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Abstract

We present a dynamic programming approach for
the solution of first-order Markov decisions pro-
cesses. This technique uses an MDP whose dynam-
ics is represented in a variant of the situation cal-
culus allowing for stochastic actions. It produces
a logical description of the optimal value function
and policy by constructing a set of first-order for-
mulae that minimally partition state space accord-
ing to distinctions made by the value function and
policy. This is achieved through the use of an op-
eration known as decision-theoretic regression. In
effect, our algorithm performs value iteration with-
out explicit enumeration of either the state or action
spaces of the MDP. This allows problems involv-
ing relational fluents and quantification to be solved
without requiring explicit state space enumeration
or conversion to propositional form.

1 Introduction
Markov decision processes (MDPs) have become the de
facto standard model for decision-theoretic planning prob-
lems. However, classic dynamic programming algorithms for
MDPs [Puterman, 1994] require explicit state and action enu-
meration. For example, the classical representation of a value
function is as a table or vector associating a value with each
system state; these are produced by iterating over the state
space. Since state spaces grow exponentially with the num-
ber of domain features, the direct application of these models
to AI planning problems is limited. As a consequence, much
MDP research in AI has focussed on representations and al-
gorithms that allow complex planning problems to be spec-
ified concisely and solved effectively. Techniques such as
function approximation [Bertsekas and Tsitsiklis, 1996] and
state aggregation [Boutilier et al., 1999] have proven reason-
ably effective at solving MDPs with very large state spaces.

One such approach with a strong connection to classical
planning is the decision-theoretic regression (DTR) model
[Boutilier et al., 2000a]. The state space of an MDP is charac-
terized by a number of random variables (e.g., propositions)
and the domain is specified using logical representations of
actions that capture the regularity in the effects of actions.
For instance, Bayesian networks, decision trees, algebraic

decision diagrams (ADDs), and probabilistic extensions of
STRIPS can all be used to concisely represent stochastic ac-
tions in MDPs. These representations are exploited in the
construction of a logical representation of the optimal value
function and policy, thereby obviating the need for explicit
state space enumeration. This process can be viewed as au-
tomatic state space abstraction and has been able to solve
fairly substantial problems. For instance, the SPUDD algo-
rithm [Hoey et al., 1999] has been used to solve MDPs with
hundreds of millions of states optimally, producing logical
descriptions of value functions that involve only hundreds of
distinct values. This works suggests that very large MDPs, if
described in a logical fashion, can often be solved optimally
by exploiting the logical structure of the problem.

Unfortunately, existing DTR algorithms are all designed
to work with propositional representations of MDPs, while
many realistic planning domains are best represented in first-
order terms, exploiting the existence of domain objects, rela-
tions over those objects, and the ability to express objectives
and action effects using quantification. Existing DTR algo-
rithms can only be applied to these problems by grounding
or “propositionalizing” the domain.1 Unfortunately such an
approach is impractical: the number of propositions grows
very quickly with the number of domain objects and relations,
and even relatively simple domains can generate incredibly
large numbers of propositions when grounded. The number
of propositions has a dramatic impact on the complexity of
these algorithms. Specifying and reasoning with intuitively
simple domain properties involving quantification becomes
problematic in a propositional setting. For instance, a simple
objective such as

���������	�
(e.g., we want some widget at Fac-

tory 1) becomes the unwieldy
�
����
����������������������

, where the���
are (relevant) constants (e.g., widget-1 is at Factory 1, or

. . . ). Thus grounding our domain description deprives one of
the naturalness and expressive power of relational representa-
tions and quantification in specifying dynamics and objective
functions. Finally, existing DTR algorithms require explicit
action enumeration when performing dynamic programming,
which is also problematic in first-order domains, since the
number of ground actions also grows dramatically with do-
main size.

1This assumes a finite domain: if the domain is infinite, these
algorithms cannot generally be made to work.



In this paper we address these difficulties by proposing
a decision-theoretic regression algorithm for solving first-
order MDPs (FOMDPs). We adopt the the representation for
FOMDPs presented in [Reiter, 2001; Boutilier et al., 2000b],
in which stochastic actions and objective functions are speci-
fied using the situation calculus. We derive a version of value
iteration [Bellman, 1957] that constructs first-order represen-
tations of value functions and policies by exploiting the logi-
cal structure of the MDP. The algorithm constructs a minimal
partitioning of state space, represented by a set of first-order
formulae, and associates values (or action choices) with each
element of the partition.

As a consequence, our dynamic programming algorithm
solves first-order MDPs without explicit state space or ac-
tion enumeration, and without propositionalizing the domain.
Furthermore, the technique we propose can be used to reason
purely symbolically about value and optimal action choice.
Our model can be viewed as providing a tight, seamless in-
tegration of classic knowledge representation techniques and
reasoning methods with solution algorithms for MDPs.

This paper should be viewed as providing the theoretical
foundations for first-order decision-theoretic regression. We
are encouraged by the success of DTR methods for propo-
sitional MDPs, where it has been demonstrated that many
MDPs have value functions and policies that can be repre-
sented very concisely using logical techniques. We have no
doubt that the use of relations and quantification will ulti-
mately enhance these methods tremendously.

We review MDPs in Section 2, and briefly describe our
representation of FOMDPs in Section 3. We derive our sym-
bolic dynamic programming technique in detail in Section 4
and discuss various implementation issues in Section 5. We
conclude with a discussion of future directions.

