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Abstract

The situation calculus is showing consider-
able promise as a formal framework for mod-
eling the dynamical worlds encountered in
real life. We take advantage of the results
of [Rei96] to show that the situation calcu-
lus i1s a powerful and practical modeling lan-
guage. The paper provides a brief overview
of the concurrent temporal situation calcu-
lus and how it is used to specify physical be-
havior. Tt then presents the Dagstuhl steam
boiler problem as an example of a complex
physical system of interest in the real world.
The problem was the focus of the Dagstuhl
meeting, “Methods for Semantics and Speci-
fication”, whose goal was to develop criteria
by which to compare advantages and draw-
backs of formal methods for practical applica-
tions. The paper presents the situation cal-
culus specification of the focus of the prob-
lem, the steam boiler controller. Tt then dis-
cusses the theoretical foundation of a PRO-
LOG technology simulator, which, together
with the specification, form an implementa-
tion of the controller. The paper concludes
with an evaluation of the situation calculus
solution to the problem, using the criteria
which emanated from the Dagstuhl meeting.

1 Introduction

The situation calculus language ([MH69]) has received
much attention from the Cognitive Robotics Group
at the University of Toronto in recent years. The
language is showing considerable promise as a formal
framework for modeling the dynamical worlds encoun-
tered in real life.

The challenges facing such a framework are numer-
ous. For example, it must facilitate the representa-
tion of time, continuous processes, actions performed
by agents with “free will”, actions performed by Na-

ture, non-deterministic actions of chance, knowledge-
producing actions and the mental state of agents, con-
current or simultaneous actions, etc. The framework
must also be conducive to various types of reasoning,
including prediction, planning, diagnosis, and hypo-
thetical reasoning. A single formal theory of action
and time that satisfies these conditions is the ongoing
objective of the Cognitive Robotics Group.

Encouraging progress towards this long-range objec-
tive using the situation calculus as the framework has
been achieved [Rei91, Pin94, LRL 96, LTI 196, S1.93].
This paper concentrates specifically on the results of
[Rei96] which make it possible to formally model the
behavior of physical systems as complex as a steam
boiler controller. These physical systems (the toilet
of [Kel96] is another example) involve time, continu-
ous processes, and simultaneous natural actions (those
dictated by the laws of physics). The situation cal-
culus of [Rei96] provides a knowledge representation
framework that is conducive to the specification and
simulation of such systems, while explicitly embodying
a solution to the frame problem.

As a specification language, the situation calculus
boasts many desirable properties. For example, a sit-
uation calculus model of a physical system is a truly
logical specification of that system. Hence, items of
interest, such as behaviors of parameters, are logical
consequences of the specification. This feature of the
situation calculus is clearly conducive to formal veri-
fication. Furthermore, the foundational axioms of the
situation calculus provide a firm theoretical founda-
tion for a situation calculus-based PROLOG simula-
tor of situation calculus specifications. The behavioral
properties of a situation calculus specification can be
obtained automatically by directly executing the spec-
ification on the simulator. Hence, a specification in sit-
uation calculus form is also an implementation whose
behavioral properties are automatically formally veri-
fied against the specification.

To illustrate that the situation calculus is a practical
modeling language, we have formalized the controller



specification for the Dagstuhl steam boiler [Abr94].
The original text from which the specification is de-
rived was written by LtCol. J. C. Bauer for the In-
stitute for Risk Research of the University of Water-
loo, and submitted as a competition problem to be
solved by the participants of the International Soft-
ware Safety Symposium organized by the Institute for
Risk Research. The Dagstuhl steam boiler problem,
solved in this paper, stems from that original text.
The problem was the focus of the Dagstuhl meet-
ing, “Methods for Semantics and Specification” , whose
goal was to develop criteria by which to compare ad-
vantages and drawbacks of formal methods for prac-
tical applications. Hence, the problem is ideal for ex-
hibiting the features of the situation calculus. In this
paper, I present an evaluation of the situation calcu-
lus solution to the problem, using the criteria which

emanated from the Dagstuhl meeting [ABL95].

2 Situation Calculus Ontology

The situation calculus is designed to formalize the be-
havior of dynamically changing worlds. Intuitively
there are two facets to the ontology itself: 1) distin-
guishing between different courses of action, and 2) de-
termining the state of the world after different courses
of action. There are two additional facets of the situ-
ation calculus: 3) axioms which specify which courses
of action can happen, and 4) axioms which specify the
results of courses of action.

2.1 Naming Courses of Action

The mechanism for all change in such worlds is one
or more agents, perhaps including Nature, performing
named, instantaneous, actions. Situations are histo-
ries of concurrent action occurrences, each denoting a
different possible evolution of the world. A concurrent
action is a set of simultaneous simple actions. The con-
stant symbol Sy denotes the initial situation in which
no actions have yet occurred. Other than Sy, all sit-
uations have names of the form, do(a, o), intuitively
meaning the result of doing action «a in situation o.
Actions are denoted by functions, with time ¢ being
the last parameter. For example, consider the situa-
tion

do({stop_talking(T>)},
do({begin_walking(Ty), begin_talking(T1)}, So),

which denotes the world history in which an agent
begins walking and talking at time 77, and then
stops talking at time 7%. The agent would not
be talking in this situation, but she would still be
walking. The first concurrent action performed is
{begin_walking(T}), begin_talking(T1)}, which is the
set consisting of two simple actions begin_walking(Ty),
and begin_talking(T1). Given any situation, the order

of action occurrences is obtained by scanning the sit-
uation from right to left. So, this situation denotes a
world history corresponding to the action sequence

[{begin_walking(Th), begin_talking(T1)},
{stop_talking(T>)}].

