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Abstract

We continue our exploration of a theory of database updates (Re-
iter [21, 23]) based upon the situation calculus. The basic idea is to
take seriously the fact that databases evolve in time, so that updatable
relations should be endowed with an explicit state argument represent-
ing the current database state. Database transactions are treated as
functions whose effect is to map the current database state into a suc-
cessor state. The formalism is identical to that arising in the artificial
intelligence planning literature and indeed, borrows shamelessly from
those ideas.

Within this setting, we consider several topics, specifically:

A logic programming implementation of query evaluation.

[N

The treatment of database views.
State constraints and the ramification problem.

The evaluation of historical queries.

A o

An approach to indeterminate transactions.



1 Introduction

Elsewhere (Reiter [21, 23]), we have described how one may represent databases
and their update transactions within the situation calculus (McCarthy [13]).
The basic idea is to take seriously the fact that databases evolve in time, so
that updatable relations should be endowed with an explicit state argument
representing the current database state. Database transactions are treated
as functions, and the effect of a transaction is to map the current database
state into a successor state. The resulting formalism becomes identical to
theories of planning in the AT literature (See, for example, (Reiter [18])).

Following a review of some of the requisite basic concepts and results, we
consider several topics in this paper:

1. We sketch a logic programming implementation of the axioms defining
a database under updates. While we give no proof of its correctness,
we observe that under suitable assumptions, Clark completion axioms

(Clark [3]) should yield such a proof.
2. We show how our approach can accommodate database views.

3. The so-called ramification problem, as defined in the Al planning liter-
ature, arises in specifying database updates. Roughly speaking, this is
the problem of incorporating, in the axiom defining an update trans-
action, the indirect effects of the update as given by arbitrary state
constraints. We discuss this problem in the database setting, and char-
acterize its solution in terms of inductive entailments of the database.

4. An historical query is one that references previous database states. We
sketch an approach to such queries which reduces their evaluation to
evaluation in the initial database state, together with conventional list
processing techniques on the list of those update transactions leading
to the current database state.

5. The database axiomatization of this paper addresses only determinate
transactions; roughly speaking, in the presence of complete informa-
tion about the current database state, such a transaction determines a
unique successor state. By appealing to some ideas of Haas ([7]) and
Schubert ([24]), we indicate how to axiomatize indeterminate database
transactions.



2 Preliminaries

This section reviews some of the basic concepts and results of (Reiter [23, 21,
19]) which provide the necessary background for presenting the material of
this paper. These include a motivating example, a precise specification of the
axioms used to formalize update transactions and databases, an induction
axiom suitable for proving properties of database states, and a discussion of
query evaluation.

2.1 The Basic Approach: An Example

In (Reiter [23]), the idea of representing databases and their update transac-
tions within the situation calculus was illustrated with an example education
domain, which we repeat here.

Relations

The database involves the following three relations:

1. enrolled(st,course,s): Student st is enrolled in course course when
the database is in state s.

2. grade(st,course, grade, s): The grade of student st in course course is
grade when the database is in state s.

3. prerequ(pre,course): pre is a prerequisite course for course course.
Notice that this relation is state independent, so is not expected to
change during the evolution of the database.

Initial Database State

We assume given some first order specification of what is true of the initial
state Sp of the database. These will be arbitrary first order sentences, the
only restriction being that those predicates which mention a state, mention
only the initial state Sy. Examples of information which might be true in
the initial state are:

enrolled(Sue, C'100, Sp) V enrolled(Sue, C200,Sy),

(Je)enrolled(Bill, ¢, Sp),



(Vp).prerequ(p, P300) = p = P100 V p = M 100,
(Vp)-prerequ(p, C100),

(Ve).enrolled(Bill, e, Sp) =
c=M100Vec=C100V c= P200,

enrolled(Mary, C'100, Sy),
—enrolled(John, M200, Sp), . ..
grade(Sue, P300,75,5y), grade(Bull, M200,70,5),...
prerequ(M200, M100), -prerequ(M100,C100),...

Database Transactions

Update transactions will be denoted by function symbols, and will be treated
in exactly the same way as actions are in the situation calculus. For our
example, there will be three transactions:

1. register(st, course): Register student st in course course.