2 Markov Decision Processes
We begin with the standard state-based formulation of MDPs.
We assume that the domain of interest can be modeled as a
fully-observable MDP [Bellman, 1957; Puterman, 1994] with
a finite set of states � and actions � . Actions induce stochas-
tic state transitions, with ��� �����
	��
� � denoting the probability
with which state

�
is reached when action

	
is executed at

state
�
. We also assume a real-valued reward function � , as-

sociating with each state
�

its immediate utility � ��� � .2
A stationary policy ������� � describes a particular

course of action to be adopted by an agent, with � ��� � denoting
the action to be taken in state

�
. The decision problem faced

by the agent in an MDP is that of forming an optimal policy
that maximizes expected total accumulated reward over an in-
finite horizon (i.e., the agent acts indefinitely). We compare
policies by adopting expected total discounted reward as our
optimality criterion, wherein future rewards are discounted at
a rate ��������� , and the value of a policy � , denoted �! ����� ,
is given by the expected total discounted reward accrued, that
is, " ��#%$&('*) � & � ��� & �,+ � �-� � . Policy � is optimal if �  /. �  10
for all

�32 � and policies �54 . The optimal value function �36
is the value of any optimal policy.

2We ignore actions costs for ease of exposition. These impose
no additional complications on our model.

Value iteration [Bellman, 1957] is a simple iterative ap-
proximation algorithm for constructing optimal policies. It
proceeds by constructing a series of 7 -stage-to-go value func-
tions � � . Setting � )98 � , we recursively define 7 -stage-to-
go Q-functions:: � ��	��
� � 8 � �����<;>= �9?&A@1B �C� ���D�E	��
� �GF � �IH 
 �(� �1J (1)

and value functions:� � ��� � 8LKNMPOQ : � �R	��
� �
(2)

The Q-function
: � ��	S�-� �

denotes the expected value of per-
forming action

	
at state

�
with 7 stages to go and acting op-

timally thereafter. The sequence of value functions � � pro-
duced by value iteration converges linearly to �N6 . For some
finite 7 , the actions that maximize Eq. (2) form an optimal
policy, and � � approximates its value. We refer to Puterman
[1994] for a discussion of stopping criteria.

The definition of a Q-function can be based on any value
function. We define

:UT ��	S�-� �
exactly as in Eq. (1), but with

arbitrary value function � replacing � �IH 
 on the right-hand
side.

: T �R	��
� �
denotes the value of performing

	
at state

�
,

then acting in such a way as to obtain value � subsequently.

3 First-Order Representation of MDPs
Most planning domains are specified in terms of a set of ran-
dom variables, which jointly determine the state of the sys-
tem. For example, the system state may be the assignment of
truth values to a set of propositional variables. In addition,
these variables may themselves be structured, built from var-
ious relations, functions, and domain objects, that naturally
lend themselves to a first-order representation. Represent-
ing and solving MDPs under such circumstances is generally
impractical using classic state-based transition matrices and
dynamic programming algorithms. The difficulty lies in the
need to explicitly enumerate state and action spaces. State
spaces grow exponentially with the number of propositional
variables need to characterize the domain. Furthermore, in a
first-order domain, the number of induced propositional vari-
ables can grow dramatically with the number of domain ob-
jects of interest.3 Moreover, we are often interested in solving
planning problems with infinite domains.

Several representations for propositionally-factored MDPs
have been proposed, including probabilistic variants of
STRIPS and dynamic Bayes nets [Boutilier et al., 1999].
First-order representations have also been proposed for
MDPs, including those of Poole [1997], and Geffner and
Bonet [1998]. In this paper we adopt the first-order, situation
calculus MDP representation developed by Reiter [2001], and
by Boutilier et al. [2000b] for use in the DTGolog frame-
work. This model has several unique features that make dy-
namic programming techniques viable. We first review this
representational language and methodology, and then show
how stochastic actions can be represented in this framework.
We also introduce some notation to ease the specification of
MDPs.

3An V -ary relation over a domain of size W induces W�X atoms.



3.1 The Situation Calculus
The situation calculus [McCarthy, 1963] is a first-order lan-
guage for axiomatizing dynamic worlds. In recent years, it
has been considerably extended beyond the “classical” lan-
guage to include processes, concurrency, time, etc., but in all
cases, its basic ingredients consist of actions, situations and
fluents.

Actions
Actions are first-order terms consisting of an action function
symbol and its arguments. For example, the action of putting
block � on the table might be denoted by the action term
putTbl

� � � .
Situations
A situation is a first-order term denoting a sequence of ac-
tions. These are represented using a binary function symbol
do: do

��� �
� �
denotes the sequence resulting from adding the

action
�

to the sequence
�
. The special constant � ) denotes

the initial situation, namely the empty action sequence. Thus,
do

�����-� �
is like LISP’s cons

�����-���
and � ) is like LISP’s

� �
.

In a blocks world, the situation term

do
�
stack

��� ��� � �
do

�
putTbl

��� � �
do

�
stack

��� ��	 � � � ) � � �
denotes the sequence of actions


stack
��� ��	 � �

putTbl
��� � �

stack
������� �
� �

Foundational axioms for situations are given in [Pirri and Re-
iter, 1999].

Fluents
Relations whose truth values vary from state to state
are called fluents, and are denoted by predicate symbols
whose last argument is a situation term. For example,
BIn

� � ��� 	���� �D�
� � is a relational fluent meaning that in that
state reached by performing the action sequence

�
, box � is

in Paris.

