(ay, ..., do(a, Sp)...) is returned, then it must be the case that o, is first
decided, then a,_y, ..., and finally ay. If we read s < s’ as that the sequence of
actions in s is considered before that in s’, we then have the following definition:

Definition 3 Given a partial order < on actions, the derived partial order with
the same name < on stales is defined inductively by the following axiom:

s<s8=s=8As #SyV
(Ja, b, 51, 82).s = do(a, s;) Ns' = do(b,s3) Na < bV (10)

(Ja, s1, $2).8 = do(a, s1) A s’ = do(a, s3) A 51 < s3.

With this partial order on states, we can then say, roughly, that a state S is
a “first proof” of a goal GG if it is a “proof” of G that is minimal according to
<. However, to make precise this statement, we have to decide over which space
of alternative “proofs” S is compared to. We do not want it to be the set of all
plans for G because according to our definition, if D is a basic action theory for
a logic program, then

D = (Va,s).G[s] D Gldo(a, s)].

So if S is a plan for GG, then for any action «, do(«, S) is also a plan for GG. Since
the partial order < on states (sequences of actions) compares first actions at the
end of sequences, this means that a plan for G can always be made “better”
according to < by appending to it some irrelevant actions. To avoid this pitfall,
we define the notion of minimal plans:

Definition 4 For any state term st, any goal G, we denote by minimal(G), st)
the following formula:

G[st] A =(3s)s C st AG[s].

Intuitively, if minimal(G, st) holds, then st is a minimal plan for G because it
is a plan for G without containing any redundant actions. For our maz program
in section 3, it is easy to see that

D = minimal(le(1,2), do(B1(1,2), So)).

But
D = minimal(le(1,2), do(A4(1,2,2),do(B1(1,2),S0))),

because do(Bi(1,2),So) C do(A1(1,2,2),do(B1(1,2),5)). It can be seen that
for any goal &, if there is a plan for it, then there is a minimal plan for it:

¥ E (Vs).G[s] D (3s')(s' C s Aminimal(G, s')).

We are now ready to formalize the informal reading of a clause containing
cut at the beginning of this section. We introduce a new predicate Accesstble.
Intuitively, Accessible(s) holds if s is not “cut off” by !.

Given the rule cut(Z) at the beginning of the section, its effect on Accessible
is captured with the following axiom:

Accessible(s) D (VZ){(3s')(Accessible(s') A (3E)G4[s]) D
(Vs1)[s1 C s Aminimal(F(Z),s1) D (11)
(Fa, s2)(s1 = do(a, s2) A a < cut(Z)) vV
(3s2)s1 = do(cut(Z), s3) A (Is3)(s3 C s; A first-proof(Gy, s3, ©))]},
where 5 is the tuple of the free variables that are in G5 but not in &, and

generally, for any goal G, and state term st, and any tuple § of variables,
first-proof(G, st,) stands for the following formula:®

(I7)minimal(G, st) A =(3s)(Accessible(s) A (IV)minimal(G, s) A's < st),

where 77 is the tuple of variables that are in G but not in .
Refering back to the informal interpretation of the rule cut(Z) at the beginning
of the section, we notice that in the axiom (11), the formula

(3s") (Accessible(s') A (EIE)Gl[s’]_)
corresponds to “there is a proof of G;”, the formula
(Fa, s3)(s1 = do(a, s3) A a < cut(Z))

corresponds to “the proof sy of F(Z) uses a rule before the cut rule”, and the
expansion of the macro first-proof(GYy, sz, 7):

(F¢)minimal(G, s3) A —~(Is)(Accessible(s) A (F)minimal(G, s) A s < s3)

corresponds to “sz is the first proof of G”.
Now given a program P, suppose

Accessible(s) D Uq(s),

Accessible(s) D Ui(s),

®Notice that if none of G and st contains variables, then first-proof(G, st, §) expands to a
sentence for any g.

are all the axioms about Accessible as given above for every occurrence of ! in
P (a single clause may have multiple occurrences of !). We call the following the
accessibilily axiom of P:

Accessible(s) = Wyi(s) A+ A Wg(s). (12)

Notice that this axiom attempts to define Accessible recursively since the pred-
icate also occurs in the right hand side of the equivalence. This should not be
surprising since the logical formalization of negation in logic programs normally
requires fixed-point constructions, and, as it is well known, negation can be easily
implemented using cut.