2. change(st, course, grade): Change the current grade of student st in
course course to grade.

3. drop(st,course): Student st drops course course.

Transaction Preconditions

Normally, transactions have preconditions which must be satisfied by the
current database state before the transaction can be “executed”. In our
example, we shall require that a student can register in a course iff she has
obtained a grade of at least 50 in all prerequisites for the course:

Poss(register(st,c),s) =
{(¥p).prerequ(p,c) O (3g).grade(st,p, g,s) A g = 50}.1
It is possible to change a student’s grade iff he has a grade which is different
than the new grade:
Poss(change(st,c,g),s) =
(3¢').grade(st,c,q',s) N g # g.
Tn the sequel, lower case roman letters will denote variables. All formulas are under-

stood to be implicitly universally quantified with respect to their free variables whenever
explicit quantifiers are not indicated.




A student may drop a course iff the student is currently enrolled in that
course:

Poss(drop(st,c),s) = enrolled(st,c, s).
Update Specifications

These are the central axioms in our formalization of update transactions.
They specify the effects of all transactions on all updatable database rela-
tions. As usual, all lower case roman letters are variables which are implicitly
universally quantified. In particular, notice that these axioms quantify over
transactions. In what follows, do(a, s) denotes that database state resulting
from performing the update transaction @ when the database is in state s.

Poss(a, s) D [enrolled(st, ¢, do(a, s)) =
a = register(st,c) V
enrolled(st,c,s) N a # drop(st,c)],

Poss(a, s) D [grade(st,c,g,do(a,s)) =
a = change(st,c,g) vV
grade(st,c,g,s) A\ (Vg')a # change(st,c,g')].

2.2 An Axiomatization of Updates

The example education domain illustrates the general principles behind our
approach to the specification of database update transactions. In this section
we precisely characterize a class of databases and updates of which the above
example will be an instance.

Unique Names Axioms for Transactions

For distinct transaction names 7" and 7",
T(7) # T'(7).
Identical transactions have identical arguments:
T2ty tn) =T (Y1, Yn) D1 =Yt A oo A Tyy = Y,

for each function symbol T' denoting a transaction.

Unique Names Axioms for States



(Ya, s)So # do(a, s),
(Va,s,d',s").do(a,s) = do(a',s") Da=d Ns=3s"
Definition: The Simple Formulas

The simple formulas are defined to be the smallest set such that:

1. F(f,s) and F(t,S,) are simple whenever F is an updatable database
relation, the ¢ are terms, and s is a variable of sort state. 2

Any equality atom is simple.
Any other atom with predicate symbol other than Poss is simple.

If S; and S, are simple, so are =Sy, S1 A Sy, 51V .Sy, S1 D S,, 51 = 9.

ARG S S

If S is simple, so are (Jz)S and (Vz)S whenever z is an individual
variable not of sort state.

In short, the simple formulas are those first order formulas whose updatable
database relations do not mention the function symbol do, and which do not
quantify over variables of sort state.

Definition: Transaction Precondition Axiom

A transaction precondition axiom is a formula of the form
(VZ,8).Poss(T (1, -+, xpn),8) = g,

where T' is an n-ary transaction function, and Il is a simple formula whose

free variables are among xy, -, x,,s.

Definition: Successor State Axiom

A successor state axiom for an (n 4 1)-ary updatable database relation F' is
a sentence of the form

(Ya,s).Poss(a,s) D
(Vay, ..., 20). F(21,...,2n,do(a,s)) = Op
where, for notational convenience, we assume that F’s last argument is of

sort state, and where ®p is a simple formula, all of whose free variables are
AMONE @, 8, L1, . .., Ly.

2For notational convenience, we assume that the last argument of an updatable
database relation is always the (only) argument of sort state.



2.3 An Induction Axiom

There is a close analogy between the situation calculus and the theory of
the natural numbers; simply identify Sy with the natural number 0, and
do(Addl, s) with the successor of the natural number s. In effect, an axiom-
atization in the situation calculus is a theory in which each “natural number”
s has arbitrarily many successors.® Just as an induction axiom is necessary
to prove anything interesting about the natural numbers, so also is induction
required to prove general properties of states. This section is devoted to
formulating an induction axiom suitable for this task.