Axiomatizing a Domain Theory
A domain theory is axiomatized in the situation calculus with
four classes of axioms [Pirri and Reiter, 1999]:

1. Action precondition axioms: There is one axiom for
each action function

� ����	�
, with syntactic form

Poss
��� ���� � �
� ������� ����<�-���

Here,
��� ���� �
� �

is a formula with free variables among��<�
� �
These characterize the preconditions of action

�
.

2. Successor state axioms: There is one such axiom for
each fluent � ���� �
� � , with syntactic form

� ���� � do
�R	��
� � ����� � ����<�
	S�-� � �

where
� � ���� �E	��
� �

is a formula with free variables
among

	��
�D���� �
These characterize the truth values of the

fluent � in the next situation do
�R	��-���

in terms of the cur-
rent situation

�
, and they embody a solution to the frame

problem for deterministic actions [Reiter, 1991].
3. Unique names axioms for actions: These state that the

actions of the domain are pairwise unequal.
4. Initial database: This is a set of first-order sentences

whose only situation term is � ) and it specifies the initial

state of the domain. The initial database will play no role
in this paper.

Regression in the Situation Calculus
The regression of a formula ! through an action

	
is a for-

mula ! 4 that holds prior to
	

being performed iff ! holds
after

	
. Successor state axioms support regression in a nat-

ural way. Suppose that fluent � ’s successor state axiom is
� ���� � do

�R	��
� � �"�#� � ����<�
	��
� �
. We inductively define the re-

gression of a formula whose situation arguments all have the
form do

�R	��
� �
as follows:

Regr
� � ���� � do

��	��
� � � � 8 � � ���� �E	��
� �
Regr

�%$ ! � 8 $
Regr

� ! �
Regr

� ! 
'& !)( � 8 Regr
� ! 
 � & Regr

� !'( �
Regr

� �����	� ! � 8 � �����
Regr

� ! �

3.2 Stochastic Actions and the Situation calculus
For the purposes of representing probabilistic uncertainty, the
above ontology and axiomatization for the situation calculus
might appear to be inadequate, because all actions must be
deterministic. One can see this requirement most clearly in
the syntactic form of successor state axioms where a fluent’s
truth value in the next situation is uniquely determined by
the current situation; thus, the next state is uniquely deter-
mined by the present state and the action performed. How
then can stochastic actions be represented in the situation cal-
culus? The trick is to decompose stochastic actions into deter-
ministic primitives under nature’s control—she chooses the
deterministic action that actually gets executed, with some
specified probability, when an agent performs a stochastic
action. We then formulate situation calculus domain ax-
ioms using these deterministic choices [Bacchus et al., 1995;
Reiter, 2001; Boutilier et al., 2000b].

We illustrate this approach with a simple example in a lo-
gistics domain consisting of cities, trucks, and boxes: boxes
can be loaded onto and unloaded from trucks, and trucks can
be driven between cities.

Nature’s Choices for Stochastic Actions: For each stochas-
tic action we must specify the deterministic choices available
to nature. For instance, the stochastic load action can succeed
(denoted by loadS) or fail (loadF):

choice * load *,+�-%.0/�-213/546187 loadS *,+9-
.0/;:<1"7 loadF *,+�-
.2/
Similarly, the stochastic unload and drive actions also decom-
pose into successful or unsuccessful alternatives chosen by
nature with known probabilities.

choice * unload *,+9-
.0/�-213/546187 unloadS *,+9-
.0/=:'187 unloadF *,+�-
.2/
choice * drive *>.�-
?@/�-213/546187 driveS *>.�-
?@/;:<1"7 driveF *>.�-2?A/

Probabilities for Nature’s Choices: For each of nature’s
choices 7 ������ associated with action

� ����	�
, we specify the

probability prob
� 7 ���� � ��� ���� � �-� � with which it is chosen,

given that
� ����	�

was performed in situation
�
:

prob
�
loadS

� � �
� � � load
� � �E� � �-��� 8 � � BCB

prob
�
loadF

� � �E� � � load
� � �E� � �-��� 8 � � � �

prob
�
unloadS

� � �
� � � unload
� � �E� � �-��� 8ED �



Rain
��� � & D 8 � ��� � $ Rain

��� � & D 8 � � B
prob

�
unloadF

� � �
� � � unload
� � �E� � �
� � 8��� prob

�
unloadS

� � �E� � � unload
� � �
� � �-� �

prob
�
driveS

�(� � ��� �
drive

�(� � ��� �-� � 8 � � B3B
prob

�
driveF

�R� � ��� �
drive

�R� � ��� �
� � 8 � � � �
Here we see that unloading is less likely to succeed when it is
raining.

Action Preconditions for Deterministic Actions:

Poss
�
loadS

� � �
� � �
� ��� � � �����
BIn

� � � �P�-� � & TIn
�R� � �P�-� �

Poss
�
loadF

� � �
� � �
� ��� � � �����
BIn

� � � �P�-� � & TIn
�R� � �P�-� �

Poss
�
unloadS

� � �E� � �-����� On
� � �
� �
� �

Poss
�
unloadF

� � �E� � �-����� On
� � �
� �
� �

Poss
�
driveS

�(� � ��� �-� ���
true

Poss
�
driveF

�(� � ��� �-�����
true

Nature’s choices 7�� ������ for action
� ���� �

need not have com-
mon preconditions, but often they do, as above.

