
Using More Reasoning to Improve #SAT Solving

Jessica Davies and Fahiem Bacchus
Department of Computer Science

University of Toronto
Toronto, Canada

[jdavies|fbacchus]@cs.toronto.edu

Abstract

Many real-world problems, including inference in Bayes
Nets, can be reduced to #SAT, the problem of counting the
number of models of a propositional theory. This has mo-
tivated the need for efficient #SAT solvers. Currently, such
solvers utilize a modified version of DPLL that employs de-
composition and caching, techniques that significantly in-
crease the time it takes to process each node in the search
space. In addition, the search space is significantly larger
than when solving SAT since we must continue searching
even after the first solution has been found. It has previously
been demonstrated that the size of a DPLL search tree can be
significantly reduced by doing more reasoning at each node.
However, for SAT the reductions gained are often not worth
the extra time required. In this paper we verify the hypoth-
esis that for #SAT this balance changes. In particular, we
show that additional reasoning can reduce the size of a #SAT
solver’s search space, that this reduction cannot always be
achieved by the already utilized technique of clause learning,
and that this additional reasoning can be cost effective.

Introduction
The goal of model counting, #SAT, is to determine the
number of models of a propositional theory. Like SAT,
the canonical NP-complete problem, #SAT is a fundamen-
tal problem that is complete for the complexity class #P
(Valiant 1979). This means that many real-world prob-
lems can be reduced to #SAT, motivating the need for ef-
ficient #SAT solvers. Currently, inference in Bayesian net-
works is the dominant application area of #SAT solving (Li,
van Beek, & Poupart 2006; Chavira & Darwiche 2006;
Sang, Beame, & Kautz 2005b), but #SAT has also been suc-
cessfully applied to combinatorial problems (Gomes, Sab-
harwal, & Selman 2006), probabilistic planning (Domshlak
& Hoffmann 2006) and diagnosis (Kumar 2002).

State-of-the-art #SAT solvers utilize modified versions of
DPLL, the classical backtracking search algorithm for solv-
ing SAT. The key modification that makes DPLL efficient for
#SAT is the dynamic decomposition of the residual theory
into components, solving those components independently,
and then caching their solutions so that a component need
not be solved repeatedly. It can be shown that this method,

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

called component caching DPLL, can achieve a run time that
is at least as good as traditional Bayesian network algorithms
(e.g., variable elimination or jointrees), and can on some
instances be super-polynomial faster (Bacchus, Dalmao, &
Pitassi 2003). In practice, it has been demonstrated that
component caching DPLL is very effective on many types of
Bayes nets including those arising from linkage analysis and
relational probabilistic models (Chavira & Darwiche 2005;
Chavira, Darwiche, & Jaeger 2004).

Solving #SAT poses some different challenges from ordi-
nary SAT solving. In particular, in SAT we need only search
in the space of non-solutions: once a solution is found we
can stop. In this non-solution space every leaf of the search
tree is a conflict where some clause is falsified. Hence, the
technique of clause learning can be very effective in exploit-
ing these conflicts to minimize the time spent traversing the
non-solution space. #SAT solvers, however, must traverse
the solution space as well as the non-solution space. Con-
flicts are not encountered in the solution space so clause
learning is not effective in speeding up search in this part
of the space.

Another key factor is that component caching involves a
significant overhead at each node of the search tree: the al-
gorithm must examine the theory for components, compute
cache keys and perform cache lookups at each node. These
operations are significantly more expensive than the simple
operation of unit propagation performed by SAT solvers.

Finally, #SAT solvers are often used for knowledge com-
pilation (Huang & Darwiche 2005). This involves saving
the search tree explored while solving the #SAT instance (a
trace of DPLL’s execution). A number of different queries
can then be answered in time linear in the size of the saved
search tree. Hence for this important application it can be
beneficial to reduce the size of the explored search tree even
if more time is consumed. This is analogous to the bene-
fits of using higher levels of optimization in a compiler even
when compilation takes more time.

