Distributed Software Agents and Communication in the
Situation Calculus!

Daniel Marcu, Yves Lespérance, Hector J. Levesque?,
Fangzhen Lin, Raymond Reiter?, and Richard B. Scherl®
Department of Computer Science
University of Toronto
Toronto, ON, M55 1A4 Canada

{marcu,lesperan,hector,fl,reiter,scherl }@ai.toronto.edu

Keywords: Multi-agent communication, Agent-oriented programming, Reasoning about
actions, Situation calculus

Abstract

This paper describes a theoretical framework that can be used for the implementa-
tion of software agents that reason, act, and perceive in incompletely known, dynamic
software environments. Special attention is given to describing the way inter-agent
communication is treated in this framework. We assume that the user provides a
specification of each agent’s primitive actions, and the relevant information about
the software environment in which the agent is supposed to operate. On the basis of
the primitive actions, the user can specify complex behaviors in a programming lan-
guage, GOLOG, whose execution reflects the way the environment and the knowledge
of the agent change from state to state. A simple domain consisting of two elevator
controllers that negotiate the serving of a floor is used to present incrementally the
details of our approach.

1 Introduction

A number of formal languages have been proposed recently for modeling inter-agent com-
munication [Finin et al., 1993, Shoham, 1993, Sidner, 1994], and a number of implemented
agents have already started to reveal the research issues one should address when dealing with
real-world systems [Etzioni et al., 1993, Kautz et al., 1994]. Theoretical work [Shoham, 1993,
Sidner, 1994] emphasizes the role of knowledge or mental state of the agents that participate
in a cooperative process, while practical work [Etzioni et al., 1993, Kautz et al., 1994] empha-
sizes the importance of agents’ trustworthiness, robustness, and autonomy. We are interested
in an approach that is able to address successfully both classes of problems.

This paper presents a solution for the programming of intelligent agents that is based
on an advanced logical theory of reasoning about actions, knowledge, and perception. The
programmer is supposed to provide a logical description of the primitive actions that each
agent can perform. This includes both the precondition axioms, i.e., the conditions that must
be satisfied in order to make an action possible, and the effect axioms, i.e., the axioms that
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formalize the way the environment or the knowledge of an agent changes after performing a
given action. A completeness assumptions allows one to automatically derive a set of successor
state axioms [Reiter, 1991, Scherl and Levesque, 1993] that solve the frame problem [McCarthy
and Hayes, 1969] for primitive actions. Once primitive actions have been described, the
programmer can specify the behavior of a given agent using a programming language that
handles complex control structures of the kind found in classical procedural languages such
as conditionals, loops, and procedures and that inherits the solution to the frame problem
exhibited by primitive actions.

In multi-agent environments, an essential issue is the characterization of the communica-
tion process among agents. In this paper we investigate the way in which communication can
be formalized in the case where a distributed control is assumed. The approach to model-
ing communication that we propose here allows one to implement agents that communicate,
cooperate, and solve problems even when they are located on different machines.

We use a very simple domain to delineate our approach to communication that has the fol-
lowing components: an external agent randomly generates PUSH (button) exogenous requests.
The domain contains two more agents, each controlling an elevator:

The ActiveElevatorBot constantly monitors the world “to see” if some new button has
been pressed. When this is the case, it initiates a communication process with the
PassiveElevatorBot, in order to determine its position. Knowing its own position, and
the position of the other elevator, the ActiveElevatorBot can now decide on the basis
of a pre-specified algorithm, which elevator is going to serve the requested floor. If it
is the ActiveElevator who is going to serve a given floor, it does so. Otherwise, it will
send a command to the PassiveElevatorBot to do it.

The PassiveElevatorBot answers requests from the ActiveElevatorBot about its current
position. It also fires a SERVE( floor) procedure, if it receives a command to do so,
from the ActiveElevator.

A diagram representing the two elevators and the communication channels is given in figure 1.

