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Abstract

We address the problem of formalizing the evolution of a database under the effect
of an arbitrary sequence of update transactions. We do so by appealing to a first order
representation language called the situation calculus, which is a standard approach in
artificial intelligence to the formalization of planning problems. We formalize database
transactions in exactly the same way as actions in the artificial intelligence planning
domain. This leads to a database version of the frame problem in artificial intelligence.
We provide a solution to the frame problem for a special, but substantial, class of update
transactions.

We next briefly describe some of the results obtained within this axiomatization.
Specifically, we provide procedures for determining whether a given sequence of update
transactions is legal, and for query evaluation in an updated database. These procedures
have the nice property that they appeal to theorem-proving only with respect to the
initial database state. We also address the problem of proving properties true in all
states of the database. It turns out that mathematical induction is required for this
task, and we formulate a number of suitable induction axioms. Among those properties
of database states that we wish to prove are the standard database notions of static and
dynamic integrity constraints. In our setting, these emerge as inductive entailments of
the database.

1 Introduction

Our concern in this paper is with formalizing the evolution of a database under arbi-
trary sequences of update transactions. A wide variety of proposals for this exist in the
literature (e.g. Grahne [4], Katsuno and Mendelzon [8], Winslett [17], Fagin, Ullman and
Vardi [2], Ginsberg and Smith [3], Guessoum and Lloyd [5, 6], Manchanda and Warren
[9]). In this paper, we advance a substantially different proposal.

To begin, we take seriously the fact that, during the course of its evolution, a database
will pass through different states; accordingly, we endow updatable database relations
with an explicit state argument which records the sequence of update transactions which
the database has undergone thus far. Secondly, in our approach, the transactions them-
selves are first class objects, so for example, if the database admits a transaction for
changing the grade g of a student st to a new grade g’ for the course ¢, then the first



order term change(st,c,g,g') will be an object in the database language. These two
features — an explicit state argument for updatable relations, and first order terms for
transactions — are the basic ingredients of the situation calculus, one of the standard ap-
proaches in artificial intelligence to the formalization of planning problems. The essence
of our proposal is to specify databases and their update transactions within the situation
calculus.

One difficulty with this proposal, which arises immediately, is the so-called frame
problem, well known in the planning domain. Briefly, this is the problem of how to suc-
cinctly represent the invariants of the domain, namely, those relations whose truth values
are unaffected by a transaction. Thus, in the example of a grade-changing transaction,
it would be necessary to state that the transaction does not affect a teacher’s salary.
Section 2 describes the problem in more detail, while Sections 3 and 4 describe our ax-
iomatization of databases and transactions, and how these address the frame problem.
Finally, in Section 5, we briefly describe our principal results in this approach to a theory
of updates.

2 Preliminaries: The Situation Calculus and the Frame Problem

The situation calculus (McCarthy [10]) is a first order language designed to represent
dynamically changing worlds in which all such changes are the result of named actions.
The world is conceived as being in some state s, and this state can change only in
consequence of some agent (human, robot, nature) performing an action. If « is some
such action, then the successor state to s resulting from the performance of action « is
denoted by do(a, s). In general, actions may be parameterized. For example, put(z, y)
might stand for the action of putting object 2 on object y, in which case do(put(A, B), s)
denotes that state resulting from placing A on B when the world is in state s. Notice
that in this language, actions are denoted by function symbols. Those relations whose
truth values may vary from state to state are called fluents, and are denoted by predicate
symbols taking a state term as one of their arguments. For example, in a world in which
it is possible to paint objects, we would expect a fluent colour(z, ¢, s), meaning that the
colour of object # is ¢ when the world is in state s.

Normally, actions will have preconditions, namely, sufficient conditions which the cur-
rent world state must satisfy before the action can be performed in this state. For exam-
ple, it 1s possible for a robot r to pick up an object x in the world state s provided the
robot is not holding any object, it is next to z, and z is not heavy:

[(Vz)=holding(r, z, s)] A =heavy(z) A nexto(r,z,s) D Poss(pickup(r,z),s).!