In SAT it has been shown that performing more extensive
inference at each node of the search tree, i.e., going beyond
unit propagation, can significantly decrease the size of the
explored search tree even when clause learning is not em-
ployed (Bacchus 2002). For SAT however, since nodes can
be processed so quickly, the time more extensive inference
requires to reduce the number of nodes searched is often

not worthwhile. Our hypothesis is that this balance shifts
for #SAT where processing each node is already much more
costly and we might want to minimize the size of the search
tree in the context of compilation.

In this paper we verify this hypothesis by applying the
techniques of hyper-binary resolution and equality reduction
originally used for SAT in (Bacchus 2002), and show that
this usually reduces the size of the explored search tree and
can can often reduce the time taken when solving a #SAT
instance. We observe that more reasoning at each node re-
duces the size of the residual theory making both compo-
nent detection and caching more efficient. Furthermore, by
uncovering more forced literals than unit propagation, the
technique can also encourage the partitioning of the theory
into disjoint components which can significantly reduce the
size of the search tree. These two factors help to improve
efficiency in both the solution and non-solution parts of the
search space.

The paper is organized as follows. In the next section we
present some necessary background. Then we present some
formal results that allow us to efficiently integrate hyper-
binary resolution and equality reduction with component
caching. We have constructed a new #SAT solver called
#2clseq by building on the 2clseq solver of (Bacchus 2002),
and the next section describes some important features of
the implementation. Experimental results demonstrating the
effectiveness of our approach are presented next followed by
some final conclusions.

Background
In this section we present DPLL with component caching
for solving the #SAT problem, and discuss the precise form
of extra reasoning that we propose to employ at each node
of the search tree.

Model Counting Using DPLL
We assume our input is a propositional logic formula F in
Conjunctive Normal Form (CNF). That is, it is a conjunction
of clauses, each of which is a disjunction of literals, each of
which is a propositional variable or its negation. A truth
assignment ρ to the variables of F is a solution to F if ρ
satisfies F (i.e., makes at least one literal in every clause
true). The #SAT problem is to determine the number of truth
assignments that satisfy F , #(F). The component caching
DPLL algorithm shown in Algorithm 1 computes #(F).

This algorithm successively chooses an unassigned vari-
able v to branch on (line 3), and then counts the number
of solutions for F |v and F |¬v , where F |� is the simplifi-
cation of F by setting � to be true (line 14). The sum of
these counts is #(F) (line 17). Each subproblem, #(F |v)
and #(F |¬v), is solved using component caching. At line
10 we break the subproblem into components. A compo-
nent C of F |� is a subset of F |�’s clauses such that the
clauses in C and F |� −C have no variable in common. This
means that any truth assignment for C can be paired with
any truth assignment for F |� − C to yield a truth assign-
ment for F |�: these truth assignments assign disjoint sets
of variables. Hence #(F |�) = #(C) × #(F |� − C), and

Algorithm 1: Component Caching DPLL
#DPLL (F)1
begin2

choose (a variable v ∈ F)3

foreach � ∈ {v,¬v} do4
F |� = simplify(F ,�)5

if F |� contains an empty clause then6
count[�] = 0 % clause learning can be done here.7

else8
count[�] = 19

C = findComponents(F |�)10
foreach Ci ∈ C while count[�] �= 0 do11

cN = getCachedValue(Ci)12
if cN == NOT FOUND then13

cN = #DPLL (Ci)14

count[�] = count[�] × cN15

addCachedValue(F , count[v] + count[¬v])16
return (count[v] + count[¬v])17

end18

we can solve each component independently (lines 11–15).
For each component we first examine the cache to see if this
component has been encountered and solved earlier in the
search (line 12). If the component value is not in the cache
we solve it with a recursive call, keeping a running prod-
uct of the solved values (line 15). If any component Ci has
#(Ci) = 0 we can stop: #F |� must also be equal to zero.
Finally, #(F) = #(F |v)+#(F |¬v), so we return that value
at line 17 after first inserting it into the cache.

Hyper-Binary Resolution
Typically the simplification employed at line 5 is unit prop-
agation (UP), which involves assigning all literals appearing
in clauses of length one the value true, simplifying the re-
sulting theory, and continuing until the theory contains no
more unit clauses. In this paper we suggest employing a
more powerful form of simplification based on the approach
utilized in (Bacchus 2002).