We use the simple elevator domain to give a brief introduction of the logical foundations of
our approach, and the programming language, GOLOG, derived from them. Special emphasis
is given to the treatment of communication. We conclude with implementation remarks.
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Figure 1: Two elevators negotiate about which one serves a floor.
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2 Logical foundations

The variant of the situation calculus that we use [Reiter, 1991] is a first-order language for
representing dynamically changing worlds in which all of the changes are the result of named
actions performed by some agent. Throughout this paper, we use the convention that free
variables are universally quantified, that variables start with lower case letters and constants
with upper case letters. In the situation calculus, terms are used to represent states of the
world, i.e., situations. If « is an action and s a situation, the result of performing « in s is
represented by do(«,s). The constant Sp is used to denote the initial situation. Relations
whose truth values vary from situation to situation, called fluents, are denoted by predicate
symbols taking a situation term as the last argument. For example, ON(n, s) means that the
button corresponding to floor n is “on” in situation s. A possible set of actions for modeling
the behavior of the ActiveElevatorBot, for example, is given below:

Actions

TURNOFF(n) turn off button n

OPEN open the door

CLOSE close the door

UP(n) go up to the nt* floor
DOWN (n) go down to the n'" floor
PUSH(n) push button n

States of the ActiveElevatorBot are modeled using the following fluents:
Fluents

ON(n,s) button n is “on” in state s

FLoOR(n, s) the ActiveElevator is at floor n

NEXT_FLOOR(n, ) the next floor to be served by the ActiveElevatorBot is n
FrLoor_PassivEBoT(n,s) the PassiveElevator is at floor n

NEGOTIATE(n, s) the ElevatorBots negotiate about which one will serve floor n

It is assumed that the axiomatizer has provided for each agent and each action an action
precondition aziom specifying the conditions under which that action can be performed. For
example, the following axiom says that an elevator can go UP to a floor n whenever the
elevator is located at a floor m, below n.

Poss(up(n),s) = FLoor(m,s) Am < n (1)

Furthermore, it is assumed that the axiomatizer has provided for each fluent F, two
general effect axioms. For example, sentence 2 is a positive effect axiom for the fluent ON,
while sentence 3 is a negative effect axiom.

Poss(a,s) A a =PUSH(n) — ON(n, do(a, s)) (2)
Poss(a,s) A a = TURNOFF(n) — ~ON(n, do(a, s)) (3)

Effect axioms provide the “causal laws” for the domain of application but they are not suffi-
cient if one wants to reason about change. It is usually necessary to add frame axioms that
specify when fluents are not changed by actions. The frame problem [McCarthy and Hayes,



1969] arises because the number of these frame axioms is of the order of the product of the
number of fluents and the number of actions. Our approach incorporates a treatment of
the frame problem due to Reiter [1991] who extends previous proposals by Pednault [1989],
Schubert [1990] and Haas [1987]. The basic idea behind this is to collect all effects axioms
about a given fluent and assume that they specify all the ways the value of the fluent may
change. A syntactic transformation can then be used to obtain a successor state axiom for
each fluent [Reiter, 1991]. The following successor state axiom specifies that a button is “on”
if it has just been pressed or if it was “on” before and it was not turned off.

Poss(a,s) = [ON(n,do(a, s)) = a = PUsH(n) V ON(n, s) A @ # TURN_OFF(n)] (4)

3 Communication in the language of situation calculus

3.1 Communication channels

One of the most sensitive issues in formalizing the behavior of groups of agents, in the case
where distributed control is assumed, occurs when one wants to consider the effects on the
world, or the effects on an agent of a communication action. If one axiomatizes a domain in
which there is only one controller for all agents, the effects of a SEND_MESSAGE action, for
example, will be reflected by a change in the status of the queue of messages that have been
received by another agent. This is possible because the controller has access to the knowledge
of all the agents involved in a communication process. Unfortunately, this methodology is
not applicable when agents are located on different machines and cooperate over Internet
connections for example. We overcome this problem by treating communication channels as
special entities that are characterized by pseudo-fluents of the type given below:

CHANNEL(channel id, sender, recipient, content, s) (5)