2.2 The State of the World

The state of a world resulting from a certain course of
action is determined by the values of fluents.

Relational fluents are denoted by predicate symbols
taking a situation term as their last argument. These
relations represent what is true about the world after
carrying out the course of action specified by their sit-
uation argument. For example, the fluent, happy(p, s)
might mean that person p is happy in s. Note that
technically a situation is not a state, but a history of
action occurrences; so in this context, we should take
“p is true in s” to mean, “p is true after carrying out,
wn order, all and only the actions specified by s”.

Functional fluents are functions whose value varies
from one situation to another. For example,
const_position(ball, s) might denote the real-valued
constant position of a ball in situation s.

Continuous processes are represented using functional
fluents. The important idea, due to Pinto [Pin94], is
that although a continuous process involves continuous
change in the values of one or more parameters, the
values of the parameters can be modeled by equations
which do not change in a particular situation. We say
that the behavior of the parameter is constant. Unlike
the QSIM-style qualitative reasoners (e.g. [Kui86]),
which abstract change over points and intervals from
the continous change of a parameter, a situation cal-
culus treatment abstracts behavior from the continu-
ous change. This treatment of continuous processes is
in the spirit of Sandewall’s work [San89]. This work
introduces the idea of using differential equations to
represent the behavior of parameters, and using logic
to specify which differential equations model the be-
havior of a parameter during the different phases of
the evolution of a dynamical system.

Consider a ball’s position, which varies with time in
s. The position(ball, s) fluent has as its value a func-
tion of time. Also consider the function, wal(f,1),
which takes as arguments a function of time, f, and
a time, ¢, and whose value 1s the value of f at . We
take f(t) to be an abbreviation for wal(f,t), and we
could write' position(ball, s)(t) = zo — 1/2gt?, mean-
ing that the value of the position function of the ball
at time t in situation s is zq — 1/2¢gt2. The posi-
tion function in a certain situation might be defined

'In this paper, lower case Roman characters denote vari-
ables. Also, free variables are implicitly universally prenex
quantified.



on the entire real line, as it is in this case, but it
is only relevant to the model on some half-open in-
terval: [start(s),o0), or [start(s),start(do(c,s))) for
some ¢, where start(do(e, s)) is defined to be time(c),
and time(c) denotes the time at which ¢ occurs.

In the situation calculus, all change must be the result
of some action occurrence, and functional fluents are
consistent with this. In the case of the ball, although
the ball’s position varies in s, its position follows a
single function in s. The behavior represented by the
position(z, s) fluent remains unchanged until some ac-
tion (perhaps catch(z,t)) takes place to change it.

2.3 Specifying Which Courses of Action Can
Happen

Precondition arioms determine the conditions under
which an action is possible. A formalization of a world
includes one precondition axiom for each action. For
example, the precondition axiom for the bounce(ball, t)
action states that the ball bounces iff it is falling and
it is at the floor.

Consider the function, %(f), which takes a function
of time, f, as its argument and has as its value the
function which is the time rate of change of f. We
write E(posztzon(ball $))(t) < 0 to say that the value
of the time rate of (‘hange of the position function of
the ball at time ¢ in s is less than 0. In other words,
the ball is falling at time ¢. Hence, the precondition

axiom for the bounce(ball,t) action is

Poss(bounce(ball t),s) =
t > start(s) A position(ball, s)(t) = 0 A

%(position(ball,s))(t) <0 (1)

where Poss(a,s) means that action a is possible in
situation s.

Natural actions, such as bounce(ball,t), are a special
case: when a natural action can possibly occur at time
t, it does occur, unless some other action (perhaps
catch(ball 1)) occurs sooner. In worlds where no agent
has “free will” | all actions are natural. Intuitively, an
agent has “free will” if it is impossible to predict what
actions the agent will perform, or, at least, when the
agent will perform some action. Nature is taken to be
characterized by all of the scientific laws that scientists
strive to know, and to the extent that those laws exist
and do not change, Nature has no “free will”.

In worlds where all actions are natural, if certain con-
ditions are met, it is possible to simulate the evolution
of the world. Simulation is possible when in every sit-
uation it is possible to determine whether and when
actions will occur. In effect, the world evolves deter-
ministically according to the laws of Nature (e.g. New-
ton’s laws). When this is the case, there is only one
legal path through the tree of situations.

2.4 The Results of Courses of Action

The ways in which the values of fluents are affected by
action occurrences are determined by successor state
arioms. A formalization of a world includes one suc-
cessor state axiom for each fluent. The axiom specifies
all individual conditions under which the fluent will
change, and how the fluent changes under those con-
ditions.

Consider a world where a ball can bounce, and it can
be caught, and no other actions can affect it. The
successor state axiom for the position(ball,s) fluent
would state that if the concurrent action ¢ is possible
in s, then the value of position(ball, do(c, s)) depends
upon what simple actions are in ¢. If ¢ contains a
bounce and not a catch, the ball’s velocity reverses. If
¢ contains a catch, the ball’s position becomes constant
where 1t 1s caught. If ¢ contains neither a bounce nor
a catch, the behavior of the ball’s position remains
unchanged.