It is possible for a robot to repair an object provided the object is broken, and there is
glue available:

hasglue(r, s) A broken(z, s) D Poss(repair(r,z), s).
! In the sequel, lower case roman letters will denote variables. All formulas are understood

to be implicitly universally quantified with respect to their free variables whenever explicit
quantifiers are not indicated.



The dynamics of a world are specified by effect arioms which specify the effect of
a given action on the truth value of a given fluent. For example, the effect of a robot
dropping an object on the fluent broken can be specified by:

Poss(drop(r, z), s) A fragile(z) D broken(z,do(drop(r, z), s)).

A robot repairing an object causes it not to be broken:

Poss(repair(r, z),s) D —broken(z, do(repair(r, z), s)).

As has been long recognized (McCarthy and Hayes [11]), axioms other than effect
axioms are required for formalizing dynamic worlds. These are called frame azioms,
and they specify the action invariants of the domain, i.e., those fluents unaffected by
the performance of an action. For example, dropping things does not affect an object’s
colour:

Poss(drop(r,z), s) A colour(y, ¢, s) D colour(y, ¢, do(drop(r, z), s)).
Not breaking things:
Poss(drop(r, z), s)A—broken(y, s)Aly # eV - fragile(y)] D —broken(y, do(drop(r, z), s)).

The problem associated with the need for frame axioms is that normally there will be a
vast number of them. For example, an object’s colour remains unchanged as a result of
picking things up, opening a door, turning on a light, electing a new prime minister of
Canada, etc. etc. Normally, only relatively few actions in any repertoir of actions about
a world will affect the truth value of a given fluent; all other actions leave the fluent
invariant, and will give rise to frame axioms, one for each such action. This is the frame
problem.

In this paper, we shall propose specifying databases and update transactions within
the situation calculus. Transactions will be treated exactly as actions are in dynamic
worlds, i.e. they will be functions. Thus, for example, the transaction of changing a
student’s grade in an education database will be treated no differently than the action
of dropping an object in the physical world. This means that we immediately confront
the frame problem; we must find some convenient way of stating, for example, that a
student’s grade is unaffected by registering another student in a course, or by changing
someone’s address or telephone number or student number, etc. etc.

While the frame problem has been recognized in the setting of database transaction
processing, notably by Borgida, Mylopoulos and Schmidt [1], it has not received any sys-
tematic treatment in the database literature. Neither is its importance widely recognized.
The fact is, no adequate theory of database evolution will be possible without confronting
the frame problem head-on. The next section provides an example of our approach to
specifying database update transactions, and how it deals with the frame problem.

3 The Basic Approach: An Example

We consider a toy education database to illustrate our approach to specifying update
transactions.



Relations The database involves the following three relations:

1. enrolled(st, course, s): Student st is enrolled in course course when the database is
in state s.

2. grade(st, course, grade, s): The grade of student st in course course is grade when
the database is in state s.

3. prerequ(pre, course): pre is a prerequisite course for course course. Notice that this
relation is state independent, so is not expected to change during the evolution of
the database.

Initial Database State We assume given some first order specification of what is true
of the initial state Sy of the database. These will be arbitrary first order sentences, the
only restriction being that those predicates which mention a state, mention only the
initial state Sy. Examples of information which might be true in the initial state are:

enrolled(Sue, C100, Sp) V enrolled(Sue, C200, Sp),
(Fe)enrolled(Bill, ¢, Sp),
(Vp).prerequ(p, P300) = p = P100V p = M 100,
(Vp)—prerequ(p, C'100),

(Ve).enrolled(Bill, e, So) = ¢ = M100V ¢ = C'100 V ¢ = P200,
enrolled(Mary, C100, Sg), —enrolled(John, M200, Sp), ...
grade(Sue, P300,75,Sy), grade(Bill, M200,70,Sp),...
prerequ(M200, M100), —prerequ(M100,C100),...

Database Transactions Update transactions will be denoted by function symbols, and
will be treated in exactly the same way as actions are in the situation calculus. For our
example, there will be three transactions:

1. register(st, course): Register student st in course course.

2. change(st, course, grade): Change the current grade of student st in course course
to grade.

3. drop(st, course): Student st drops course course.