Successor State Axioms:

BIn
� � � �1� do

��	��
� � ���
� �I� � 


TIn
�(� � �P�
� � & 	 8

unloadS
� � �
� �
� �

BIn
� � � �P�
� � & $ ��� � � 	 8 loadS

� � �E� �
TIn

�R� � �P�
do

��	S�-� � � � 	 8
driveS

�(� � ��� �
TIn

�(� � ��� & $ ��� � 4 � 	 8 driveS
�(� � � 4 �

On
� � �E� � do

��	��
� � � �L	 8
loadS

� � �
� � �
On

� � �E� �
� � & 	��8 unloadS
� � �E� �

Rain
�
do

�R	��
� � � �
Rain

�����
There are two important points to note about this example:

1. By virtue of decomposing stochastic actions into deter-
ministic primitives under nature’s control, we get per-
fectly conventional situation calculus action precondi-
tion and successor state axioms that do not refer to
stochastic actions. Stochastic actions have a status dif-
ferent from deterministic actions, and cannot participate
in situation terms.4

2. Nowhere do these axioms restrict the domain of dis-
course to some prespecified set of trucks, boxes, or cities.
There are even models of these axioms with infinitely
many—even uncountably many—individuals. If one
were to solve an MDP for which this axiomatization is
valid, one would obtain, in fact, a solution that applies
to an entire class of MDPs with arbitrary domains of
trucks, boxes and cities.

3.3 Some Additional Notation

In what follows we use the notion of a state formula, ! ���� �
� � ,
whose only free variables are non-situation variables

��
and a

situation variable
�
. Intuitively, a state formula refers only

to properties of the situation
�
. A set of state formulae

4Note that when nature’s choices for a specific action do not have
identical preconditions, care must be taken in the axiomatization to
ensure the probabilities sum to one in every situation.

� ! � ���� �
� �
	 partitions state space iff
+ 8 ��� �� �-����� ! � ����<�
� ��
$ !�� ���� �
� � , for all

�
, � �8 � , and

+ 8 ��� ��<�
� � ��� � ! � ���� �
� � .
The Case Notation
To simplify the presentation, we introduce the notation� 8

case

 � 
 �
� 
�� F,F F � � � �
� � �

as an abbreviation for the formula� ��� � � � � & � 8 � � 	
where the

� �
are state formulae and the

� �
are terms. We

sometimes write this case

 �	�
�E� � �

. Often the
� �

will be con-
stants and the

���
will partition state space. We introduce the

following operators on case statements (whose use will be
important in the next section):

case

 ���
�E� � � � � 7 ��� case


 !�� ��� � ���N��� � 8
case


 � � & ! � �
� � F�� � � � ��7 � �N��� �
case


 ���
�E� � � � � 7 ��� case

 !�� ��� � ���N��� � 8

case

 � � & ! � �
� � ;�� � � � � 7 � �N� � �

case

 ���
�E� � � � � 7 ��! case


 !�� ��� � ���N��� � 8
case


 � � & ! � �
� � � � � � � � 7 � �N� � �
case


 ���
�E� � � � � 7 �#" case

 !�� ��� � ���N� � � 8

case

 � 
 �E� 
 � F,F F � �5�
� � � ! 
P��� 
 � F F,F !%$ �&� $ �

Representing Probabilities with Case Notation
Let

� ����	�
be a stochastic action type with possible out-

comes 7 
 ����	� � F,F F � 7(' ���� � . We assume the probabilities of
these outcomes are specified using case notation. Specif-
ically, the choice probabilities for 7)� ����	� are given as:

prob * V+* *�,- /�-/.�*�,- /�-�0=/57 case 1 2 * 3 *�,- -&0=/�-�4 * 3
576
6
6
5 2 * X *�,- -�0=/�-84 * X:9 -
where the

� � �
partition state space, and

D � �
is the probability

of choice 7 � ���� � being realized under condition
� � � ���� �
� �

when
the agent executes stochastic action

� ����	�
.

Our unload stochastic action above is represented in case
notation as:

prob
�
unloadS

� � �
� � � unload
� � �E� � �-��� 8

case


Rain

��� � � � �;� � $ Rain
��� � � � � B �

prob
�
unloadF

� � �
� � � load
� � �
� � �
� � 8

case


Rain

��� � � � � < � $ Rain
��� � � � � � � �

Notice that when the probability of nature’s choice is
situation-independent, (e.g., as in loadS), then only a single
“case” is present (e.g.,

� 	I�>= 

true

� � � B3B � ).
Specifying Rewards and Values with Case Notation
An MDP optimization theory contains axioms specifying the
reward function. In their simplest form, reward axioms use
the function � ��� � to assert costs and rewards as a function
of the action taken, properties of the current situation, or both
(note that the action taken can be recovered from the situation
term). In what follows, we assume a simple “state-based”
reward model in which only relational fluents determine re-
ward, and we assume that this reward function is specified
using case notation:� ��� � 8 case


 ? 
 ��� � � � 
:� F,F F � ? $ ��� � ��� $ �A�
where the

? � ��� �
partition state space. For example, rewarding

the presence of some box in Paris can be specified using



� ��� � 8 case

 ��� � � BIn

� � ��� 	�� � ���-� � � � � �$ ��� � � BIn
� � ��� 	�� � �D�-��� � � �

The restriction to state-based reward is simply to keep the ex-
position simple. Action costs are easily modeled and are used
in our prototype implementation.