Definition 1 The Hyper-Binary Resolution (HBR) rule of
inference takes as input a k + 1-ary clause (l1, l2, . . . , lk, x)
and k binary clauses each of the form (¬li, y) (1 ≤ i ≤ k)
and deduces the clause (x, y).
It can be noted that HBR is simply a sequence of resolution
steps compressed into a single rule of inference. Its main
advantage is that instead of generating lengthy clauses it
only generates binary or unary clauses (unary when x = y).
When k = 1 HBR is simply the ordinary resolution of bi-
nary clauses.

Definition 2 The equality reduction of a CNF F by a pair
of equivalent literals �1 ≡ �2 is a rule of inference that takes
as input the pair of binary clauses (¬�1, �2) and (�1, ¬�2)
and a CNF F and infers the simplified CNF F ′ formed by
(a) replacing in each clause all instances of �2 by �1 and ¬�2
by ¬�1, (b) deleting all duplicate copies of �1 and ¬�1 from
the resulting clauses, and (c) removing all of the resulting
clauses that contain �1 and ¬�1.

HBR is a powerful rule of inference that can discover
many forced literals. To understand its power consider the
failed-literal test. This is a test that assigns some literal l
the value true and then uses unit propagation to determine if
the CNF F yields a contradiction under this assignment. If a
contradiction is found then F forces ¬l, and we can reduce
F by making ¬l true.

We say that a CNF F has been HBR-closed if we have
applied HBR and unit propagation until the theory contains
no more units and HBR cannot infer any new clauses. It
has been shown (Bacchus 2002) that achieving HBR-closure
uncovers the same set of forced literals as the exhaustive ap-
plication of the failed literal test. That is, we must apply
the failed-literal test to all literals, and if any literal is found
to be forced, we must reapply the failed literal test to all
remaining literals, continuing until the theory contains no
more failed literals. The advantage of HBR-closure is that
it can be computed much more efficiently than such an ex-
haustive application of the failed-literal test.

This means that HBR has the power to considerably re-
duce the size of the CNF—every forced literal reduces the
number or size of the remaining clauses. Equality reduc-
tion can further reduce the size of the theory. We use HBR=

to denote the application of HBR, equality reduction, and
unit propagation; we say that the CNF F has been HBR=

closed if we have applied these inference rules until no more
changes can be made to the formula.

Model Counting with HBR=

Critical Overheads in #DPLL
Solving #SAT requires much more computation than SAT
solving. First, we must find components (line 10) at each
node. This can be done in time linear in the size of the
simplified theory F |�. Hence a smaller theory reduces the
overhead of this step.

Second, components must be looked up and stored in a
cache. This involves both space to store the cached com-
ponents and time to do look up in the cache. Relatively
succinct representations of the component can be achieved
by exploiting the fact that every component consists of (a)
a set of variables V and (b) a subset C of the clauses in
the original CNF. In particular, the subset of clauses C has
been reduced so that the only literals that remain in them
are literals over the variables V . Thus if each clause in the
original CNF is assigned a unique index, a component can
be uniquely represented by its set of clause indices and its
set of variables. We can further reduce the set of clause in-
dices by excluding the index of any binary clause (Thurley
2006) without affecting the soundness of the representation.
The resulting sequence of clause indices and variables in-
dices can then be stored in the cache and common hashing
techniques can be used for cache lookup. Again, the compo-
nents of a smaller theory will have a shorter representation,
that occupies less space in the cache and is more efficient to
calculate.1

1In practice, the size of the cache is limited. Hence, some policy
has to be employed to prune less useful entries when the cache
becomes too large during the search. However, such pruning only

Finally, the explored search tree is much larger in #SAT
since we must solve both subproblems F |v and F |¬v,
whereas a SAT solver can stop as soon as it determines that
one of these is satisfiable. Nevertheless, efforts to reduce
the search space’s size can can pay even larger dividends in
#SAT than with SAT solving. For example, current #SAT
solvers employ clause learning and heuristics that tend to
promote the splitting of the theory into components.