We begin by defining an ordering relation < on states. The intended
interpretation of s < s’ is that state s’ is reachable from state s by some
sequence of transactions, each action of which is possible in that state result-
ing from executing the transactions preceeding it in the sequence. Hence, <
should be the smallest binary relation on states such that:

1. 0 < do(a, o) whenever transaction a is possible in state o, and
2. 0 < do(a,o0’) whenever transaction « is possible in state o’ and o < o’
This can be achieved with a second order sentence, as follows:

Definitions: s < s', s < &

(Vs,s').s < s =
(YP)A{[(Va,s1).Poss(a,s1) D P(s1,do(a,s1))] A

[(Va, s1,82).Poss(a, s2) A P(s1,82) D (1)
P(s1,do(a,s2))|}
D P(s,s).
(Vs,s')s <s'=s<s' Vs=s" (2)

Reiter [20] shows how these axioms entail the following induction axiom
suitable for proving properties of states s when Sy < s:

(VW) LW (So) A

[(Va,s).Poss(a,s) N So < s ANW(s) D W(do(a,s))]} (3)
D (Vs).S50 < s D W(s).

3There could even be infinitely many successors whenever an action is parameterized
by a real number, as for example move(block, location).



This is our analogue of the standard second order induction axiom for Peano
arithmetic.

Reiter [23, 20] provides an approach to database integrity constraints in
which the concept of a database satisfying its constraints is defined in terms
of inductive entailment from the database, using this and other axioms of
induction for the situation calculus. In this paper, we shall find other uses
for induction in connection with database view definitions (Section 4), the
so-called ramification problem (Section 5), and historical queries (Section 6).

2.4 Databases Defined

In the sequel, unless otherwise indicated, we shall only consider background
database axiomatizations D of the form:

D = less-arioms U Dss U Dy, U Dyps U Dyye U D,

where
e [ess-axioms are the axioms (1), (2) for < and <.

e D, is a set of successor state axioms, one for each updatable database
relation.

e Dy, is a set of transaction precondition axioms, one for each database
transaction.

e D,,s is the set of unique names axioms for states.
e D, 1s the set of unique names axioms for transactions.

o Dg, is a set of first order sentences with the property that Sq is the
only term of sort state mentioned by the database updatable relations
of a sentence of Dg,. See Section 2.1 for an example Dg,. Thus, no
updatable database relation of a formula of Ds, mentions a variable
of sort state or the function symbol do. Ds, will play the role of the
initial database (i.e. the one we start off with, before any transactions
have been “executed”).



2.5 Querying a Database

Notice that in the above account of database evolution, all updates are vir-
tual; the database is never physically changed. To query the database re-
sulting from some sequence of transactions, it is necessary to refer to this
sequence in the query. For example, to determine if John is enrolled in any
courses after the transaction sequence

drop(John,C100), register(Mary, C'100)
has been ‘executed’, we must determine whether

Database |= (3c).enrolled(John, ¢,
do(register(Mary, C100), do(drop(John,C100), Sy))).

Querying an evolving database is precisely the temporal projection problem
in ATl planning [8].*

Definition: A Regression Operator R

Let W be first order formula. Then R[W] is that formula obtained from W
by replacing each atom F(i,do(a, o)) mentioned by W by ® (1, a, o) where
F’s successor state axiom is

(Ya, s).Poss(a,s) D (VZ).F(Z,do(a,s)) = Pr(Z, a, s).

All other atoms of W not of this form remain the same.

The use of the regression operator R is a classical plan synthesis technique
(Waldinger [25]). See also (Pednault [16, 17]). Regression corresponds to the
operation of unfolding in logic programming. For the class of databases of this
paper, Reiter [23, 19] provides a sound and complete query evaluator based
on regression. In this paper, we shall have a different use for regression, in
connection with defining database views (Section 4).

4This property of our axiomatization makes the resulting approach quite different than
Kowalski’s situation calculus formalization of updates [9], in which each database update is
accompanied by the addition of an atomic formula to the theory axiomatizing the database.