We also use the case notation to represent value functions
in a similar fashion, concisely writing � in the form� ��� � 8

case

 � 
 ��� � �&� 
 � F F,F � � ����� ��� � � �

This use of case statements can be viewed as embodying a
form of state space abstraction: rather than assigning values
on a state-by-state basis, we distinguish states according to
the conditions

� �
. Those states satisfying

� �
can be treated

as an abstract state. In this way, we can often represent
value functions (and policies and Q-functions similarly) with-
out state enumeration, exploiting the logical structure of the
function. This is similar to the abstraction models discussed
in [Boutilier et al., 1999], but with the ability to partition state
space using first-order formulae.

4 Dynamic Programming with FOMDPs

Logical representations for MDPs provide natural and com-
pact specifications of planning domains, obviating the need
for explicit state space enumeration. Logical descriptions ex-
ploiting regularities in value functions and policies can also
be very compact. Solving an FOMDP can be made much
more efficient if the logical structure of value functions can be
discovered through inference using the the logical MDP spec-
ification, with expected value computations performed once
per abstract state instead of once per state. Thus a dynamic
programming algorithm that works directly with symbolic
representations of value functions offers great potential com-
putational benefit. In this section, we generalize the notion
of decision-theoretic regression from propositional MDPs to
FOMDPs, and construct a first-order value iteration algo-
rithm.

4.1 First-Order Decision-Theoretic Regression

Suppose we are given a value function � . The first-order de-
cision theoretic regression (FODTR) of � through action type� ����	�

is a logical description of the Q-function
: T ��� ���� � �-���

.
In other words, given a set of abstract states corresponding to
regions of state space where � is constant, we wish to pro-
duce a corresponding abstraction for

: T ��� ����	� �
� �
. This is

analogous to classical goal regression, the key differences be-
ing that action

� ���� �
is stochastic.

Let
� ����	�

be a stochastic action with corresponding na-
ture’s choices 7�� ���� � � � ��� . Ignoring preconditions momen-
tarily,

: T ��� ���� � �-���
is defined classically as: T ��� ���� � �
� � 8 � �����!; � F�� # &A@1B �8� ���D��� ���� � �E� �GF � �R� ���

Since different successor states arise only through different
nature’s choices, the situation calculus analog of this is:: T ��� ���� � �
� � 8 � ��� �E;� F # � prob

� 7 � ���� � ��� ����	� �
� �GF � �
do

� 7 � ���� � �-� � � (3)

As described earlier, we assume that the functions � ��� � ,D ��� � � 7 ��� �
� � and � �����
are all described with case state-

ments. Respectively denote these by rCase
��� �

, pCase
� 7 �
� �

and vCase
��� �

. Then after substituting these case expressions
into Eq. (3) and appealing to the case addition and multipli-
cation operators of Section 3.3, we obtain: T ��� ���� � �
� � 8

rCase
��� �(�� F 
 � � � pCase
� 7 � ����	� �
� � � vCase

�
do

� 7 � ���� � �
� � �
	9�
The only problem with this expression is that the formula
vCase

�
do

� 7 � ���� � �-� � � refers not to the current situation
�
, but

to the future situation do
� 7�� ���� � �-��� � , but this is easily reme-

died with regression:: T ��� ���� � �
� � 8
rCase

��� �(�� F 
 � � pCase
� 7 � ����	� �
� �(� Regr

�
vCase

�
do

� 7 � ����	� �-��� � �2�
We emphasize the critical nature of this step. The repre-
sentational methodology we adopt—treating stochastic ac-
tions using deterministic nature’s choices—allows us to ap-
ply regression directly to derive properties of the pre-action
state that determine the value-relevant properties of the post-
action state. Specifically, classical regression can be applied
directly to the case statement vCase

�
do

� 7�� ����	� �
� � � because
the 7 � ����	� are deterministic.

Because sums and products of case statements are also
case statements, the above expression for

: T ��� ���� � �-� �
is a

case statement, say case

 � � ���� �
� � �
	����

, that characterizes the
Q-function for action

� ����	�
with respect to � . Thus from a

logical description of � we can derive one for
:

. Concep-
tually, this can be viewed as transforming the abstraction of
state space suitable for � into one suitable for

:
. It is not

hard to show that if the state formulae in � ’s case statement
partition the state space, then so do the

� �
defining

:
. This

is key to avoiding state and action enumeration in dynamic
programming.

The above derivation ignores action preconditions. To
handle preconditions,

: T ��� ���� � �
� �
can no longer be treated

as a function, but must be represented by a relation: T ��� ���� � ��	I�-� �
, meaning that

�
’s Q-value in

�
is
	
. This

relation holds only if Poss
� 7 � ����	� �
� � holds for at least one of�

’s choices 7 � ; otherwise the
:

-value is undefined:: T ��� ���� � ��	I�
� ���

 � � Poss

� 7 � ������ �
� �
� & 	 8
case


 � � ���� �
� � ��	 � �
Since

� � Poss
� 7 � ����	� �
� � can be distributed into the case state-

ment (by conjoining it with the
� �

), the result is again a case
statement for the Q-relation.