Transaction Preconditions Normally, transactions have preconditions which must be
satisfied by the current database state before the transaction can be “executed”. In our
example, we shall require that a student can register in a course iff she has obtained a
grade of at least 50 in all prerequisites for the course:

Poss(register(st,c), s) = {(Vp).prerequ(p,c) D (3g).grade(st,p,g,s) Ag > 50}.

It is possible to change a student’s grade iff he has a grade which is different than the
new grade:

Poss(change(st,c,g),s) = (3g’).grade(st,c,g’,s) Ng' # g.
A student may drop a course iff the student is currently enrolled in that course:

Poss(drop(st,c), s) = enrolled(st, c, s).



Update Specifications These are the central axioms in our formalization of update
transactions. They specify the effects of all transactions on all updatable database rela-
tions. As usual, all lower case roman letters are variables which are implicitly universally
quantified. In particular, notice that these axioms quantify over transactions.

Poss(a,s) D
[enrolled(st, c,do(a, s)) = (1)
a = register(st,c) V enrolled(st, ¢, s) A a # drop(st, ¢)],

Poss(a,s) D
[grade(st,c, g,do(a,s)) =
a = change(st,c,g) V grade(st,c, g,s) A (Vg')a # change(st, ¢, g')].

It is the update specification axioms which “solve” the frame problem. To see why, let
« be any transaction distinct from register(st, ¢) and drop(st, ¢). We obtain the following
instance of the axiom (1):

Poss(a, s) D {enrolled(st,c,do(a, s)) = enrolled(st, c, s)},?

i.e., register(st,c) and drop(st,c) are the only transactions which can possibly affect the
truth value of enrolled; all other transactions leave its truth value unchanged (provided
Poss(a, s) is true, of course).? But this ability to succinctly represent all of the transac-
tions which leave a given fluent invariant is precisely the kind of solution to the frame
problem that we seek. A little reflection reveals those properties of the axiom (1) which
solve the problem for us:

1. Quantification over transactions, and

2. The assumption that relatively few transactions (in this case register(st,c) and
drop(st, c)) affect the truth value of the fluent, so that the sentence (1) is reasonably
short. In other words, most transactions leave a fluent’s truth value unchanged, which

of course is what originally lead to too many frame axioms.

4 An Axiomatization of Updates

The example education domain illustrates the general principles behind our approach to
the specification of database update transactions. In this section we precisely characterize
a class of databases and updates of which the above example will be an instance.

2 Notice that to obtain this instance we require unique names axioms for transactions, i.e.,
change(st, c, g) # drop(st,c),

drop(st, c) # register(st, c),

etc.

 Since for our example there are just three transactions, this might not seem much of an
achievement. To see that it is, simply imagine augmenting the set of transactions with ar-
bitrarily many new transactions, each of which is irrelevant to the truth of enrolled, say
transactions for changing students’ registration numbers, addresses, telephone numbers, fees,
etc. etc.



Unique Names Axioms for Transactions For distinct transaction names 7" and T",
T(x) #T'(y)
Identical transactions have identical arguments:
T(21, oo @n) =TW1y o Yn) DT =Y Ao A2y = Yn

for each function symbol T of £ of sort transaction.

Unique Names Axioms for States
(Va, 8)So # do(a, s),

(Va, s, a’,s").do(a,s) = do(a',s') Da=a'" As=15".

Definition: The Simple Formulas The simple formulas are defined to be the smallest
set such that:

1. F(t,s) and F(t,Sp) are simple whenever F' is a fluent, the t are terms, and s is a
variable of sort state .*

2. Any equality atom is simple. Notice that equality atoms, unlike fluents, are permitted

to mention the function symbol do.

Any other atom with predicate symbol other than Poss is simple.

If S; and S5 are simple, so are =57, S1 A S2, S1V Sy, S1 DSy, S1 =955,

If S is simple, so are (Jz)S and (Yz)S whenever # is an individual variable not of

sort state.

Ot = W

In short, the simple formulas are those first order formulas which mention only domain
predicate symbols, whose fluents do not mention the function symbol do, and which do
not, quantify over variables of sort state.