3 Updates in the Logic Programming Con-
text

It seems that our approach to database updates can be implemented in a
fairly straightforward way as a logic program, thereby directly complement-
ing the logic programming perspective on databases (Minker [15]). For ex-
ample, the axiomatization of the education example of Section 2.1 has the
following representation as clauses:

Successor State Axiom Translation:

enrolled(st, c,do(register(st,c),s))

— Poss(register(st,c), s).
enrolled(st,c,do(a,s))

— a # drop(st,c),enrolled(st, ¢, s), Poss(a, s).
grade(st, c,g,do(change(st,c,g),s))

+ Poss(change(st, ¢, g), s).
grade(st,c,g,do(a, s))

 a # change(st,c, g'), grade(st,c, g,s), Poss(a, s).’

Transaction Precondition Axiom Translation:

Poss(register(st,c),s) < not P(st,c,s).

Q(st, p,s) « grade(st, p,g,s),g > 50.°
Poss(change(st,c,g),s) < grade(st,c,¢',s),g # ¢
Poss(drop(st,c),s) « enrolled(st,c, s).

5This translation is problematic because it invokes negation-as-failure on a non-ground
atom. The intention is that whenever a is bound to a term whose function symbol is
change, the call should fail. This can be realized procedurally by retaining the clause
sequence as shown, and simply deleting the inequality a # change(st, ¢, g').

6We have here invoked some of the program transformation rules of (Lloyd [12], p.113)
to convert the non-clausal formula

{(Vp) .prerequ(p, €)D ‘ o
(39).grade(st, e, g,8) A g > 50} D Poss(register(st,c), s)

to a Prolog executable form. P and () are new predicate symbols.

10



With a suitable clausal form for Dg,, it would then be possible to evaluate
queries against updated databases, for example

+ enrolled(John, C200,
do(register(Mary, C100), do(drop(John,C100),Sp))).

Presumably, all of this can be made to work under suitable conditions.
The remaining problem is to characterize what these conditions are, and to
prove correctness of such an implementation with respect to the logical spec-
ification of this paper. In this connection, notice that the equivalences in
the successor state and transaction precondition axioms are reminiscent of
Clark’s [3] completion semantics for logic programs, and our unique names
axioms for states and transactions provide part of the equality theory re-
quired for Clark’s semantics (Lloyd [12], pp.79, 109).

4 Views

In our setting, a view is an updatable database relation V(Z,s) defined in
terms of so-called base predicates:

(VZ,5).V(Z,s) = B(Z, s), (4)

where B is a simple formula with free variables among # and s, and which
mentions only base predicates.” Unfortunately, sentences like (4) pose a
problem for us because they are precluded by their syntax from the databases
considered in this paper. However, we can accommodate nonrecursive views

by representing them as follows:

(Ya, s).Poss(a,s) D (6)
(VZ).V(Z,do(a, s)) = R[B(Z, do(a, 5))].®

Sentence (5) is a perfectly good candidate for inclusion in Dg,, while (6) has
the syntactic form of a successor state axiom and hence may be included in

Dss.

“We do not consider recursive views. Views may also be defined in terms of other,
already defined views, but everything eventually “bottoms out” in base predicates, so we
only consider this case.

8Notice that since we are not considering recursive views (i.e., B does not mention V),

the formula R[B(Z, do(a, s))] is well defined.

11



This representation of views requires some formal justification, which the
following theorem provides:

Theorem 1 Suppose V(Z,s) is an updatable database relation, and that
B(%,s) is a simple formula which does not mention V and whose free vari-
ables are among ¥,s. Suppose further that D, contains the successor state
aziom (6) for V, and that Ds, contains the initial state axiom (5). Then,

DU{3} = (¥5).5 < s O (V).V(Z,3) = B(, s).

Theorem 1 informs us that from the initial state and successor state
axioms (5) and (6) we can inductively derive the view definition

(Vs).So < s D (VZ).V(Z,s) = B(Z, s).

This is not quite the same as the view definition (4) with which we began this
discussion, but it is close enough. It guarantees that in any database state
reachable from the initial state Sg, the view definition (4) will be true. We
take this as sufficient justification for representing views within our frame-
work by the axioms (5) and (6).