Formula 5 says that in state s, channel channel_id contains the message content that was
sent by a sender for a recipient. We use the term pseudo-fluent because physically, a channel
can be a permanent link such as a TCP/IP protocol or a temporary link such as an email
message. The evolution in time of such an entity is controlled by two actions: a sender agent
can make a message of the form given in 5 available for a recipient agent by sending a message,
when a connection exists or can be instantiated between two agents; a recipient can recognize
it by sensing it. A communication succeeds only when such a link is created and the full
message is sent between the sender and the recipient. Note that a communication process
does not modify any fluent at the recipient level: it only assures the sender that a sensing
action performed by the recipient with respect to a communication channel will recognize
the message. This approach to communication is consistent with sensing actions in physical
environments. If an obstacle is put in front of a robot, for example, this obstacle does not
explicitly modify the state of knowledge of that robot, but it can modify the result of some
sensing action that the robot performs. The robot may sense the obstacle or not. If it doesn’t,
the obstacle has no effect on its behavior. If it does, the effect is that the robot will know
about that obstacle. If the considered robot is able to sense every obstacle one adds, we can
say that the action of adding an obstacle has a “direct” effect on the knowledge of the robot.
Exactly the same thing happens in the software domain. Sending a message is possible only
if the success of the sending is assured. We can program the recipient to monitor constantly



the incoming messages. The incoming messages will have a “direct” effect on the recipient’s
state of knowledge. The only difference between a software agent and a robot is that for the
former, we prefer sensing to have a destructive effect. Once a message is read, it is no longer
needed.

Each agent has a communication channel associated with it that is recognized by the other
agents involved in solving a given task. In this sense a channel is a shared object. Sender-
agents add messages to a channel and recipient-agents read and destroy these messages. This
treatment of communication ensures the expected behavior even when the communication
takes place over Internet links.

To simplify things, we will make the following assumptions: the communication channels
among different agents (bots) are first-class entities. They have unique names, and they are
read /written by the agents that they link. We assume that the communication channels are
perfect, i.e., no messages are lost?. We assume that perfect channels can be created at any
moment. A more complex behavior can be modeled if one removes this assumption: actions
such as “establish-connection” will have to be considered.

For our running example, in accomplishing the task of serving a floor, the following types
of messages will be exchanged among different agents:

o a push_button(floor) command will be sent by an external process to the ActiveEle-
vator, requesting a new floor to be served;

e an ask_where_is_passive_elevator request can be sent by the ActiveElevatorBot to
the PassiveElevatorBot, to ask for its position;

e an answer(position) will be sent by the PassiveElevatorBot in response to an
ask_where_is_passive_elevator message;

e a serve_passive_elevator(floor) command will be sent by the ActiveElevatorBot to
the PassiveElevatorBot to serve a given floor.

For our domain, we consider a pseudo-fluent associated with the input channel that is
afferent to the PassiveElevatorBot (PEB), and one pseudo-fluent associated with the com-
munication channel afferent to the ActiveElevatorBot (AEB). Possible instances of these
pseudo-fluents are given below, where Rg is the name of the push button random-generator
agent.

CHANNEL(AFE B, Ry, Active Elevator Bot, push_button(5), s)

CHANNEL(AFE B, Passive Elevator Bot, Active Elevator Bot, answer(3), s)

CHANNEL(PEB, Active Elevator Bot, Passive Elevator Bot, ask_where_is_passive_elevator, s)
CHANNEL(PEB, Active Elevator Bot, Passive Elevator Bot, serve_passive_elevator(5), s)

3.2 Communication specific actions and knowledge

In order to make communication possible, the agents should be able to read and write their
afferent communication channels. This means that external commands of the following type
should be considered:

*These constraints can be relaxed at the price of introducing extra fluents and choosing a more complex
communication protocol.



External actions

READ_EXTERNAL_REQUEST (channel_id, sender, recipient, content) read the message
content from channel channel_id that was sent by sender for the recipient

SEND_EXTERNAL_COMMAND (channel_id, sender, recipient, content) send a message
content on channel channel_id to agent recipient

Note that the desired effect of a SEND_EXTERNAL_COMMAND action is the modification
of the specified communication channel. In order to make communication successful, a
READ_EXTERNAL_REQUEST action should not only destroy the message, but also it should
modify the mental state of the agent that performs the reading operation, or the sensing.
This kind of communicative action can be accommodated in an extension of the language
described so far that handles perception and knowledge [Scherl and Levesque, 1993].