As an example consider value function � ) :� ��� � 8
case


 � � � BIn
� � � Rome

�-� � � � � � $ �I� � BIn
� � � Rome

�
� � � � �
That is, if some box � is in Rome, value is 10; otherwise
value is 0. Suppose that reward � is identical to � ) and our
discount rate is � � B . We use the unload

� � �
� � action, described
above, to illustrate FODTR. The regression of � ) through
unload

� � �E� � results in a case statement (after simplification),
denoting

: 
 �
unload

� � �
� � �
	I�
� � with four elements:� 
 � � �E� �
� ��� � � 4 BIn
� � 4 � Rome

�
� �
� ( � � �E� �
� ��� Rain

��� � &
TIn

�(� �
Rome

�
� � &



On
� � �
� �
� � & $ � � 4 BIn

� � 4 � Rome
�
� �

��� � � �E� �
� ����$ Rain
��� � &

TIn
�(� �

Rome
�
� � &

On
� � �
� �
� � & $ � � 4 BIn

� � 4 � Rome
�
� �

��� � � �E� �
� ��� �%$
TIn

�(� �
Rome

�-��� � $
On

� � �
� �-� � � &� � 4 BIn
� � 4 � Rome

�-���
and the associated Q-values:

	 
 8 � B ; 	 ( 8�� � <
;
	�� 8�� � � ;	 � 8 � . Before simplification, the case statement consisted

of 8 formulae, two of which were inconsistent and two pairs
of which had identical Q-values.

An important property of FODTR is that it not
only produces an abstraction of state space to describe: T ��� ���� � ��	I�-� �

, it also abstracts the action space as well.
With a small number of logical formulae, it captures the Q-
values

: �R	���	I�-� �
for each situation

�
and each instantiation

	
of
� ���� �

. While state space abstraction has been explored in
the context of decision-theoretic regression for propositional
representations of MDPs, little work has focused on abstract-
ing the action space in this way.

Finally, although our example works with specific numeri-
cal values in the case statements, purely symbolic descriptions
of value can also be reasoned with in this way. For example,
if the Q-value of action drive

�R� � ���
depends on the weight of

truck
�

in the current situation, the value term in a case state-
ment can be made to depend on this property of the situation
(i.e., weight

�R� �
� �
). This can prove especially useful for rea-

soning with continuous (or hybrid) state and action spaces.

4.2 Symbolic Dynamic Programming
Value iteration consists of setting � ) 8 � and repeatedly
applying Eq. (1) and Eq. (2) until a suitable termination con-
dition is met. Since � is described symbolically and FODTR
can be used to implement Eq. (1) logically, we need only de-
rive a “logical implementation” of Eq. (2) in order to have
a form of dynamic programming that can compute optimal
policies for FOMDPs without explicit state or action enumer-
ation (together with a method for termination testing and pol-
icy extraction).

In what follows, we assume that all values occurring in the
case statements for

: �����&�S�-� �
are numerical constants, which

means that the case statements for
D ��� � � 7 �����-��� , � ��� �

and� ��� � all have this property.
Suppose we have computed 7 -stage-to-go Q-relations: ��� ���� � �&�S�-� �

, one for each action type
�

, of the form
case


 � �� ���� �
� � �
	 �� �
, where the

	 ��
are numerical constants.

Letting � ��� �
denote the 7 -stage-to-go value function, Eq. (2)

can be written� ��� � 8 � � � � 	 � � : �R	������
� � & ��� � � : � � �	� �
� � 

� � � (4)

We assume that some stochastic action (e.g., a deterministic
no-op) is executable in every situation, so that � ��� �

will be
a function. (If not, we can easily define it as a relation.) We
now derive a series of expressions for the r.h.s. of this equiv-
alence. Assuming domain closure for action types (i.e., all
actions

	
are instances of some

� � ���� � �
, we have� ��� � 8 � � 
 � � �������� � : ��� � ���� � � �&�S�-���2� &� � �8� �� � �&� 4 � � : ��� � ���� � � ��� 4 �
� � 
�� 4 � �

To minimize notational clutter, represent this generically by

� ��� � 8 � � 
 � � ������ � : ��� ����	� �����
� �
� &��
 ��� �� �&� 4 � � : ��� ���� � ��� 4 �-� � 
 � 4*� �
We are supposing that we have already determined the

:
-

values for each action type
�

, in the form of a case statement:: ��� ���� � ��	I�-� � � 	 8 � 	I�>= 
 � �� ���� �
� � ��	 �� �
(5)

Substitute Eq. (5) into the previous expression to get� *�09/ 7��"4�� ��� *��(,- /���7 ?�1+0���1 � �� *�,- -&09/�-�� �� 9�� ��"! *$# ,% -&�(' /*) + *-, * ,% /�-.�(' -�0=/0/1�('321�
Since the

	 ��
are constants, we can distribute the existential

quantifiers into the case expression:� *�09/ 7��"4�� ��� �876?�1+04��1 *���,- /�� �� *�,- -�0=/�-.� �� 9��5��6! *$# ,% -.� ' /*) + *-, * ,% /�-.� ' -/09/7/1� ' 21�
Writing

������ �0� �� ���� �
� �
as � �� ��� � , and recalling the definition

of the case union operator
"

of Section 3.3, we have� *�09/ 7��"4��"7��98 � ?�1+0���1 : �� *�0=/�-.� �� 9��5��6! *$# ,% -.� ' /*) + *-, * ,% /�-.� ' -/09/7/1� ' 21�
Suppose 8 � � 	 �>= 
 � �� ��� � ��	 �� � has the form

� 	 ��= 
 � � ��� � � � � �� � � � . Therefore,� ��� � 8 � �

 '�� ' 
 � � ��� � & � 8 � � � & � 
 ��� �� �&� 4 � � : ��� ���� � ��� 4 �-� � 
 � 45� �

This simplifies to� ��� � 8 � �
'�� ' 
 � � ��� � & � 
 ��� �� ��� 4 � 
 : ��� ���� � ��� 4 �
� � 
 � 4 � � � � & � 8 � �

Recalling the definition of the case notation, we get� *�09/ 7��"4��"7
?�1+04��1 : � *�09/ � � ! *$# ,% -;�(',/*) + *-,<* ,% /�-.�(' -�0=/7/1�('32 � � - � ��<>= 2@? 9