The axiom is

Poss(c, s) D position(ball, do(e,s)) = f =
[(3t"Ybounce(ball,t') € ¢ A catch(ball, t') & ¢ A
time(c) = to A

(V) f(t) =0 — %(position(ball, $)) (') (t — to) —
1/2g(t — to)"]

[(El "eatch(ball,t') € ¢ A
(Vt) (t) = position(ball, s)(t'")]

[(Vt)bounce(ball,t) ¢ c A catch(ball,t) & ¢ A
f = position(ball, s)] (2)

where the surface on which the ball bounces is taken
to be at position 0, and g > 0 is the acceleration due
to gravity. Successor state axiomssuch as this embody
Reiter’s [Rei91] solution to the frame problem.

3 The Dagstuhl Steam Boiler

In this section, we attempt merely to introduce the
Dagstuhl steam boiler problem in enough detail for
the purposes of this paper, rather than reproduce the
specification. See [Abr94] for the complete specifica-
tion.

The Dagstuhl steam boiler system consists of the fol-
lowing units:

e the steam boiler with a water level which is kept
preferably within the normal operating range, but
certainly must be kept within the safe range,

e a device to measure the quantity of water in the
steam boiler (denoted by water level),



We

four pumps which are either off or on to provide
the steam boiler with water (we use pump(i) to
denote the 7th pump),

one controller to supervise each pump (four
in all), reporting on its water flow (we use
pump_control(i) to denote the ith pump con-
troller),

a device to measure the quantity of steam exiting
the steam boiler (denoted by steam_rate),

an operator desk, from which a STOP message
can be sent to the controller,

a message transmission system used for all com-
munication between the controller and the steam
boiler components.

attempt to keep our notation consistent with the

original problem description, [Abr94]. Messages are
denoted by functions and constants with upper case
names. Mandatory messages must be present in every
transmission. There are roughly four classes of mes-
sages:

Control messages :

Fault Detection and Repair messages :

The controller sends messages
to the physical units to direct their actions, and
the physical units send messages to the controller
to indicate the actual state of the steam boiler.
The control messages sent by the controller to the
physical units are

o VALV E: sent in initialization mode to re-
quest the opening and then the closure of the
valve for evacuation of water from the steam-

boiler,

¢ OPEN_PUMP(n): sent to activate
pump(n),

¢ CLOSE_PUMP(n): sent to deactivate
pump(n).

The control messages sent by the physical units
to the controller are

e PUMP_STATEF(n,b): sent to indicate that
the state of pump(n) is b, which may be 0 or
1, meaning open or closed, mandatory,

e PUMPCNTL.STATE(n,b): sent to indi-
cate that the flow of water from pump(n) is
b, which may be 0 or 1, meaning there 1s flow
or there is no flow, mandatory,

e LEV EL(v): sent to indicate that the level of
water in the boiler is v, mandatory,

o STEAM (v): sent to indicate that steam is
exiting the boiler at rate », mandatory.

When
the controller infers that a component is defec-
tive (a pump claims to be operating, but there is
no water flow, for example), the controller sends
a fault detection message. When the a defective
component has been repaired, a repair message is
sent to the controller.

Acknowledgement messages :

The controller sends the following fault detection
messages:

¢ PUMP_FAIL_DETN (n): sent (until ac-
knowledgement is received) to indicate that
the controller has detected the failure of
pump(n).

¢ PUMP CNTL_FAIL_.DETN (n):
sent (until acknowledgement is received) to
indicate that the controller has detected the
failure of pump_control(n),

o LEVEL_FAIL: sent (until acknowledge-
ment is received) to indicate that the con-
troller has detected the failure of the water
level measuring unit,

o STEAM_FAIL: sent (until acknowledge-
ment is received) to indicate that the con-
troller has detected the failure of the unit
that measures the rate of steam exiting the
boiler.

The controller receives the following repair mes-
sages:

e PUMP_REPD(n): sent (until acknowledge-
ment is received) to indicate that pump(n)
has been repaired,

¢ PUMPCNTL_REPD(n): sent (until ac-
knowledgement is received) to indicate that
pump_control(n) has been repaired,

e LEVEL_REPD: sent (until acknowledge-
ment is received) to indicate that the water
level measuring unit has been repaired,

e STEAM_REPD: sent (until acknowledge-
ment is received) to indicate that the unit
that measures the rate of steam exiting the
boiler has been repaired.

The physical units
send the controller a corresponding acknowl-
edgement message for each fault detection mes-
sage. For example, PUMP_FAIL_ACK (n) is
sent to the controller to acknowledge the re-
ceipt of a PUMP_FAIL_.DETN(n) message.
Similarly, the controller sends the physical
units a corresponding acknowledgement mes-
sage for each repair message. For example,
PUMP_REPD_ACK (n) is sent to the physical
units to acknowledge a PUM P_REPD(n) mes-
sage.

Other messages : There are also messages that have

somewhat administrative purposes.

The controller sends the following administrative
messages to the physical units:

e PROGRAM_RFEADY: sent (until acknowl-
edgement is received) in initialization mode
to indicate that the controller is ready to as-
sume control of the steam boiler,

e MODE(m): sent to to indicate that the pro-
gram’s current mode of operation is m (see



below for the modes of operation), manda-
tory, v

e FMFERGENCY_STOP: sent to immedi-
ately transfer control of the steam boiler to
the operators.