5 State Constraints and the Ramification Prob-
lem

Recall that our definition of a database (Section 2.4) does not admit state-
dependent axioms, except those of Dg, referring only to the initial state Sp.
For example, we are prevented from including in a database a statement
requiring that any student enrolled in C'200 must also be enrolled in C'100.

(s, st).So < s A enrolled(st,C200,s) D (7)
enrolled(st,C100,s).

In a sense, such a state-dependent constraint should be redundant, since the
successor state axioms, because they are equivalences, uniquely determine
all future evolutions of the database given the initial database state So. The
information conveyed in axioms like (7) must already be embodied in Dg,
together with the successor state and transaction precondition axioms. We

12



have already seen hints of this observation. Reiter [20] proposes that dy-
namic integrity constraints should be viewed as inductive entailments of the
database, and gives several examples of such derivations. Moreover, Theorem
1 shows that the view definition

(Vs).So < s D (VZ).V(Z,s) = B(Z, s).

is an inductive entailment of the database containing the initial state axiom
(5) and the successor state axiom (6).

These considerations suggest that a state constraint can be broadly con-
ceived as any sentence of the form

(Vs1yenvy80).S0 <8 Asi <sj A DW(s1,...,8,),

and that a database is said to satisfy this constraint iff the database induc-
tively entails it.%

The fact that state constraints like (7) must be inductive entailments of
a database does not of itself dispense with the problem of how to deal with
such constraints in defining the database. For in order that a state constraint
be an inductive entailment, the successor state axioms must be so chosen as
to guarantee this entailment. For example, the original successor state axiom
for enroll (Section 2.1) was:

Poss(a,s) D {enrolled(st,c,do(a,s)) =
a = register(st,c)V (8)
enrolled(st,c,s) N a # drop(st,c)}.

As one would expect, this does not inductively entail (7). To accommodate
the state constraint (7), this successor state axiom must be changed to:

Poss(a,s) D {enrolled(st,c,do(a,s)) =
a = register(st,c) A [c = C200 D enrolled(st, C100, s)]
% (9)
enrolled(st,c,s) N a # drop(st,c)A
[c = C200 D a # drop(st,C'100)]}.

°See Section 2.3 for a brief discussion of inductively proving properties of states in the
situation calculus.

13



It is now simple to prove that, provided Dg, contains the unique names axiom

C'100 # C'200 and the initial instance of (7),
enrolled(st,C200,Sy) D enrolled(st,C'100, Sp),

then (7) is an inductive entailment of the database.

The example illustrates the subtleties involved in getting the successor
state axioms to reflect the intent of a state constraint. These difficulties are
a manifestation of the so-called ramification problem in artificial intelligence
planning domains (Finger [4]). Transactions might have ramifications, or
indirect effects. For the example at hand, the transaction of registering a
student in C'200 has the direct effect of causing the student to be enrolled in
(200, and the indirect effect of causing her to be enrolled in C'100 (if she is
not already enrolled in C'100). The modification (9) of (8) was designed to
capture this indirect effect. In our setting, the ramification problem is this:
Given a static state constraint like (7), how can the indirect effects implicit
in the state constraint be embodied in the successor state axioms so as to
guarantee that the constraint will be an inductive entailment of the database?
A variety of circumscriptive proposals for addressing the ramification problem
have been proposed in the artificial intelligence literature, notably by Baker
[1], Baker and Ginsberg [2], Ginsberg and Smith [5], Lifschitz [10] and Lin
and Shoham [11]. Our formulation of the problem in terms of inductive
entailments of the database seems to be new. For the databases of this
paper, Fanghzen Lin'® appears to have a solution to this problem.

6 Historical Queries

Using the relations < and < on states, as defined in Section 2.3, it is possible
to pose historical queries to a database. First, some notation.

Notation: do([ai,...,n],s)

Let ay,...,a, be transactions. Define
do([],s) = s,

and forn =1,2,...

do(lay,...,a,),s) = do(an, do([a1, ..., an-1,8)).

10Pergonal communication.