The only remaining task is to characterize the expressions: ��� ���� � ��� 4 �-� � 
 � 4 � � � in terms of the case statement for: ��� ���� � ��� 4 �-� � . Suppose this case statement is:: ��� ���� � �&� 4 �
� ��� � 4 8 � 	 �>= 
 � 
� ���� �-��� ��	 
� �
Then it is easy to show that: ��� ���� � �&� 4 �
� � 
�� 45� � � � � � 
 � 
� ���� �
� � 
 	 
� � � � �
Substituting this last expression for

: ��� ���� � �&� 4 �
� � 
 � 4*� � �
in the above expression for � �����

gives us� *�09/ 7��"4��"7
?�1#04��1 : � *�09/ � ��! *$# ,% /*) � * 1 A !* * ,% -�0=/7/1� !* 2 � � 9 - � �B<9= 2@? 9

Next, because the
	 
� and � � are numerical constants, we can

distribute the universal quantifier as an existential quantifier
in the antecedent of the implications, to get� *�09/ 7��"4��"7

?�1#04��1 : � *�09/ � � ! � * 1 *�� ,% /CA * * ,% -�0=/7/1� !* 2 � � 9 - � � <9= 2@? 9
Next, recalling how the � � were introduced by unioning the
case expressions for all the

:
-values, we get� ��� � 8 � �



� 8 � 	 ��= 
 � � ��� � & � � 
 �+� ��� � 
 ����� � ����� � � � � � � �
Finally, we can again exploit the fact that the � s are numer-
ical constants (as opposed to symbolic terms), and therefore
can be compared. This allows us to write our final expression
for � :

� ��� � 8
case

�����
�
� 
 ��� � & �� ��� T��	�5T�

� $ � � ��� � � 


...� ' ����� & �� ��� T��	�*T���� $ � � ����� � '
������
�

If we modify the definition of the
"

operator so that it sorts
the rows according to their � values, and merges rows with
identical � values, we get the pleasing expression� *�0=/57
case

�����
�
: 3 *�0=/ � 3:���*�0=/ ��� : 3 *�09/ � �

...:��C*�0=/ ��� : 3 *�0=/ ��� :���*�0=/ � 6
676 ��� :���� 3 *�0=/ � �

������
�

(6)

This determines a simple case statement that completely de-
fines the value function � � ��� � given the logical description
of the relations

: � ��� ���� � �&�S�-� �
. Together with the FODTR

algorithm for producing Q-relations, this provides the means
to construct the sequence of value functions that characterize
value iteration in a purely symbolic fashion, eliminating the
need for state and action enumeration. It is not hard to show
that the case conditions defining � � partition state space.

Finally, notice that we obtained the case expression (6) by
a sequence of equivalence-preserving transformations from
the definition (3) of the Q-function (suitably modified to ac-
commodate action preconditions), and the definition (4) of
the value function. Therefore, we have:
Theorem 1 The case expression (6) is a correct representa-
tion for � ��� �

relative to the specifications (3) and (4) for the
Q-function and value function respectively.

With these pieces in place, we can summarize first-order
value iteration as follows: given as input a first-order repre-
sentation of � ����� (a case statement) and our action model,
we set � ) ����� 8 � ��� � , 7 8 � and perform the following steps
until termination:

1. For each action type
� ����	�

compute the case representa-
tion of

: � ��� ����	� ��	I�
� �
(using � �IH 
 ��� � as in Eq. (3)).

2. Compute the case representation of � � ��� � (using the: � ��� ����	� ��	I�
� �
as in Eq. (6)).

3. Increment 7 .
Termination of first-order value iteration is straightforward.
Given the case statements

� �
and

� � H 

for value functions� � and � �IH 
 , we form

� � ! � � H 

and simplify the result-

ing case statement by removal of any inconsistent elements.
If each case has a value term less that specified threshold � ,
value iteration terminates. Extraction of an optimal policy is
also straightforward: one simply needs to extract the maxi-
mizing actions from the set of Q-functions derived from the
optimal value function. The optimal policy will thus be rep-
resented symbolically with a case statement.

4.3 An Illustration
To give a flavor of the form of first-order value functions, con-
sider an example where the reward function is given by three
statements:

��� � ��� ��� 7 � � � Paris
�
� � &

TypeA
� � � � � 8 � ���� � ��� ��� 7 � � � Paris

�
� � & $
TypeA

� � � � � 8��$ ��� � � � � 7 � � � Paris
�-� � � � 8 �

That is, we want a box of Type A in Paris, but will accept a
box of another type if a Type A box is unavailable. Actions
include the load, unload, and drive actions described above.
We include action costs: the action unload

� � �
� � has cost ! ,
load

� � �
� � has cost � , and drive
�(� � ���

has cost
<
. The optimal

one-stage policy chooses only unloading or no-op (since with
only one stage to go, driving and loading have no value). Our
algorithm derives the following conditions for unload

� � �
� � to
be executed:

On
� � �E� �
� � & TIn

�(� �
Paris

�
� � &

 $ � � � 4 � BIn

� � 4 � Paris
�-� � �

TypeA
� � � & $ Rain

��� � &
$ ��� � 4 � � BIn

� � 4 � Paris
�
� � & $

TypeA
� � 4 �2�

Thus a box � is unloaded if there is a box on some truck in
Paris, and there is no box currently in Paris, or � is a Type A
box and it’s not raining, and there’s no Type A box in Paris.
No-op is executed if the negation of the condition above holds
(since for a one-step backup there is no value yet discovered
for driving or loading). It is important to note that this par-
titioning remains fixed (as does the partitioning for the re-
sultant value function) regardless of the number of domain
objects and extraneous relations in the problem description.
Thus we get stronger abstraction than would be possible us-
ing a propositionalized version of the problem. Also note
that this describes the conditions under which one performs
any instance of the unload action. In this way our algorithm
allows for action abstraction, allowing one to produce value
functions and policies without explicit enumeration of action
instances.