The physical units send the following administra-
tive messages to the controller:

e STOP: when the controller receives this
message three times in a row, the program
goes into emergency_stop mode,

o STEAM _BOILER WAITING: sent in
initialization mode to trigger the start of the
program,

o PAHYSICAL.UNITS_READY:
sent in initialization mode to acknowledge

a PROGRAM_RFEADY message.

A solution to the steam boiler problem is an imple-
mentation of a controller program that will keep the
water level in the boiler within the normal operat-
ing range by receiving and sending messages through
the message system. If for some reason the water
level threatens to go outside of the safe operating
range, the controller should immediately transmit an

EMFERGENCY _STOP message, and halt.

The operation of the program is cyclic. Every five
seconds, the program receives the incoming messages
from the steam boiler components. It then computes
the set of messages that should be sent out to the com-
ponents, and transmits those messages. In each cycle,
all messages are assumed to be received or transmitted
simultaneously.

Components of the steam boiler can become defective.
Defective components determine (for the most part)
the operation mode of the controller. The operation
modes and their corresponding conditions (mostly)
are:

initialization : the steam boiler is not yet operating;

normal : no component is defective;

degraded : any component except the water level
monitor is defective;

rescue : the water level monitor 1s defective, but the
steam monitor i1s not. In rescue mode, the con-
troller estimates upper and lower bounds on the
water level, based on the dynamics of the boiler.
If the controller calculates that either bound will
be outside the safe operating range at the next cy-
cle, then the water level is considered to be outside
the safe range.

emergency_stop : the water level and steam monitors
are both defective, or the water level is threaten-
ing to go outside the safe range.

When the program detects that a component is faulty,
it sends an appropriate message to the operator desk.

After the component is repaired, an appropriate mes-
sage is sent to the controller to inform 1t of the repair.

4 The Situation Calculus Language

The instantiation of McCarthy’s [MH69] situation cal-
culus language used in this paper to formalize the
steam boiler controller is due to Reiter [Rei96], largely
influenced by Pinto’s [Pin94] work on concurrency and
continuous processes. The language has the following
ontology:

e asort situation, and a distinguished situation con-
stant symbol Sp.

e a sort time ranging over the reals.

e a sort action of simple actions. All actions are in-
stantaneous, and are denoted by a family of func-
tions that take a parameter in the last argument
position denoting the time of the action’s occur-
rence. Variables a, a', etc. are used for simple
actions.

e a sort concurrent of concurrent actions which are
sets of simple actions. Variables ¢, ¢/, etc. are
used for concurrent actions.

e a function symbol time : action — R, where
time(a) denotes the time of the action a.

e a function symbol start : situation — R, where
start(s) denotes the start time of the situation s.

e a function symbol do : action x situation —

situation.

e The predicate symbol Poss, where Poss(a,s)

means that the simple action a 1s possible in sit-
uation s (and similarly for any concurrent action

c).

e The predicate symbol <, where s < s’ means that
s’ is reachable from s through the execution of
a sequence of possible actions (simple or concur-

rent).

e The foundational axioms for the concurrent tem-
poral situation calculus, provided in [Rei96],
which are generalizations of those provided in
[LR94] and [Rei93] for the nonconcurrent situa-
tion calculus. These axioms include unique names
axioms for situations, a definition for <, a co-
herency criterion for concurrent actions, and an
induction axiom:.

4.1 Axiomatizing Application Domains

Levesque et al. [LRIT96] list the general types of ax-
ioms required to formalize an application domain in
the situation calculus. In particular, our axiomatiza-
tion consists of the following axioms:



e For each simple action A, a single action precon-
dition axiom of the form

Poss(A(Z,1),s) = start(s) <t A B(Z,t,5)

where ®(Z, ¢, s) is any first order formula with free
variables among Z, ¢, and s whose only term of
sort situation is s.

e For each fluent f (except for defined fluents, which
are defined in terms of other fluents), a single suc-
cessor state axiom. The form of a successor state
axiom for a relational fluent, F, is

Poss(e,s) D F(Z,do(c,s)) =

7}'(5, e, s)V F(Z,s) N—yp (&, ¢, s)

where v (%, ¢,s) and 5 (7, ¢, s) denote the con-
ditions under which ¢, if performed in s, results
in F(Z,do(e, s)) becoming true and false, respec-
tively.

For a functional fluent, f, the form of the successor
state axiom is

Poss(c,s) D f(Z,do(c,s)) =y =
vr (E; Yy, ¢ S) Vy= f(T_‘a S) A _'(Elyl)ﬂyf (E; yla c, S)
Here, v¢(Z,y,¢,s) is a first order formula whose

free variables are among %, y,¢,s. In the case of
Successor State Axiom 2, Yposition (Z, f, ¢, 5) is

[(3t")bounce(ball,t') € ¢ A catch(ball ') & cA

time(c) = toA

(V) f(t) =0— d%(position(ball, st —to)—
1/2g(t — 0)?]

V

[(3t')eatch(ball,t') € e
(Vt) f(t) = position(ball, s)(t')]

e Unique names axioms for the primitive actions.
e Axioms describing the initial situation.

e The foundational axioms mentioned in the previ-
ous section.

5 Formalizing the Steam Boiler
Specification

The first step in implementing a steam boiler controller
with the situation calculus is to reconcile the inher-
ently procedural operation of a steam boiler controller
with the inherently declarative nature of the situation
calculus.