Simplification by HBR=closure
In this paper we propose the use of additional reasoning dur-
ing the simplification step (line 5). Specifically, our simplifi-
cation step achieves HBR= closure. As noted above this can
uncover more forced literals than ordinary unit propagation,
and each forced literal reduces the size of the theory which
lowers the overhead of finding components and caching. Of
course, achieving HBR= closure takes time so the reduc-
tion in component detection and caching overheads might or
might not result in a net decrease in computation. More im-
portantly, HBR= closure can generate additional partitions
that might reduce the size of the explored search space.

Example 1 Consider the theory F = Cz ∪ Cy ∪ Ca,b,c ∪
{(z, x), (y, x), (a, x), (b, x), (c, x), (¬a,¬b,¬c)}, where
Cz , Cy and Ca,b,c are clauses connected to z, y and {a, b, c}
respectively. HBR is able to detect that x is forced in
this theory and can thus reduce F to Cz ∪ Cy ∪ (

Ca,b,c ∪
(¬a,¬b,¬c)

)
. These are all disjoint components that can

be solved independently. Note that unit propagation is not
able to detect that x is forced. Of course if the search
was to branch on x these components would also be gen-
erated. However, heuristics for making branching decisions
are never perfect and will often miss opportunities like this.

As mentioned above current #SAT solvers utilize clause
learning. Clause learning is often able to discover forced
literals. However, it is only capable of finding forced literals
when a conflict is generated. In fact, HBR= can sometimes
find forced literals that clause learning might not discover,
as demonstrated by the following example.

Example 2 Consider the theory F = { (a, x), (b, x), (c, x),
(¬a,¬b,¬c)}. Once again HBR= can discover that x is
forced by F . However, if the search branches on the vari-
ables in the sequence a, b, c then x will be forced by unit
propagation along every branch and no conflicts will be gen-
erated. That is, clause learning will not be able to learn that
x is forced under this sequence of branch decisions. As in
the previous example, x can be discovered to be forced if the
search chooses to branch on it first. However, the heuristics
might not make such a choice.

Integrating HBR= and Component Caching
Having justified the potential of HBR= simplification for
#SAT we now turn to the mechanics of its integration with
component caching.

First we examine its interaction with the dynamic genera-
tion of components during search.

affects efficiency not correctness. In particular, if a component is
no longer in the cache the search simply has to recompute its value.

Theorem 1 Let F be any CNF, HBR=(F) be the simpli-
fication of F by achieving HBR= closure, � be any literal,
and F |� be the simplification of F by setting � to be true and
performing at least unit propagation.

1. If variables x and y are in different components of F |�,
then they are in different components of HBR=(F)|� if
neither has had its value forced.

2. Let c be a clause derivable by resolution from F . It can
be the case that x and y are in the same component of(
F ∪ c

)|�, even though they are in different components
of F |�.

This theorem can be proved by considering the new binary
clauses (l1, l2) that can be inferred by HBR, and then by case
analysis showing that these clauses cannot increase connec-
tivity after � is made true and unit propagation is performed.
For equality reduction a semantic argument can be used. If
F |= x ≡ y then x and y can never be in different compo-
nents as their truth assignments are not independent.

This theorem says that applying HBR= inference to F
cannot adversely affect how F decomposes as we make de-
cisions during the search. That is, if F without HBR= in-
ference would break into components C1, . . . , Ck after the
decision to make � true, then it would break into at least as
many components if we first applied HBR= inference. As
Example 1 shows it might break up into even smaller com-
ponents due to the detection of forced literals. In contrast,
clause learning (a resolution process) can learn clauses that
block dynamic decomposition.

The issue of learnt clauses blocking dynamic decomposi-
tion is dealt with in clause learning #SAT solvers by ignor-
ing the learnt clauses when finding components (a technique
shown to be sound in (Sang et al. 2004)). However, this
option is not available when we apply HBR= since equal-
ity reduction changes the original clauses. Hence without
the theorem we would have no guarantee that HBR= cannot
prevent decomposition.