14



do(lay, ..., as],s)is a compact notation for the state term do(a,,, do(an—1,...do(ay,s)...

which denotes that state resulting from performing the transaction a;, fol-
lowed by as, ..., followed by a,, beginning in state s.

Now, suppose T is the transaction sequence leading to the current database
state (i.e., the current database state is do(T,Sp)). The following asks
whether the database was ever in a state in which John was simultaneously

enrolled in both C'100 and M 1007

(3s).50 < s A s < do(T, Sp)A (10)
enrolled(John,C100, s) A enrolled(John, M 100, s).

Has Sue always worked in department 137
(Vs).5 < sAs <do(T,Sy) D emp(Sue,13,s). (11)

The rest of this section sketches an approach to answering historical
queries of this kind. The approach is of interest because it reduces the eval-
uation of such queries to evaluations in the initial database state, together
with conventional list processing techniques on the list of those transactions
leading to the current database state.

Begin by considering two new predicates, last and mem-diff. The in-
tended interpretation of last(s, a) is that the transaction a is the last trans-
action of the sequence s. For example,

last(do([drop(Mary,C100), register(John,C100)], Sp),
register(John,C'100))

is true, while

last(do([drop(Mary,C100), drop(John,C100)], Sy),
register(John,C100))

is false, assuming unique names axioms for transactions. The following two
axioms are sufficient for our purposes:

=(last(Sy, a).

last(do(a,s),d') =a=d

15



The intended interpretation of mem-diff{a,s,s’) is that transaction a is a
member of the “list difference” of s and s’, where state s’ is a “sublist” of s.
For example,

mem-diff(drop(Mary, C'100),
do([register(John,C100), drop(Bill, C'100),
drop(Mary, C'100), drop(John, M100)], So),
do([register(John,C100)], Sp))

is true, whereas

mem-diff(register(Mary, C'100),
do([register(John,C'100), drop(Bill, C'100),
drop(Mary, C'100), drop(John, M100)], So),
do([register(John,C100)], Sp))

is false (assuming unique names axioms for transactions). The following
axioms will be sufficient for our needs:

—“mem-diff{a, s, s).

s < s’ D mem-diff{a,do(a, '), s).
mem-diff(a, s, s") D mem-diffla, do(d’, s), s").
mem-diff(a, do(a’, s),s') A a # a' O mem-diffia, s, s').

We begin by showing how to answer query (11). Suppose, for the sake of
the example, that the successor state axiom for emp is:

Poss(a,s) D emp(p,d,do(a,s)) = a = hire(p,d) V
emp(p,d,s) N a # fire(p) A a # quit(p).

Using this, and the sentences for last and mem-diff together with the induc-
tion axiom (3), it is possible to prove:

So < s D emp(p,d,s) =emp(p,d, So) A
—mem-diff{ fire(p), s, So) A ~mem-diff(quit(p), s, So) V
(3s").S0 < 8" < s Alast(s', hire(p,d)) A
—mem-diff{ fire(p), s, s’) A ~mem-diff{quit(p), s, s').

16



Using this and the (reasonable) assumption that the transaction sequence T
is legal,' it is simple to prove that the query (11) is equivalent to:

emp(Sue, 13, .50) A
—mem-diff{ fire(Sue), do(T

) 0) SO) N
—mem-diff{ quit(Sue), do(T, S

S0),
y0)7 SO)
(3s').S0 < 8" < do(T, Sp) A

last(s', hire(Sue, 13)) A

—mem-diff{ fire(Sue), do(T, Sp),s') A
—mem-diff{ quit(Sue), do(T, Sp), s').

This form of the original query is of interest because it reduces query eval-
uation to evaluation in the initial database state, together with simple list
processing on the list T of those transactions leading to the current database
state. We can verify that Sue has always been employed in department 13
in one of two ways:

1. Verify that she was initially employed in department 13, and that nei-
ther fire(Sue) nor quit(Sue) are members of list T.

2. Verify that T has a sublist ending with hire(Sue, 13), and that neither
fire(Sue) nor quit(Sue) are members of the list difference of T and
this sublist.!?