The issue is the following. The axiomatizer cannot
completely specify what the behavior of the controller
will be after it 1s put into service, because the infor-
mation comprising the incoming messages that will be
received at run-time is not available to her at the time
of specification. She cannot write down, for example,
that at time ¢, the controller will receive message m,
and do z.

Knowledge-producing actions are required to handle
this issue properly (see, for example, [LLLT96, SL93]).
The receipt of a message would be represented by the
execution of a knowledge-producing action. The ax-
iomatizer would be able to write down that at time ¢,
the controller will receive a message, and if the mes-
sage is m1, the controller will do z1, but if the message
is ms, the controller will do z5, etc.

In order to keep the particular implementation pre-
sented in this paper as simple as possible, we do not
use knowledge producing actions. We deal with the is-
sue of incoming messages non-logically, and in order to
not completely betray one of the main benefits of the
situation calculus approach to the steam boiler prob-
lem, namely, that the the approach is logical, we must
be careful about these non-logical properties.

We define a predicate input(m,t), which asserts that
message m is ready to be received by the controller at
time ¢. We handle incoming messages with a PRO-
LOG assert statement, which updates the definition
of the input(m,t) predicate as messages are received.
When executing a specification that is continually up-
dated in this way, using the assert statement, the
logical consequences actually used by the controller
are all and only those logical consequences that would
be used by the controller if all knowledge about future
incoming messages were known and specified before
the controller 1s put into service.

The general operation of the situation calculus imple-
mentation is as follows:

1. Every five seconds, a set of messages are received
from the steam boiler. For each of these messages,
m, Poss(receive(m,t),s) is now true at the cur-
rent time ¢ in the current situation s.

2. The concurrent action consisting of the complete
set of receive(m,t) actions is performed, and the
values of the fluents are affected accordingly.

3. The new values of the fluents make more actions
possible immediately. Since all the actions are
natural, any action that is possible (and not pre-
vented by an earlier action) is carried out.

4. The first actions to become possible are those that
change the mode of operation of the controller, if
any.

5. After the mode has stabilized, a complex action
consisting of a set of transmit(m,t) actions will
be possible, and carried out.

6. The situation resulting from transmitting mes-
sages 1s stable, and the next actions to be possible
are the actions to receive the messages in the next
cycle.

In the following sections, we show what such a specifi-
cation looks like. Rather than present the entire spec-
ification, we present enough to show the reader how it



can be constructed.

5.1 Actions

The following actions are sufficient to model the steam
boiler:

o receive(m,t): receive message m at time ¢
e transmit(m,t): transmit message m at time ¢

e switch_to_mode(m,t): switch to operation mode
m at time ¢.

These are all natural actions.

5.2 Fluents

The fluents described in this section comprise a suf-
ficient notion of the state of the system. The names
of fluents are chosen to be consistent with the original
steam boiler specification. The various quantities (e.g.
the water throughput of a pump) are considered to be
within an upper and lower bound, and each bound has
three values associated with it: a claizmed value, which
is the corresponding sensor reading, a calculated value,
which is calculated by the controller using its knowl-
edge of the dynamics of the boiler, and a best estimate,
which is the same as the claimed value if the sensor is
not defective, and the same as the calculated value if
the sensor is defective. Note that the upper and lower
bounds on a quantity are both equal to the sensor
reading of that quantity if the corresponding sensor is
not defective.

mode(s) = z : the controller’s mode of operation is z,
one of {initialization, normal, degraded, rescue,
emergency_stop}

cur_receive_time(s) = z : the controller will next re-
ceive messages at time z

watting_begin_flow(n,s) = z : z is the number of
transmissions received since pump n was turned
on, and pump controller n has not yet confirmed
the flow starting (if the pump has not been turned
on, z=—1)

watting_stop_flow(n,s) = z : z is the number of
transmissions received since pump n was turned
off, and pump controller n has not yet confirmed
the flow ceasing (if the pump has not been turned
off, z = —1)

q(s) = z : the last transmission contained a message

~ claiming the quantity of water in the boiler was z

v(s) = z : the last transmission contained a message
claiming the quantity of steam exiting the boiler
was z

qcel(s) = z : z, a function of time, is the calculated
lower bound on the quantity of water in the boiler

qc2(s) = z : z, a function of time, is the calculated
upper bound on the quantity of water in the boiler

pal(s) = z : z is the best estimate of the lower bound
on the (constant) throughput of the pumps.

pa2(s) = z : z is the best estimate of the upper bound
on the (constant) throughput of the pumps.

pcl(s) = z : z is the calculated lower bound on the
(constant) throughput of the pumps.

pc2(s) = z : z is the calculated upper bound on the
(constant) throughput of the pumps.