Second we examine the integration of HBR= with
caching. As mentioned above a component can be uniquely
represented by its set of variables (all of which are unas-
signed at the time the component is created) and the indices
of the original clauses it contains. Furthermore, as shown in
(Thurley 2006) we can ignore the original binary clauses it
contains (as long as at least unit propagation is being used af-
ter every decision). Unfortunately, under equality reduction
this representation is no longer sufficient to identify a com-
ponent. In particular, we need to know which variables are
equivalent to the component’s variables. Hence, we add an
equality mapping to the component representation. With this
addition it can be proved that the representation is sound.
That is, if two components C1 and C2 have the same repre-
sentation then they must be equivalent.2 Since the equality
mapping must now also match for us to obtain a cache hit

2Note that irrespective of equality reduction this representation
does not have the guarantee that two equivalent components always
have the same representation. That is, this is not an if and only
if condition. This arises from the fact that two different original
clauses can become equivalent under different partial assignments
while their clause indices always remain different.

it becomes important to do equality reduction under a fixed
ordering. That is, it becomes important to always replace x
by y (or vice-versa) whenever we detect that x ≡ y, rather
than sometimes replacing y by x and sometimes x by y. In
our implementation we always replace the higher numbered
literal by the lower numbered literal when doing equality re-
duction.

Empirical Results
We have implemented the approach described above in a
new #SAT solver that we call #2clseq. The implementation
was accomplished by extending the SAT solver 2clseq (Bac-
chus 2002) which computes HBR= closure at each node. We
added component detection and caching, changed the search
to find all solutions and the heuristics to be more suitable
for #SAT. However, we have not yet implemented clause
learning, which would probably increase the solver’s perfor-
mance. This also impacted the heuristics we could imple-
ment. In particular, the current best performing heuristic for
dynamic decomposition (VSADS (Sang, Beame, & Kautz
2005a)) relies on a VSIDS score computed during clause
learning. Hence VSADS was unavailable to us. Neverthe-
less, as our results demonstrate, the approach can still obtain
good results even with these current deficiencies in the im-
plementation.

On line 11, #2clseq processes the components in order
from largest to smallest clause/variable ratio. This encour-
ages unsatisfiable components to be found early on, mini-
mizing the amount of work that must be abandoned. For
components with few variables, the overhead of partitioning
and caching is not worthwhile so these operations are turned
off for components with fewer than 30 variables. Similarly,
theories with a high clause/variable ratio are unlikely to split
into disjoint components, so components with a ratio higher
than 10 are solved without trying to partition.

We compared our approach with the #SAT solvers Sharp-
Sat (Thurley 2006), Cachet (Sang et al. 2004), and C2D
(Darwiche 2002). Cachet implements component caching
DPLL with clause learning and the VSADS heuristic and
is built on top of the Zchaff (Moskewicz et al. 2001) SAT
solver. SharpSat is very similar to Cachet but also employs
selective failed literal tests at each node. Finally, C2D is
quite different in that it specifically tries to compile the #SAT
problem rather than simply solve it. Thus it incurs some ad-
ditional overhead as compared with the other solvers. Ad-
ditionally, C2D uses a static decomposition of the theory.
When run with a single default mechanism for generating its
decomposition, as we did here, it is typically outperformed
by the other solvers.

We experimented with a total of 94 satisfiable instances
from 10 benchmarks families—logistics (3 instances), bmc
(7), aim (32), ais (4), blocksworld (7), parity (10), from
(Hoos & Stützle 2000); ISCAS85 (5), Grid-Pebbling (5),
circuits (7), and Plan Recognition (12). These benchmarks
have previously been used to evaluate #SAT solvers. We
discarded instances that could be solved by all four solvers
within 3 seconds, including all of the aim and parity fami-
lies, and those that could not be solved by any solver within

Problem vars clauses solns Cachet (s) Cachet C2D (s) sharpSAT (s) sharpSAT #2csleq (s) #2clseq (# dec.)