5 A (Very) Preliminary Implementation
We have implemented (in Prolog) the basic Bellman backup
operator (i.e., single iterations of one-step value iteration) de-
fined by Eq (6). The implementation is based entirely on a
rewrite interpreter that applies programmer specified rewrite
rules to situation calculus formulae until no further rewrites
are possible. The program first computes the case statements
for the Q-values for all the stochastic actions. Next, from
these it computes the "(� � ��� � � � ��# pairs required by the case
statement (6), and finally, the case statement of (6) itself.
Throughout, logical simplification is applied (also specified
by rewrite rules) to all subformulas of the current formula.

From a practical point of view, the key component in ef-
ficiently implementing first-order DTR is logical simplifica-
tion to ensure manageable formulae describing the partitions.
Our current implementation performs only the most rudimen-
tary logical simplification and does not always produce con-
cise descriptions of the cases within partitions. Neither can
it eliminate all inconsistent partitions. The main reason for
these limitations is that the current implementation lacks a



first-order theorem-prover. For the example MDPs we have
looked at, sophisticated theorem-proving appears not to be
necessary, but simple-minded simplification rules that don’t
know very much about quantifiers are simply too weak.

We ran value iteration to termination under our implemen-
tation using the reward function that gives a reward of 10
for having any box in Paris, and zero reward otherwise (for
simplicity, it is treated as a terminal reward, and is received
only once). Because our simplifier did not include a theorem-
prover, some of the intermediate computations were hand-
edited to further simplify the resulting expressions. We ob-
tained the following optimal value function:�C+ BIn * Paris -2+�-/09/

<�� �
� Rain *�0=/ � �C+9-%.A* On *,+9-
.�-/09/ � TIn *>.�-�� 1��

=
0 -/09/2/� � �C+ BIn * Paris -2+9-�0=/

< � ) �	�
Rain *�0=/ � � +�-
.�* On *,+�-
.�-�0=/ � TIn *>.�-�� 1��

=
0�-�0=/2/� � �C+�) BIn * Paris -2+�-/09/

< 
 ) �
�� Rain *�0=/ � �C+9-%. On *,+9-
.�-/09/ � � � + BIn * Paris -0+�-�0=/� � �C+9-
.A* On *,+�-�.�-�0=/ � TIn *>.�-�� 1��
=
0�- 09/2/

<
� ) �
�� Rain *�0=/ � �C+9-%.�-
?�* BIn *,?�-�0=/ � TIn *,?9-�0=/2/� � �C+9-
. On *,+�-%.�-/0=/ � � �C+ BIn * Paris -
+�-�0=/
<�� ) � �

Rain *�0=/ � � +�-%. On *,+�-%.�-�0=/ � � �C+�-%.A* On *,+�-%.�-�0=/ � TIn *>.�-�� 1��
=
0�- 09/2/� � �C+ BIn * Paris -2+9-�0=/

<�� ) � �� � + BIn * Paris -2+�-�0=/ � � �C+9-
. On *,+9-
.�-/09/ �1 Rain *�09/ : � � +�-
.�-2?�* BIn *,?�-�0=/ � TIn *,?�-�0=/2/
< � ) �

We emphasize again that this value function applies no matter
how many domain objects there are.

Our algorithm is not competitive with state of the art
propositional MDP solvers, largely because solvers such as
SPUDD [Hoey et al., 1999] use very efficient implementa-
tions of logical reasoning software. We are currently develop-
ing a version of the FODTR algorithm that uses a first-order
theorem-prover to enhance its performance. Of course, at
another level, one can argue that propositional MDP solvers
cannot even get off the ground when (even trivial) planning
problems have a large number of domain objects.

An important issue we hope to address in the near fu-
ture is the use of hybrid representations of MDPs and value
functions that allow one to adopt efficient data structures
like ADDs or decision trees, but instantiate these structures
with first-order formulae. This would allow the expressive
power of our first-order model, but restrict the syntactic form
of formulae somewhat so that simplification and consistency
checking could be implemented more effectively for “typical”
problem instances.

6 Concluding Remarks
We have described the first approach for solving MDPs spec-
ified in first-order logic by dynamic programming. By the
careful integration of sophisticated KR methods with classic
MDP algorithms, we have developed a framework in which
MDPs can be specified concisely and naturally and solved
without explicit state and action enumeration. Indeed, noth-
ing in our model prevents its direct application to infinite do-
mains. Furthermore, it permits the symbolic representation of
value functions and policies.

A number of interesting directions remain to be explored.
As mentioned, the practicality of this approach depends on

the use of sophisticated simplification methods. We are cur-
rently incorporating several of these into our implementation.
Other dynamic programming algorithms (e.g., modified pol-
icy iteration) can be implemented directly within our frame-
work. Approximation methods based on merging partitions
with similar values can also be applied with ease. Finally, the
investigation of symbolic dynamic programming to continu-
ous and hybrid domains offers exciting possibilities.
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