vel(s) =z @ z, a function of time, is the calculated
minimum rate of steam leaving the boiler

ve2(s) = z : z, afunction of time, is the calculated up-
per bound on the rate of steam leaving the boiler

qal(s) = z : z is the best estimate of the lower bound
on the quantity of water in the boiler at the start
of s

qa2(s) = z : z is the best estimate of the upper bound
on the quantity of water in the boiler at the start
of s

val(s) = z : z is the best estimate of the lower bound
on the rate of steam leaving the boiler at the start
of s

va2(s) = z : z is the best estimate of the upper bound

on the rate of steam leaving the boiler at the start
of s

transmitted(m,s) :
the start of s

received(m,t,s) :
ins

message m was transmitted at
message m was received at time ¢

transmission_error(s) : a transmission error oc-
curred at the start of s (e.g. a mandatory message
was missing from a transmission)

defective(z,s)
steam_boiler _waiting(s) : the steam boiler is waiting

for the controller to indicate it is ready to come
on-line

: component x is defective

program_ready(s) : the program is ready to come on
line

physical _units_ready(s) :
for control to begin

the steam boiler is ready

pump_state(n, b, s) : pump(n) has been shut off (b =
0), or turned on (b= 1)

pump_control_state(n,b,s) : the last transmission
contained a message claiming that water from
pump(n) was (b = 1) or was not (b = 0) flow-
ing

valve_open(s) : the valve to let water drain out of the
steam boiler is open

waiting_ack(m,s) : the controller is waiting for ac-
knowledgement message m

send_ack(z,s) : the controller should send acknowl-
edgement message m in the next transmission



5.3 Initial Situation

The situation is Sy when the controller is turned on:
mode(Sy) = initialization, q(So) = 0, pal(Se)(t) = 0,
pa2(So)(t) = 0, v(So)(t) = 0, ~de fective(x, Sp), ete.

5.4 Precondition Axioms

In practice, it is possible to receive a message when
that message arrives, and we know that messages will
arrive approximately every five seconds. The PRO-
LOG simulator that executes the situation calculus
specification is responsible for controlling the timing
of the transmit/receive cycle.

To ensure the program detects the absence of a trans-
mission, we invent a message, tick, which is guar-
anteed to be received every five seconds. The value
of the transmission_error(s) fluent is determined by
considering what messages were received with each
tick. The theorem prover (we use PROLOG) updates
the definition of the input(m,t) predicate (using the
PROLOG assert statement) as messages arrive. The
input(m,t) predicate asserts that message m is ready
to be received at time .

The following axiom characterizes when messages are
actually received (rather than only ready to be re-
ceived):

Poss(receive(m,t),s) =
t > start(s) At = cur_receive_time(s) A (3)
[input(m,t) V. m = tick]

The precondition axiom for the transmit(m,t) action
is such that messages are transmitted exactly when
they are appropriate for proper operation of the con-
troller. The axiom ensures that the controller’s mode
has stabilized before any messages are transmitted. If
the controller is in emergency_stop mode, only the
message MODEFE(emergency_stop) should be trans-
mitted. Also, is not possible to transmit a message
that was just transmitted. These conditions are dic-
tated by the following defined fluent:

transmit_cond(m,t,s) =
t > start(s) A mode(s) # emergency_stop A
=[(3t")Poss(switchto_mode(m',t'), s)] A

—transmitted(m, s)

In addition, the decision to switch the pumps on or off
is characterized by the following defined fluent:

need_pumps(s) =
mode(s) # initialization A
[[gal(s) < N1 A qa2(s) < Ni]V
[qal(s) < N1 A N1 < qa2(s) A qa2(s) < Na]],
where N7 and N5 are the upper and lower limits, re-

spectively, of the normal operating range for the wa-
ter level in the boiler. Control strategies other than

this one are possible; however, this one is proposed in
[Abr94] as a reasonable candidate.

Given these two defined fluents, the precondition ax-
iom for the ¢transmit(m,t) action is:
Poss(transmit(m,t),s) =
m = MODE(emergency_stop) At > start(s) A
mode(s) = emergency_stop A ~transmitted(m, s)
\%
m = MODE(mode(s)) Atransmit_cond(m,t, s)
\
m = PROGRAM_READY A
transmit_cond(m, s, t) A
mode(s) = initialization A program_ready(s)
\
m = VALV E Atransmit_cond(m, s, t) A
mode(s) = initialization A
steam_boiler_watting(s) A
[—valve_open(s) A q(s) > NaV
valve_open(s) A q(s) > Ny]
\%
(3n)m = OPEN_PUM P(n) A
transmit_cond(m, s, t) A
need_pumps(s) A
[n=1Vn=2Vn=3Vn=4]A
—de fective(pump(n), s) A pump_state(n, 0, s)
Vv
(In)ym = PUMP_FAIL_DETN (n) A
waiting _ack(PUMP_FAIL_ACK (n),s) A
transmit_cond(m, s,t) A de fective(pump(n), s)
V...
\
m=STEAM _REPD_ACK A
transmit_cond(m, s, t) A

send_ack(STEAM _REPD_ACK) (4)

The precondition axiom for the switch_to_mode(m,t)
fluent governs the mode state changes of the con-
troller. The axiom says, for example, that the con-
troller switches to mode normal if nothing is defective,
and either the mode is initialization and the physical
units are ready, or the mode is rescue, or the mode is

degraded.
Poss(switch_to_mode(m,t),s) =
t > start(s) A
[m = normal A —defective(z,s) A
[mode(s) = initialization A
physical _units_ready(s) V

mode(s) = rescue V mode(s) = degraded)



Vv

m = degraded A

[mode(s) = normal V mode(s) = rescue] A
[(3z)defective(z, s)] A

[(Vz)defective(z,s) D x # water level)

V

m = rescue A\

[mode(s) = degraded V mode(s) = normal]

Nde fective(water_level, s)

Vv

m = emergency_stop A

[mode = initialization A
[defective(steam_rate, s) V
defective(water_level, s)] V
transmission_error(s) V water level _risk(s) V
mode(s) = rescue A [defective(steam_rate, s) V
(3n)defective(pump_control(n), s)]]] (5)

5.5 Successor State Axioms
We present just the most interesting, representative
successor state axioms.

The successor state axiom for the mode(s) = m fluent
is straightforward. The only action that can affect the
mode of the program is a switch_to_mode(m,t) action:

Poss(c,s) D mode(do(e, s)) = m

switch_to_mode(m, time(c

)ecv (6)
switch_to_mode(m’, time(c)) ¢ ¢ A mode(s) = m

The successor state axiom for defective(x,s) charac-
terizes the conditions under which a component is con-
sidered defective. It says, among other things, that
pump(n) is defective if it changes state spontaneously,
or if an OPEN_PUMP(n) or CLOSE_PUM P(n)
message were sent in the previous cycle, but the flow
has not yet started or stopped, respectively.