Definition 5 (Extended Action Theory) Let P be a program, and A a given
set of axioms about < on actions. The extended action theory &£ of P is the the
following set:

£=DUAU{Ace, (10)},

where D is the basic action theory for P, and Acc is the accessibility axiom of P

of the form (12).

Definition 6 Let P be a program, £ ils extended action theory, and G a goal. A
state term st is an accessible plan for G iff

& | Accessible(st) A G[st].
A substitution o is an accessible answer for G iff
& | (3s).Accessible(s) N Go[s].

We illustrate the definitions with our maz example. Suppose we use Prolog’s
search strategy, and order the actions as:

A={a<b=3F)a= A () A CDb = As(§)}.

Notice that we do not care about how the rules about le are ordered. Notice that
by the unique names axioms in D,,, (section 3), we have

Duna UA = (VZ)=(Fa)a < A1 (7).
Since the only occurrence of ! is in Ay, so the accessibility axiom is

Accessible(s) = (Ya,y, 2){(3s') (Accessible(s') Nle(z,y,s)) D
(Vs1)[s1 C s Aminimal(maz(z,y, 2),s1) D
(Ja, s2)(s1 = do(a,s3) Na < Ay(z,y,2))V
(3s2)s1 = do(Aq(z,y, 2),s2) A (Is3)(s3 C sy A first-proof(le(z,y), ss, z,y, 2))]}.

Now let £ be the extended action theory of the program. Notice first that by
the successor state axiom for max in &,

& E (Va,y, 2, 8)[~maz(z,y,2,8) D (Vs')(s' C s D ~maz(z,y, z,5))].

10

Therefore
&= (V9)[~(Fz,y, z)maz(x,y,z,8) D Accessible(s)].

This is intuitively right since the only appearance of ! is in the definition of maz.
Thus
& E (Vz,y,s)minimal(le(z, y), s) D Accessible(s).

Thus
E = (Va,y)[(3s)le(z,y, s) = (Is) (Accessible(s) Ale(z, y, s))].

This means that the presence of ! has no effect on le, and proving the existence
of accessible plans for le in £ is equivalent to proving the existence of plans for
le in D, the basic action theory for the maxz program.

Now let 51 = do(B1(1,2), Sp), and Sz = do(A1(1,2,2),5;). Clearly
& E=le(1,2,5) Aminimal(maz(1,2,2),53).

We claim that & = Accessible(S3) so that Sy is an accessible plan for maz(1, 2, 2).
Notice that

&= (Va,y,z).maz(z,y,2,5) D(e=1Ay=2Az2=2),
& = (3s).Accessible(s) A le(1,2, s),
& = —(Ja,s).S; = do(a,s) Na < A1(1,2,2).

Therefore
& = Accessible(S3) = (3s3)(s3 C Sz A first-proof(le(1,2), s3,z,y, 2)).
But 51 C Sz, so € = Accessible(Sy) if
& | first-proof(le(1,2), 51, z,y, 2),
that is
& = minimal(le(1,2),51) A —~(3s).Accessible(s) Aminimal(le(1,2),s) As < Sy.
This follows from
& = (Vs)(minimal(le(1,2),s) D s = 5y).