(# dec.) (# dec.) (no HBR=) (no HBR=)

logistics.a 828 6718 3.78E+14 5.29 16248 X 0.33 3527 1.48 (5.62) 40956 (346344)

logistics.b 843 7301 4.53E+23 17.22 65413 1223.02 2.43 9207 13.01 (38.64) 683983 (7450661)

logistics.c 1141 10719 3.98E+24 1023.02 3843352 X 395.57 2872878 524.74 (1565.72) 13378935 (93910938)

bmc-ibm-1 9685 55870 7.33E+300 50.24 49493 337.7 10.4 10197 104.64 (1017.44) 35136 (165393)

bmc-ibm-2 2810 11683 1.33E+19 0.09 289 X 0.08 141 0.05 (0.06) 626 (1672)

bmc-ibm-3 14930 72106 2.47E+19 71.04 5055 1218.94 13.68 961 64.87 (X) 4264 (12288)

bmc-ibm-4 28161 139716 9.73E+79 X 1949295 1904.81 28.63 15020 7.2 (9.47) 9464 (5276)

bmc-ibm-5 9396 41207 2.46E+171 370.55 324382 766.19 760.04 1304747 115.24 (260.02) 277374 (87314)

bmc-ibm-11 32109 150027 3.53E+74 X 562830 X 3570.48 442839 X (X) 138240 (9984)

bmc-ibm-12 39598 194778 2.10E+112 1045.89 56266 X 214.82 9309 2485.68 (X) 65561 (1280)

ais10 181 3151 296 42.75 80220 20.11 7.46 32980 15.96 (37.68) 20549 (89206)

ais12 265 5666 1328 3737.96 1965013 X 298.94 1016201 826.22 (1821.55) 584693 (2359645)

bw large.a 459 4675 1 0.04 19 10.88 0.04 0 0 (0) 0 (0)

bw large.b 1087 13772 2 0.47 192 62.8 0.17 9 0.12 (0.12) 0 (0)

bw large.c 3016 50457 6 23.92 3151 411.34 2.22 56 2.59 (7.94) 4 (90)

bw large.d 6325 131973 106 556.02 27118 1333.88 175.12 2337 167.26 (1874.11) 247 (4756)

c1355 555 1546 2.20E+12 X 19803730 15 X X (X) (6569472)

c1908 751 2053 8.59E+9 2390.61 8303298 136.13 2078.25 10300457 560.48 (1411.19) 26588756 (3156866)

c432 196 514 6.87E+10 0.06 812 2.07 0.04 812 2.04 (0.34) 27092 (10410)

c499 243 714 2.20E+12 X 29624647 7.29 X 3310.01 (1100.84) 721826987 (14971828)

c880 417 1060 1.15E+18 X 32464441 353.23 3875.51 49910160 X (X) (76135680)

grid-pbl-8 72 121 4.46E+14 0.08 1049 0.86 0.05 1113 17.31 (15.4) 6803134 (6450688)

grid-pbl-9 90 154 6.95E+18 0.36 6183 1.17 0.12 4001 13.54 (13.76) 5142882 (5396986)

grid-pbl-10 110 191 5.94E+23 0.41 5000 1.32 0.22 6779 14.47 (9.56) 3433105 (2053175)

grid-pbl15 240 436 3.01E+54 X 27732140 12.11 X X (X) 357943040 (483652864)

grid-pbl-20 420 781 5.06E+95 X 23280930 1267.02 X X (X) 1228682752 (59395840)

2bitcomp 6 150 370 9.41E+20 12.85 515568 6.08 7.73 442447 172.95 (169.68) 105986956 (104262748)

2bitmax 6 252 766 2.07E+29 1.76 53856 11.36 1.7 65798 10.58 (10.63) 6197516 (6197668)

ra 1236 11416 1.87E+286 2.43 30402 68.4 1.4 34154 72.19 (69.02) 39348464 (39348464)

rand1 304 578 1.86E+54 20.07 491075 8.98 83.96 2056985 31.24 (36.37) 9957940 (11385334)

rb 1854 11324 5.39E+371 4.99 58776 801.71 9.53 77751 345.51 (316.55) 84953614 (83478044)

rc 2472 17942 7.71E+393 104.1 788331 966.05 88.69 849671 X (X) 233359616 (244355072)

ri 4170 32106 1.30E+719 84.7 10486 188.6 19.84 9326 X (X) 15616 (31744)