Poss(c,s) D defective(z,do(c,s)) =
(Fn)x = pump(n) A
[[[(Fb)receive(PUM P_STATE(n,b),time(c)) € ¢
A(Ja)pump_state(n,a,s) Aa # bV
pump_state(n,0,s) A
waiting begin_flow(n,s) = 1V
pump_state(n,1,s) A
watting_stop_flow(n, s) = 1] V
receive(PUMP_STATE(n,b),time(c)) & c A
de fective(z, s)]
V... (7

5.6 Defined Fluents

Defined fluents are fluents that are defined in terms of
other fluents. We could write down a successor state
axiom for any defined fluent. It would be a compila-
tion of the successor state axioms of the fluents in the
definition of the defined fluent that have a situation
argument of the form do(e,s). However, the result-
ing successor state axiom would be larger and more
complicated than the defined fluent.

The defined fluent ga2(s) = z means that z is the best
estimate of the upper bound on the quantity of water
in the boiler. If the water level detection equipment
is not defective, the program accepts the value given
by that equipment as the best estimate; otherwise, it
uses the value calculated by ¢c2(s)(¢) at the time of
the action which started the situation. The formula
for gal is similar to this one for qa2:

qa2(do(e,s)) = z =
defective(water_level, s) A z = qc2(s)(time(c)) V
—de fective(water_level,s) A z = q(do(e,s))  (8)

6 The Situation Calculus Simulator

In this section we discuss a PROLOG technology sim-
ulator. The simulator can simulate a concurrent sit-
uation calculus specification like the steam boiler for-
malization presented in the previous section.

6.1 The PROLOG Simulator

A situation calculus model defines a tree of situations
emanating from the distinguished situation S;. Some
of the situations in the tree correspond to legal sit-
uations, and some do not. A legal situation is con-
sistent with the laws of Nature, in that a natural ac-
tion must occur at the time dictated by natural laws
governing the behavior of the system, unless the ac-
tion is prevented from occurring by an earlier action.
Reiter [Rei96] defines the legal(s) predicate to formal-
ize this principle:

legal(s) =
So < sA
(Va, c,s").natural(a) A Poss(a,s') A 9)

do(c,s') < s D a € cVtime(c) < time(a).

Here, < is the ordering relation defined by the founda-
tional axioms mentioned earlier. The legal predicate
is instrumental in the implementation of a simulator,
as will become clear.

A domain of discourse in which all actions are nat-
ural is said to comply with Reiter’s [Rei96] Natural
World Condition (NWC). This condition assures a
deterministic simulation.



Another concept crucial to the implementation of a
simulator is the notion of Reiter’s [Rei96] Least Natu-
ral Time Points:

Intp(s,t) = (10)
(Ja)[natural(a) A Poss(a, s) A time(a) = t] A
(Va)[natural(a) A Poss(a, s) D time(a) > t].

Informally, the least natural time point 1s the earliest
time at which any natural action can possibly occur in

a situation. The Least Natural Time Point Condition
(LNTPC) is the following:

(Vs).(Fa)[natural(a) A Poss(a, s)] D (3t)intp(s,t). (11)
This condition states that every situation in which
there is a possible natural action has a least natural
time point. An example of a world where this condi-
tion fails is one in which we have (Va).natural(a) =
(3z,t)a = B(x,t), where x ranges over the non-
zero natural numbers, and Poss(B(z,t),s) = t =

start(s) + 1/z.

Reiter [Rei96] puts this all together with his founda-
tional axioms for the concurrent temporal situation
calculus and proves:
LNTPC ANWC D legal(do(c, s)) =

{legal(s) A Poss(c, s) A start(s) < time(c) A

(Va)la € ¢ = Poss(a, s) Alntp(s,time(a))]}(12)
Formula 12 is the engine for the simulator. The sim-
ulator is a PROLOG procedure that takes a situation
term s as an argument (initially Sp), prints its argu-
ment, constructs a set of actions ¢ such that

(Va)[a € ¢ = Poss(a, s) Alntp(s, time(a))],

and recursively calls itself with do(e, s). In so doing,
the simulator follows the path of legal situations (there
is only one path of legal situations when all actions are
natural), simulating the evolution of the system.

Here is the PROLOG code:

simulate(S) :-
nl,nl,print(S),
setof (A,1ntp(S,A),C),
simulate(do(C,S)).

1ntp(S,A):-

natural(4)),

poss(4,S),

time(4A,T),

not (
natural(A_prime),
poss(A_prime,S),
time(A_prime,T_prime),
T>T_prime

).