A binary relation K(s',s) is introduced in order to adapt the standard possible-world
model of knowledge to the situation calculus, as first done by Moore [1980]. The binary
relation K (s',s), read as “s’ is accessible from s”, is used to define the fluent Knows(P, S),
read as P is known in situation s. For example, the following formula, written for the
ActiveElevatorBot, says that this agent knows that the PassiveElevator is on floor n.

Knows(FLOOR_PASSIVEBOT(n, s))%  Vs/(K(s',s) — FLoOR_PAssivEBot(n,s'))  (6)

Consider now a knowledge producing action READ_EXTERNAL_REQUEST that determines whether
or not some fluent P is true. At do(READ_EXTERNAL_REQUESTp, s) as far as the agent knows,
he can be in any of the worlds do(READ_EXTERNAL_REQUESTp, §') for all s’ such that K (s, s)
and P(s) = P(s'). In our domain, for the ActiveElevatorBot, a successor state axiom for the
knowledge fluent K, will be:

Poss(a,s) — [K(s",do(a,s)) =
3s' (K (s',s) A" = do(a, s))A
(¢ = READ_EXTERNAL_REQUEST(AF B, Passive Elevator Bot,
ActiveFElevator Bot, answer(n)) — (7)
FLOOR_PASSIVEBOT(n, s) = FLOOR_PASSIVEBOT(n, s'))A
(¢ = READ_EXTERNAL_REQUEST(AFEB, Rg, Active Elevator Bot, push(m)) —
ON(m, s) = ON(m, s"))]

—

Formula 7 says that after reading a message that was sent by the Passive Elevator Bot on
channel AE'B containing an answer n, the ActiveElevatorBot knows that the PassiveEleva-
torBot is on floor »; and after reading a push button request that was sent by the random
generator agent on channel AE B, the ActiveElevatorBot knows that the corresponding button
has been pressed.

In the style of formula 4, we can write successor state axioms for channels as well, as they
are shared objects among agents. The following axiom specifies that channel AFE B contains
message content sent by sender to the ActiveFlevator Bot if and only if the last communi-
cation action with respect to channel AEB was issued by sender to Active Flevator Bot and
had the message content, or if the message was already on the channel and it has not been



read by the ActiveFlevatorBot.

Poss(a,s) — [CHANNEL(AE B, sender, Active Elevator Bot, content, do(a, s)) =
a = SEND_EXTERNAL_COMMAND(AE B, sender, Active Elevator Bot, content)V (8)
CHANNEL(AFE B, sender, Active Elevator Bot, content, s)A :

a # READ_EXTERNAL_REQUEST(AFE B, sender, Active Elevator Bot, content)]

Using this axiom we can prove, for example, for the ActiveElevatorBot that after the random
generator agent, Rg sends a push_button(n) command to the PassiveElevatorBot, and after
the ActiveElevatorBot reads that command, it will know that button n is “on”:

Knows(ON(n, do(READ_EXTERNAL_REQUEST(AFEB, Ryg, Active Elevator Bot,
push_button(n)), do(SEND_EXTERNAL_COMMAND(AEB, Ry, (9)
ActiveElevator Bot, push_button(n)),s))))

4 Golog — a language for complex actions

Golog treats complex actions as abbreviations for expressions in the situation calculus. This
macro approach is accomplished by defining a predicate Do as in Do(4, s, s’) where § is a
complex action that takes the agent from state s to state s’. The inductive definition of Do
follows:

e Do(a,s,s') def Poss(a,s) A s' = do(a,s) — simple actions

o Do([b1;82],s,5) def 3s"(Do(éy, s, s") A Do(d,, 5", s')) — sequence

o Do([61|02],s,5) def Do(81,s,5") vV Do(62,s,s") — nondeterministic choice of actions
e Do(Ilz(d),s,s) def 3, Do($, s, s') — nondeterministic choice of action parameters

Other cases handle tests (¢7), conditionals (if ¢ then 6, else d;), loops (while ¢ do § and
for z : ¢(2) do §), and recursive procedures.

This set of complex action expressions forms a programming language that we call GOLOG
(alGOI in LOGic), which is suitable for high-level programming of robots [Lesperance et al.,
1994] and software agents, as well as discrete event simulation. GOLOG differs from ordinary
programming languages in that: it has a situation calculus semantics; its complex actions
decompose into primitives that in most cases refer to actions in the external world; executing
a complex action may involve arbitrary first-order reasoning (e.g., executing while In ON(n)
do SERVE(n), requires inferring whether 3n ON(n) in the current state ) — the interpreter
for this programming language is a theorem prover.