4step 165 418 8.64E+4 0.03 55 2.26 0.02 43 0.01 (0) 44 (76)

prob001 939 3785 5.64E+20 0.07 589 13.47 0.05 418 0.04 (0.06) 1484 (4422)

prob002 1337 24777 3.23E+10 5.39 3289 115.54 0.6 1954 1.58 (5.39) 6944 (5962)

prob003 1413 29487 2.80E+11 6.47 2415 59.26 0.39 854 2.15 (8.83) 8744 (8943)

prob004 2303 20963 2.34E+28 23.89 70003 264.29 6.17 65934 73.67 (3803.63) 834548 (741683)

prob005 2701 29534 7.24E+38 190.58 654126 X 243.76 1915292 X (X) 2067200 (436480)

prob0012 2324 31857 8.29E+36 150.64 389174 X 46.57 539999 441.58 (X) 4496239 (1190144)

tire-1 352 1038 7.26E+8 0.08 1005 4.14 0.1 1187 0.05 (0.05) 3796 (4368)

tire-2 550 2001 7.39E+11 0.06 486 6.79 0.05 374 0.03 (0.03) 1008 (964)

tire-3 577 2004 2.23E+11 0.16 1854 5.98 0.06 1347 0.21 (0.22) 30686 (30330)

tire-4 812 3222 1.03E+14 0.41 3451 9.9 0.1 1668 0.22 (0.26) 19144 (10556)

Figure 1: Comparisons of run times and number of decisions for Cachet, C2D, sharpSAT and #2clseq on structured problems. An X indicates
where the run time exceeded the timeout.

5000 seconds, leaving 44 instances whose results are pre-
sented in the table.

All tests were run on 2.20GHz Opteron machines having
1GB of RAM (SHARCNET 2007). A timeout of 5000 sec-
onds was set for every solver run, and all solvers were run
with their cache size set to 512MB. The run times of Ca-
chet, C2D, sharpSAT and #2clseq are presented in the table,
along with the number of decisions for each solver other
than C2D (C2D does not report this statistic). Results for

#2clseq with dynamic HBR= reasoning turned off (HBR=

is still performed statically as a preprocessing step) are also
shown in brackets. Instances on which #2clseq made fewer
decisions than both Cachet and sharpSAT are highlighted in
bold text. Cases where #2clseq had a faster run time than
at least two of the other solvers are also highlighted in the
table.

The results show that there is a great variability in the per-
formance of all of these solvers—each solver being fastest

on some instance. This is indicative of the sensitivity of
#SAT solving to heuristics. #2clseq’s performance often suf-
fered because of its poor heuristic choice. In particular, on
most of the problems where it was slower (e.g., the Grid-
Pebbling problems) it explored significantly more nodes.
This was probably due to the fact that clause learning has not
yet been implemented in #2clseq, and as mentioned above
the VSADS heuristic was not available to it. In particular,
if #2clseq was to make precisely the same variable ordering
choices, it must generate a smaller search tree. As shown
above the HBR= reasoning #2clseq performs can only force
more variables, increase partitioning, and further reduce the
size of the search space. However, the potential of the ap-
proach is demonstrated in some of the problems (shown in
bold) where #2clseq is able to solve the problem exploring
a significantly smaller search tree, e.g., bmc-ibm-4, bmc-
ibm-5, and the ais and blocksworld families. In these cases,
#2clseq is also often able to solve the problem faster.

Comparing the results of #2clseq with and without
HBR=, we see that HBR= reduces either the number of
decisions or the runtime on 25 of the 44 instances. The
number of decisions is sometimes slightly lower without
HBR=, which can happen if the variable ordering heuristic
makes different choices. However, #2clseq without HBR=

never makes significantly fewer decisions except in one
case (c499). Furthermore, #2clseq frequently searches more
nodes than SharpSat or Cachet in the same amount of time
(e.g. c1908, the logistics family), demonstrating that HBR=

reasoning requires little additional overhead.
Overall, #2clseq’s performance is comparable with that of

Cachet, better than C2D, but not as good as sharpSAT. How-
ever, sharpSAT has the advantage of being a well optimized
implementation, where as our implementation of #2clseq is
far from optimized.