On the other hand, there are no accessible plans for maz(1,2,1). For suppose
& = maxz(1,2,1,5). Then since

& = (Vs).minimal(maz(1,2,1),s) D s = do(Az(1,2,1), So)

and

& = (3s).Accessible(s) N le(1,2, s),
it follows that for Accessible(S) to be true, it must be the case that

EE (3s).s C do(Az(1,2,1),50) Ale(1,2,s),

11

which is obviously impossible.
Generalizing the above reasoning, we have

& (Yo, y){3s)le(z,y,s) Nw # y O [(Is)(Accessible(s) A maz(z,y,y,s)) A
—(3s)(Accessible(s) A maz(z,y,z,s))]}.

This means that according to our semantics for !, the maz program indeed defines
maz correctly. Notice that this depends critically on the ordering of actions. We
can show that

& E (Yo, y)(3s)(Accessible(s) A maz(z,y, z, s))

if the action A, is ordered before A;.

5 Some Properties

As we have noticed, the accessibility axiom attempts to define Accessible recur-
sively. A natural question then is if the recursion will yield a unique solution for
the predicate. In general, the answer is negative. We shall see an example later.
However, if a program is properly stratified, then the axiom will yield a unique
solution.

Let P be a program, and F a fluent. We say that the definition of F'in P is
cul-free if none of the clauses that are relevant to F contains !. Here a clause is
relevant to F if, inductively, either it’s in the definition of F' or it’s relevant to
another fluent that appears in the definition of F. For example, the definition of
le in the maz example is cut-free. For cut-free fluents, Accessible does not play
a role:

Proposition 1 Let P be a program, and £ its extended action theory. If the
definition of a fluent F in P is cul-free, then we have:

€ Eminimal(F(Z),s) D Accessible(s),
&= (3s)F(Z,s) = (Is)(Accessible(s) A F(Z, s)).

Cut-free fluents are the ground case of stratified programs:

Definition 7 A program P is stratified® if there is a function f from fluents in
P to natural numbers such that

1. If F is cut-free in P, then f(F)=0.
2. If F is not cul-free, then

J(F) =14+ maz{f(F') | F" appears in the definition of F}.

6This notion of stratification is more restrictive than necessary. In particular, if F' is not cut
free, then F' cannot appear in the body of any clause in its definition. We are working on ways
to relax this.

12

It is clear that if P is stratified, then for any fluent F'in P, f(F) is uniquely
determined by the above two rules. In such case, we shall call the uniquely
determined number the rank of F in P, and the maximum of the ranks of the
fluents in P will be called the rank of the program P, For instance, in our max
example, the rank of le is 0, and the rank of max is 1. So the rank of the program
is 1.

We now show that if P is stratified, then its accessibility axiom can be writ-
ten equivalently in a recursion-free form. To that end, we introduce a new set of
unary predicates Accg, Accy, .., Accy, ... Intuitively, Acc,(s) holds if s is accessi-
ble (reachable) when all rules that mention a fluent of rank > n are deleted from
P. Formally, they are defined as follows:

Accy(s) = true. (13)
For n > 0, suppose
cutq (27): Fi(21) :- G1 &' &Gl
cuty(2%) : Fp(47) - Gr& ' & G

are all of the occurrences of ! in clauses whose heads contain fluents of rank n.
Then Acc, is defined by the following axiom:

Accy,(s) = Accp_1(8) ANU(s) A== AWg(s), (14)

where for any 1 < ¢ < k, ¥;(s) is obtained as follows: Suppose ®;(s) is a formula
such that
(Vs).Accessible(s) D ®;(s)

is the axiom of the form (11) for the rule cut;(z;). Then W;(s) is the result of
replacing every occurrence of Accessible in ®;(s) by Accy,—1.

Now since the right hand of equivalence in the axiom (14) mentions only
Acc,_1, we have define Acc,,, n > 0, inductively.

Theorem 1 Let P be a stratified program, M ils rank, and £ ils corresponding
extended action theory. We have

& = Accessible(s) = Acep(s).