The version of this code for use with the steam
boiler controller needs to add information about in-
coming messages as the simulation proceeds, so the
simulate(S) procedure becomes:

simulate(S) :-
setof (A,1ntp(S,4),C),
transmit_messages(C),
simulate(do(C,S))
read(Transmission),
receive_messages(Transmission),
simulate(S).

The transmit_messages(C) procedure actually trans-
mits any messages, m, from transmit(m,t) ac-
tions that are present in the concurrent action, C.
When no more natural actions are possible (when
the setof (4,1ntp(S,4A),C) procedure fails), the con-
troller process is blocked by the read (Transmission)
procedure until a transmission arrives from the steam
boiler. Upon receiving a new set of messages, more
natural actions are enabled, and control of the steam
boiler continues.

6.2 Translating a Model to PROLOG

Clark’s completion semantics for logic programming
([Cla78]) admit a translation from the situation calcu-
lus axioms to PROLOG clauses. The procedure is to
simply make the implication in the axioms go only one
way, and write down the clausal form. For example,

the PROLOG equivalent of Axiom 6 is

mode(do(C,S) ,M) : -
poss(C,S),
(member (switch_to_mode(M,T),C),

not member(switch_to_mode(M_prime,T),C),
mode(S,M)).

6.3 Simulation

The situation calculus steam boiler controller is capa-
ble of controlling the FZI simulation ([Lot95]) of the
Dagstuhl steam boiler. The following situation term
(read from bottom to top) denotes the course of action
associated with initialization and startup. After the
level of water drops below 400, the pumps are turned
on. At time 20 water is flowing at the pump con-
trollers, and the level of water in the boiler is rising
due to the influx of water.

do([receive(level(443.0),20),
receive(steam(12.0),20),
receive(PUMP_STATE(1,1),20),...,
receive (PUMP_CONTROL_STATE(1,1),20)],
do([transmit (MODE(NORMAL),15)],
do([receive(level(375.5),15),
receive(steam(7.0),15),
receive(PUMP_STATE(1,1),15),...,
receive (PUMP_CONTROL_STATE(1,0),15)],
do([transmit (MODE(NORMAL),5),
transmit (OPEN_PUMP(1),10),...,



transmit (OPEN_PUMP(4),10)],
do([receive(level(398.0),10),

receive(steam(2.0),10),

receive (PUMP_STATE(1,0),10),...,

receive (PUMP_CONTROL_STATE(1,0),10)],
do([transmit (MODE(NORMAL),5)],
do([switch_to_mode(normal,5)],
do([receive(PHYSICAL_UNITS_READY,5),

receive(level(400.0),5),

receive(steam(0.0),5),

receive(PUMP_STATE(1,0),5),...,

receive (PUMP_CONTROL_STATE(1,0),5)],
do([transmit (PROGRAM_READY,0),

transmit (MODE(INITIALIZATION),O0),
do([receive(STEAM_BOILER_WAITING,0)],s0)...)

7 Evaluation of the Solution

In this section, we attempt to apply the evaluation cri-
teria given in [ABL95] to this formalization and simu-
lation. These criteria were formulated by participants
at the Dagstuhl meeting to evaluate various solutions
to the steam boiler problem and to compare the spe-
cific merits and drawbacks of the formal methods used
in those solutions. We paraphrase the criteria in the
following subsections.

7.1 Formality and Rigor

Is the requirements specification of the solution formal
and rigorous, and can the functional and architectural
designs be formally and rigorously verified against the
specification?

The situation calculus solution is especially strong in
this regard, since the specification (at least implicitly)
constitutes a functional and architectural design, and
it is an implementation, executable on a provably cor-
rect simulator.

Other solutions to the problem are based on logical
formalisms, but those formalisms are separate from
the actual implementation. For example, Lefike and
Merz ([LM95]) use Lamport’s Temporal Logic of Ac-
tions (TLA) [Lam94] in their solution, leaving the im-
plementation language open. They consider this a fea-
ture, since the implementation language can be chosen
to suite a variety of machine architectures. Rischel et
al ([RCM*95]) use a specification language that has a
real-time interval logic semantics for the specification,
and they use C code for the implementation.

7.2 Practicality

Has the solution actually been implemented and can it
control the FZI simulation [Lot95] of the steam boiler?

The situation calculus solution is also strong in this re-
gard, since an elementary change in syntax of the spec-

ification produces a working implementation. Many
of the other solutions produced working implementa-
tions.

7.3 Readability and Ease of Use

What level of specialized knowledge is required to read
and work with the formalism? How much effort did
the solution to the problem require?

The situation calculus is essentially a standard first-
order predicate calculus language. Hence, it is con-
ceivable that anyone familiar with the predicate calcu-
lus would be able to read the language, even without
any prior situation calculus experience.

On the other hand, the situation calculus steam boiler
solution is at the implementation level. Other than
the general form of a situation calculus specification,
the situation calculus has not yet been associated with
any well defined methodology involving higher-level
abstraction, stepwise refinement, or modularization.
This is in contrast to the many of the other solutions,
whose formalisms have been designed, at least in part,
with ease of use and readability as a primary concern,
often as part of a specification methodology.

One such methodology is GrafTab ([S195]), which uses
graphs to describe the flow of the system states, and
tables to specify the state condition and actions in the
states. A GrafTab solution consists of four distinct
documents.

Although readability and ease of use are not the pri-
mary design goals of the situation calculus, modeling
methodologies and software programs to aid in the
development of situation calculus specifications might
well receive the attention of researchers in the future.
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