Definition: Transaction Precondition Axiom A transaction precondition axiom is
a formula of the form

(Vx,s).Poss(T(z1, -, xn),s) = Iy,

where T is an n-ary transaction function, and I7p is a simple formula whose free variables
are among &1, -, &y, S.

Definition: Successor State Axiom A successor state axiom for an (n+ 1)-ary fluent
F is a sentence of the form

(Va, s).Poss(a, s) DO (Ya1,...,2n).F(21,...,2,,do(a,s)) = Pr

where, for notational convenience, we assume that F’s last argument is of sort state, and
where @ is a simple formula, all of whose free variables are among a, s, 21, ..., Zx.

* For notational convenience, we assume that the last argument of a fluent is always the (only)
argument of sort state.



5 Results

We here briefly indicate some of the results we have obtained for first order databases
axiomatized as in the previous section. The full details may be found in (Reiter [15]).

5.1 Legal Transaction Sequences
Not all transaction sequences need be legal. For example, the sequence
drop(Sue, C'100), change(Bill, C100,60)

would be illegal if the drop transaction was impossible in the initial database state, i.e.
if Poss(drop(Sue,C100), Sg) was false. Even if the drop transaction were possible, the
sequence would be illegal if the change transaction was impossible in that state resulting
from doing the drop transaction, i.e. if

Poss(change(Bill, C100,60), do(drop(Sue, C'100), Sp))

was false.

Intuitively, a transaction sequence is legal iff, beginning in state Sy, each transaction
in the sequence is possible in that state resulting from performing all the transactions pre-
ceeding it in the sequence. Our concern is to characterize the legal transaction sequences.
To that end, we require the following;:

Definition: A Regression Operator R Let W be first order formula. Then R[W] is
that formula obtained from W by replacing each fluent atom F(t,do(a, o)) mentioned
by W by @p(t,a, 0) where F’s successor state axiom is

(Va, s).Poss(a, s) D (Vx).F(x,do(a, s)) = Pr(x,a,s).

All other atoms of W not of this form remain the same.

Regression corresponds to the operation of unfolding in logic programming.

In what follows, Dy,s and Dy, denote the unique names axioms for states and unique
names axioms for transactions, respectively (Section 4). Dg, denotes the initial database,
i.e. any set of sentences which mention only the initial state term Sp. (See Section 3 for
an example Dg, .)

Theorem 1. Let 7,...,7, be a sequence of update transactions. There is a formula
R:, -, (which is easily obtained using the regression operator and the transaction pre-
condition arioms of Section 3) such that 1,..., 7, is legal wrt D iff

Duns UDunt UDs, = Ryy 7, 0

Theorem 1 informs us that legality testing reduces to first order theorem proving in
the initial database Ds, together with unique names arioms.

® See (Reiter [15]) for a description of how to compute R, . r,.



5.2 Query Evaluation

Notice that in our formalization of update transactions in the situation calculus, all
updates are virtual; the database is never physically changed. In order to query a database
resulting from a sequence of update transactions we must explicitly refer to this sequence
in the query. For example, to ask whether John is enrolled in any courses after the
transaction sequence drop(John,C100), register(Mary, C100) has been ‘executed’, we
must determine whether

Database |= (3¢).enrolled(John, ¢, do(register(Mary, C100), do(drop(John, C'100), Sp))).

In general, the specific problem we address is this: Given a sequence 7, ..., T, of transac-
tions, and a query Q(s) whose only free variable is the state variable s, what is the answer
to @ in that state resulting from performing this transaction sequence, beginning with
the initial database state Sp7 This can be formally defined as the problem of determining
whether

D E Q(do([r, ..., m], So)),

where D denotes some database theory. Here, do([r1,. .., T,],So) abbreviates the state
term

do(1,,do(Tn—1,- -+, do(m1,50) - ),

and denotes that state resulting from performing the transaction 7, followed by 7, .. .,
followed by 7,, beginning with the initial database state Sp.
Our principal result is the following:

Theorem 2. (Soundness and Completeness of Query Evaluation) Suppose that
T, ..., T 18 a legal transaction sequence. Then whenever D is a database whose arioms
are those of Section 4,

D E Q(do([r1, ..., ™), S0))
if
Duns UDyunt UDs, = R*Q(do([r1, ..., Tn], S0))].0

As was the case for legality testing, query evaluation reduces to first order theorem
proving in the initial database Ds, together with unique names arioms.