GOLOG is designed as a compromise between classical planning and detailed program-
ming. It is a high-level nondeterministic language in which one can express schematic plans.
These schemas give advice to an agent about how to achieve certain effects, without neces-
sarily specifying in detail how to perform the corresponding action. The details are to be
figured out by the theorem prover when the program is executed.

For the ActiveElevatorBot the following procedures can be recursively defined. In order
to serve a floor, the elevator will go to that floor, it will turn off the button, and it will open
and close the door.



proc SERVE(n)
GO_FLOOR(7n); TURNOFF(n); OPEN; CLOSE;
end.

In order to go to a given floor, the elevator will determine the direction in which it should
move, and it will act accordingly.

proc GO_FLOOR(n)
if FLOOR(m) A m < n then UP(n)
else powN(n)
end.

The control procedure for the ActiveElevator, called CONTROL, is an infinite loop in which the
ActiveElevatorBot monitors push(button) requests, finds where the PassiveElevator is, calls
a decision procedure, I_SERVE?, to determine which elevator is going to solve the request,
and solves this request or sends a command to the other controller to do it. Similar control
procedures are provided for the PassiveElevatorBot as well.

proc CONTROL
while TRUE
READ_EXTERNAL_REQUEST(AE B, Rg, Active Elevator Bot, push_button( floor));
SEND_EXTERNAL_COMMAND(PEB, ActiveElevator Bot, Passive Elevator Bot,
ask_where_is_passive_elevator);
READ_EXTERNAL_REQUEST(AFE B, Passive Elevator Bot, Active Elevator Bot,
answer( floor2));
if I_SeErVE? then SERVE(floor)
else SEND_EXTERNAL_COMMAND(PFE B, ActiveFElevator Bot,
PassiveElevator Bot, serve_passive_elevator( floor)))
end

end.

5 Implementation

We have used Quintus Prolog to implement the GOLOG interpreter. Communication channels
are implemented through TCP/IP protocols. Each of the software agents described in this
paper has its own TCP/IP address and knows the addresses of the other agents in the domain.
Quintus Prolog constraints allow us to create only one communication channel for each agent.
Under these circumstances, it is possible that while the elevatorbots negotiate the serving of a
given floor, some new PUsH(button) requests occur on the same channel. Special subroutines
have been developed for handling this type of message interleaving. TCP/IP protocols ensure
the user that all messages that are sent arrive at their destination in a chronological order;
therefore, it is acceptable to treat TCP/IP connections as perfect channels. For the moment,
the epistemic operators are not used: instead, we assume that the robot knows everything
about the world, i.e, the facts derivable from the successor state axioms.

We are currently building more complex softbots for assisting users in performing tedious
tasks, such as meeting scheduling for example. We are also developing a theory of commu-
nication among software agents, using an extension of our theory of complex actions that



handles concurrency, and its programming language counterpart, CONGOLOG [Lespérance
et al., 1995].

6 Conclusion

The approach described here for programming software agents is concerned with a theory
and an implementation of software agents that reason, act, and perceive in dynamically
changing software environments. The theory we have described allows agents to exhibit higher
level cognitive functions that involve reasoning and planning, inquiring about the cognitive
states of other agents, and collaboration. In short, we have presented a uniform theoretical
and implementation framework that integrates reasoning, perception, and action. From this
perspective, we argue that our approach meets the requirements specified by previous work on
agent-programming techniques [Shoham, 1993]. We have paid special attention to explaining a
way in which communication can be treated in this framework, that allows agents to cooperate
even though they are not located on the same machine. The theory described here has been
fully implemented in GOLOG. Because each agent is described by its own set of actions
and programs, and because all communication issues fall under the scope of communicative
actions, our agents deal responsibly with the information they manage. Concerns raised by
Kautz [1994] about information privacy, for example, are appropriately dealt with: each agent
can be programmed such that it answers only a given subset of queries. Moreover, note that
other agents may influence only the state of knowledge of a given agent; the behavior of each
agent is fully predictable on the basis of its own programs.
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