In general, however, there may be multiple interpretations of Accessible. Con-
sider the following program:

ri: P :-q’.

ro: q :-p’.

r3: p’ :-p & ! & fail.
T4t P’

5 q’ - q & ! & fail.
re: q’

13

Notice that the definition of fail is empty, so (Vs)-fail(s). This program is
clearly not stratified. Suppose the ordering on actions is

A={(Va,b)[a<b=(a=r3sAb=r4)V(e=1r5 Nb=r¢)]}.
It can be shown that the accessibility axiom of this program is equivalent to:
Accessible(s) =
[P/ (s) D =(3s") (Accessible(s') A p(s")] A [q'(s) D —(Ts") (Accessible(s') A q(s'))].
Let & be the extended action theory of this program, we can then show that

E E (3s)(Accessible(s) A p(s)) A —=(3s)(Accessible(s) A q(s)) V
(3s)(Accessible(s) A q(s)) A —(3s) (Accessible(s) A p(s)).

So there is an accessible plan for p iff there is not an accessible plan for ¢, and
the other way around as well.
Notice that the program is a rendition of the following logic program:
p - not gq.
¢ :- not p.

with negation implemented by cut as:

not FF :- F & ! & fail.

not F.
For this program, our semantics yields equivalent results as that of the stable
model semantics of (Gelfond and Lifschitz [1]) for logic programs with negation.
Our following theorem shows that this equivalence holds for arbitrary normal
programs as well.

Let P be a logic program with negation but without cut. Suppose that for
each fluent F in P, F' is a new fluent of the same arity. Let P’ be the logic
program obtained by replacing every literal of the form not F(Z) in P by F'(i),
and by adding, for each new fluent F’, the following two clauses:

Ap(Z): F'(Z¥) :- F(7) & ! & fail.

Suppose that for each fluent F', the action Af is ordered before the action A’.

Theorem 2 Let £ be the extended action theory of P', and D the action theory
for P as defined in (Lin and Reiter [3]). For fluent F in P, and any tuple i of
terms of sort object, we have D = (Is)F (L, s) iff £ |= (3s).Accessible(s) AF (L, s).

From this theorem, we conclude that the usual implementation of negation
using cut is correct with respect to the semantics given in (Lin and Reiter [3]). As
noted in (Lin and Reiter [3]), the semantics given there for logic programs with
negation yields the same results as that given in (Wallace [9]). The latter has been
shown to be equivalent to the stable model semantics when only Herbrand models
are considered. Therefore we can also conclude that the usual implementation of
negation in terms of cut is correct with respect to the stable model semantics for
logic programs with negation.

14

6 Concluding Remarks

It is often said that the cut operator in logic programming languages is like the
goto statements in the conventional programming languages. Unstructured use
of it leads to programs that are hard to understand, so are prone to errors. The
recursive nature of the accessibility axiom (12) certainly supports this point of
view. On the other hand, in view of Theorem 1, the use of cut can be made safe
if we insist on stratified programs.

This paper also supports the claims made in (Lin and Reiter [3]) that the
general framework set out there is useful for formalizing search control operators,
and it is worthwhile to go beyond the proposal of Wallace [9], and introduce
actions and their axiomatizations in the situation calculus.

References

[1] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. Fifth International Conference and Symposium on Logic Programming, pages

1070-1080, 1988.

[2] C.C. Green. Application of theorem proving to problem solving. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI-69), pages 219-239,
1969.

[3] F. Lin and R. Reiter. Rules as actions: A situation calculus semantics for logic
programs. Submitted to this symposium.

[4] F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Computation,
Special Issue on Actions and Processes, 4(5):655—678, 1994.

[5] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

[6] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4,
pages 463-502. Edinburgh University Press, Edinburgh, 1969.

[7] R. Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor, Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, pages 418-420. Academic Press, San Diego, CA, 1991.

[8] R. Reiter. Proving properties of states in the situation calculus. Artificial Intelligence,

64:337-351, 1993.

[9] M. G. Wallace. Tight, consistent, and computable completions for unrestricted logic
programs. Journal of Logic Programming, 15:243-273, 1993.

15