5.3 Integrity Constraints

In database theory, an integrity constraint specifies what counts as a legal database state;
it is a property that every database state must satisfy. In our setting, it is natural to
represent these as first order sentences, universally quantified over states. In the following
examples, < is a binary relation between states; s < s’ means that s’ is a possible future
of s, 1.e. there is some sequence of zero or more transactions which can lead a database
from state s to state s’. As it happens, defining < requires a second order axiom, the
details of which we omit here. A definition is given in (Reiter [15]).

6 Recall that Dyns and Dyun: denote the unique names axioms for states and unique names
axioms for transactionss, respectively (Section 4), and Dg, denotes the axioms true of the
initial database state.



Examples of integrity constraints

1. No one may have two different grades for the same course in any database state. This
is a standard functional dependency.

(Vs)(Vst,c,g,9").S0 < s A grade(st,c,g,s) A grade(st,c,g',s) Dg=14g'.

2. Salaries must never decrease. This is the classic example of a dynamic integrity con-
straint.

(Vs,s')(Vp, $,9').50 < s As < s Asal(p,$,s) Asal(p,$,s) D < ¢

Constraint satisfaction defined: A database satisfies an integrity constraint IC iff
Database = I1C.7

Not surprisingly, some form of mathematical induction is necessary to establish that
a database satisfies an integrity constraint. In [15], we justify the following second order
axiom of induction suitable for proving properties of states s in the situation calculus,
whenever Sy < s.

(VW).W(So) A [(Va, s).Poss(a,s) A Sg < s AW (s) D W(do(a,s))]
D (¥s).S < s D W(s).

This is our analogue of the standard second order induction axiom for Peano arithmetic.
Frequently, we want to prove sentences of the form

(Vs,s').50 <sAs<s D R(ss).
For example, the following classic dynamic integrity constraint has this form:
(Vs,s',p,$,%).5 < sAs<s Dsalp,$,s)Asal(p,$,s') D$<§.

Using the above simple induction axiom we can derive an induction axiom suitable for
proving properties of pairs of states s and s’ when Sy < sAs < s':

(VR).R(So, So) A

[(Va, s).Poss(a,s) A Sy < s D R(s,do(a,s))] A

[(Va, s, s').Poss(a,s) A So < s A R(s,s) D R(do(a,s),do(a, s))] A

[(Va,s,s').Poss(a,s') ANSg < sAs<s AR(s,s') D R(s,do(a,s'))]
D (Vs,s).So <sAs<s DR(s,s).

(Reiter [15]) provides a number of examples of integrity constraints and their verification
using these induction axioms.

" This definition should be contrasted with those in Reiter [14, 13]. It seems that there is not a
unitary concept of integrity constraint in database theory, and that there are many subtleties
involved.



6 Conclusions and Extensions

Database transactions have long been treated procedurally. We have outlined a declar-
ative treatment of this notion by appealing to suitable axiomatizations in the situation
calculus. A number of issues have not been addressed in this paper; these include the
following:8

— Historical Queries: On our account of database evolution, databases are never
physically modified and therefore never forget. It is therefore possible to pose and
answer historical queries, for example “Did Mary ever get a raise?”

— Logic Programming Implementation: It seems that our approach to database
updates can be implemented in a fairly straightforward way as a logic program,
thereby directly complementing the logic programming perspective on databases
(Minker [12]).

— Indeterminate Transactions: A limitation of our formalism is that it requires all
transactions to be determinate, by which we mean that in the presence of complete
information about the initial database state a transaction completely determines the
resulting state. An example of an indeterminate transaction is registering a student
in a multi-section course, without specifying in the parameters of the transaction, in
which of the possible sections the student is registered. It is possible to extend the
theory of this paper to include indeterminate transactions by appealing to a simple
idea for dealing with the frame problem due to Haas [7], as elaborated by Schubert
[16].
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