We now consider evaluating the first query (10) in the same list processing
spirit. We shall assume that (8) is the successor state axiom for enrolled.
Using the above sentences for last and mem-diff, together with (8) and the
induction axiom (3), it is possible to prove:

So < s D enrolled(st,c,s)) =
enrolled(st, c, So) N “mem-diff(drop(st,c), s, So) V
(3s").50 < 8" < s Alast(s',register(st,c)) A
—mem-diff(drop(st,c), s, s').

Untuitively, T is legal iff each transaction of T satisfies its preconditions (see Section
2.1) in that state resulting from performing all the transactions preceeding it in the se-
quence, beginning with state Sg. See (Reiter [19]) for details, and a procedure for verifying
the legality of a transaction sequence.

12The correctness of this simple-minded list processing procedure relies on some assump-
tions, notable suitable unique names axioms.

17



Then, on the assumption that the transaction sequence T is legal, it is simple
to prove that the query (10) is equivalent to:

(3s).50 < s < do(T, Sp) A

[

enrolled(John,C100, Sp) A )
enrolled(John, M100, S9) A
—mem-diff(drop(John,C100),s,Sy) A
—mem-diff(drop(John, M100),s,Ss)

enrolled(John,C100, Sp) A )
—mem-diff(drop(John,C100),s,Sy) A
(Fs).S0 <8 < s A
last(s',register(John, M100)) A
—mem-diff{drop(John, M100), s, s")

enrolled(John, M100, S¢) A
(3s").50 < 8" < s A

last(s", register(John,C100)) A
—mem-diff(drop(John,C100),s,s")

(Fs',8").50 < 8" <sANSp<s" < s A
last(s', register(John, M100)) A
last(s", register(John,C100)) A
—mem-diff(drop(John, M100),s,s") A
—mem-diff(drop(John,C100),s,s")

]

Despite its apparent complexity, this sentence also has a simple list processing
reading; we can verify that John is simultaneously enrolled in C'100 and
M100 in some previous database state as follows. Find a sublist (loosely
denoted by s) of T such that one of the following four conditions holds:

1. John was initially enrolled in both C'100 and M 100 and neither drop(John,C'100)
nor drop(John, M100) are members of list s.

2. John was initially enrolled in C'100, drop(John,C100) is not a mem-
ber of list s, s has a sublist s’ ending with register(John, M100) and
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drop(John, M100) is not a member of the list difference of s and s'.

3. John was initially enrolled in M100, drop(John, M100) is not
a member of list s, s has a sublist s’ ending with register(John, C'100)
and drop(John,C100) is not a member of the list difference of s and

s,

4. There are two sublists s" and s” of s, " ends with register(John, M100),
s" ends with register(John, C'100), drop(John, M100) is not a member
of the list difference of s and ', and drop(John,C100) is not a member
of the list difference of s and s”.

We can even pose queries about the future, for example, is it possible for
the database ever to be in a state in which John is enrolled in both C'100

and C'2007
(3s).S0 < s A enrolled(John,C100,s) A

enrolled(John,C200, s).

Answering queries of this form is precisely the problem of plan synthesis in
AT (Green [6]). For the class of databases of this paper, Reiter [22, 18] shows
how regression provides a sound and complete evaluator for such queries.

7 Indeterminate Transactions

A limitation of our formalism is that it requires all transactions to be determi-
nate, by which we mean that in the presence of complete information about
the initial database state a transaction completely determines the resulting
state.

One way to extend the theory to include indeterminate transactions is by
appealing to a simple idea due to Haas [7], as elaborated by Schubert [24].
As an example, consider the indeterminate transaction drop-a-student(c),
meaning that some student — we don’t know whom — is to be dropped from
course ¢. Notice that we cannot now have a successor state axiom of the
form

Poss(a,s) D {enrolled(st,c,do(a, s)) = ®(st,c,a,s)}.

19



To see why, consider the following instance of this axiom:

Poss(drop-a-student(C100), So) D
{enrolled(John,C100, do(drop-a-student(C100), So))
= ®(John,C100, drop-a-student(C100), So)}.

Suppose g is a complete description of the initial database state, and sup-
pose moreover, that

Yo | Poss(drop-a-student(C100), Sp) A
enrolled(John,C100, Sy).