Conclusions
We have presented a new technique for improving #SAT
solvers. The technique involves additional reasoning to sim-
plify the theory after each decision is made. We presented
intuitive arguments as to why such simplification was use-
ful, and theoretical results indicating that (a) it can never
hurt and (b) it integrates well with component caching. Our
empirical results are mixed, but they do indicate that the
approach has potential. Empirically, our implementation is
currently missing clause learning and the resulting heuristics
that this technique can provide. With that addition we are
optimistic that the approach would demonstrate better per-
formance in practice. Nevertheless, it already achieves per-
formance comparable to some of the existing #SAT solvers.

References
Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. Algorithms and
Complexity Results for #SAT and Bayesian Inference. In Pro-
ceedings of the 44th Annual IEEE Symposium on the Foundations
of Computer Science, 340–351.

Bacchus, F. 2002. Enhancing Davis Putnam with Extended Bi-
nary Clause Reasoning. In Proceedings of the 18th National Con-
ference on Artificial Intelligence, 613–619.

Chavira, M., and Darwiche, A. 2005. Compiling Bayesian Net-
works with Local Structure. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence, 1306–1312.

Chavira, M., and Darwiche, A. 2006. Encoding CNFs to Em-
power Component Analysis. In Proceedings of the 9th Inter-
national Conference on Theory and Applications of Satisfiability
Testing, 61–74.

Chavira, M.; Darwiche, A.; and Jaeger, M. 2004. Compiling
Relational Bayesian Networks for Exact Inference. In Proceed-
ings of the 2nd European Workshop on Probabilistic Graphical
Models, 49–56.

Darwiche, A. 2002. A Compiler for Deterministic Decompos-
able Negation Normal Form. In Proceedings of the 18th National
Conference on Artificial Intelligence, 627–634.

Domshlak, C., and Hoffmann, J. 2006. Fast Probabilistic Plan-
ning Through Weighted Model Counting. In Proceedings of
the 16th International Conference on Automated Planning and
Scheduling, 243–252.

Gomes, C.; Sabharwal, A.; and Selman, B. 2006. Model Count-
ing: A New Strategy for Obtaining Good Bounds. In Proceedings
of the 21st National Conference on Artificial Intelligence, 54–61.

Hoos, H., and Stützle, T. 2000. SATLIB: An Online Resource for
Research on SAT. SAT 283–292.

Huang, J., and Darwiche, A. 2005. DPLL with a Trace: From
SAT to Knowledge Compilation. In Proceedings of the 19th In-
ternational Joint Conference on Artificial Intelligence, 156–162.

Kumar, T. K. S. 2002. A Model Counting Characterization of
Diagnoses. In Proceedings of the 13th International Workshop
on Principles of Diagnosis, 70–76.

Li, W.; van Beek, P.; and Poupart, P. 2006. Performing Incremen-
tal Bayesian Inference by Dynamic Model Counting. In Proceed-
ings of the 21st National Conference on Artificial Intelligence,
1173–1179.

Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and Malik, S.
2001. Chaff: Engineering an Efficient SAT Solver. In Proceed-
ings of the 38th Conference on Design Automation, 530–535.

Sang, T.; Beame, P.; and Kautz, H. 2005a. Heuristics for Fast
Exact Model Counting. In Proceedings of the 8th International
Conference on Theory and Applications of Satisfiability Testing,
226–240.

Sang, T.; Beame, P.; and Kautz, H. 2005b. Performing Bayesian
Inference by Weighted Model Counting. In Proceedings of the
20th National Conference on Artificial Intelligence, 475–482.

Sang, T.; Bacchus, F.; Beame, P.; Kautz, H.; and Pitassi, T. 2004.
Combining Component Caching and Clause Learning for Effec-
tive Model Counting. In Proceedings of the 7th International
Conference on Theory and Applications of Satisfiability Testing,
20–28.

SHARCNET. 2007. Shared Hierarchical Academic Research
Computing Network. http://www.sharcnet.ca.

Thurley, M. 2006. sharpSAT - Counting Models with Advanced
Component Caching and Implicit BCPs. In Proceedings of the
9th International Conference on Theory and Applications of Sat-
isfiability Testing, 424–429.

Valiant, L. G. 1979. The Complexity of Computing the Perma-
nent. Theoretical Computer Science 8:189–201.