By the completeness assumption,
Yo | £®(John, C100, drop-a-student(C'100), So),

in which case

Yo | tenrolled(John, C'100,
do(drop-a-student(C100), Sp)).

In other words, we would know whether John was the student dropped from
C'100, violating the intention of the drop-a-student transaction.

Despite the inadequacies of the axiomatization of Section 2.2 (specifically
the failure of successor state axioms for specifying indeterminate transac-
tions), we can represent this setting with something like the following axioms:

(Ist)enrolled(st, c,s) D Poss(drop-a-student(c), s).

enrolled(st,c,s) D Poss(drop(st,c),s).
Poss(a,s) D
{a = drop(st,c) D —enrolled(st,c,do(a,s))}.
Poss(a,s) D {a = drop-a-student(c) D
(F!st)enrolled(st, c,s) A —enrolled(st,c,do(a,s)}.*?

Poss(a,s) D
{—enrolled(st,c,s) A enrolled(st,c,do(a,s)) D
a = register(st,c)}.

13(3lst) denotes the existence of a unique st.
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Poss(a,s) D
{enrolled(st,c,s) A menrolled(st,c,do(a, s)) D
a = drop(st,c) V a = drop-a-student(c)}.

The last two formulas are examples of what Schubert [24] calls explana-
tion closure axioms. For the example at hand, the last axiom provides
an exhaustive enumeration of those transactions (namely drop(st,c) and
drop-a-student(c)) which could possibly explain how it came to be that st
is enrolled in ¢ in the current state s and is not enrolled in ¢ in the suc-
cessor state. Similarly, the second last axiom explains how a student could
come to be enrolled in a course in which she was not enrolled previous to the
transaction.' The feasibility of such an approach relies on a closure assump-
tion, namely that we, as database designers, can provide a finite exhaustive
enumeration of such explaining transactions.!'® In the “real” world, such a
closure assumption is problematic. The state of the world has changed so
that a student is no longer enrolled in a course. What can explain this? The
school burned down? The student was kidnapped? The teacher was beamed
to Andromeda by extraterrestrials? Fortunately, in the database setting,
such open-ended possible explaining events are precluded by the database
designer, by virtue of her initial choice of some closed set of transactions
with which to model the application at hand; no events outside this closed
set (school burned down, student kidnapped, etc.) can be considered in
defining the evolution of the database. This initial choice of a closed set of
transactions having been made, explanation closure axioms provide a natural
representation of this closure assumption.

By appealing to explanation closure axioms, we can now specify indeter-
minate transactions. The price we pay is the loss of the simple regression-
based query evaluator of (Reiter [23, 21]); we no longer have a simple sound
and complete query evaluator. Of course, conventional first order theorem-
proving does provide a query evaluator for such an axiomatization. For
example, the following are entailments of the above axioms, together with

14Tt is these explanation closure axioms which provide a succinct alternative to the
frame axioms (McCarthy and Hayes [14]) which would normally be required to represent
dynamically changing worlds like databases (Reiter [23]).

15This assumption is already implicit in our successor state axioms of Section 2.2
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unique names axioms for transactions and for John and Mary:

enrolled(John,(C100, Sy) A enrolled(Mary, C100, Sg)
D

enrolled(John,C100, do(drop(Mary, C'100), S¢)) A

—enrolled(Mary, C100, do(drop(Mary, C'100), Sy)).

{(Vst).enrolled(st,C100, Sg) = st = John} D
(Vst)—enrolled(st, C'100,
do(drop-a-student (C100), Sp)).

{(Vst).enrolled(st, C'100, 5) =
st =John V st = Mary}
D)
enrolled(John,C100, do( drop-a-student(C'100), So)) &
enrolled(Mary, C'100, do( drop-a-student(C'100), Sp)).

Notice that the induction axiom (3) of Section 2.3 does not depend on
any assumptions about the underlying database. In particular, it does not
depend on successor state axioms. It follows that we can continue to use
induction to prove properties of database states and integrity constraints in
the more generalized setting of indeterminate transactions. The fundamental
perspective on integrity constraints of (Reiter [20]) — namely that they are
inductive entailments of the database — remains the same.
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