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Abstract

We consider the problem of approximate belief-state
monitoring using particle filtering for the purposes
of implementing a policy for a partially observable
Markov decision process (POMDP). While particle fil-
tering has become a widely used tool in AI for monitor-
ing dynamical systems, rather scant attention has been
paid to their use in the context of decision making. As-
suming the existence of a value function, we derive er-
ror bounds on decision quality associated with filtering
using importance sampling. We also describe an adap-
tive procedure that can be used to dynamically deter-
mine the number of samples required to meet specific
error bounds. Empirical evidence is offered supporting
this technique as a profitable means of directing sam-
pling effort where it is needed to distinguish policies.

1 Introduction
Considerable attention has been devoted to partially observ-
able Markov decision processes (POMDPs) [19] as a model
for decision-theoreticplanning. Their generality allows one
to seamlessly model sensor and action uncertainty, uncer-
tainty in the state of knowledge, and multiple objectives
[1, 4]. Despite their attractiveness as a conceptual model,
POMDPs are intractable and have found practical applica-
bility in only limited special cases.
The predominant approach to the solution of POMDPs in-
volves generating an optimal or approximate value func-
tion via dynamic programming: this value function maps
belief states (or distributions over system states) into opti-
mal expected value, and implicitly into an optimal choice
of action. Constructing such value functions is computa-
tionally intractable and much effort has been devoted to de-
veloping approximation methods or algorithms that exploit
specific problem structure. Potentially more troublesome is
the problem of belief state monitoring—maintaining a be-
lief state over time as actions and observations occur so that
the optimal action choice can be made. This too is gen-
erally intractable, since a distribution must be maintained
over the set of system states, which has size exponential in
the number of system variables. While value function con-
struction is an offline problem, belief state monitoring must
be effected in real time, hence its computational demands

are considerably more pressing.1

One important family of approximate belief state monitor-
ing methods is the particle filtering or sequential Monte
Carlo approach [6, 13]. A belief state is represented by a
random sample of system states, drawn from the true state
distribution. This set of particles is propagated through the
system dynamics and observation models to reflect the sys-
tem evolution. Such methods have proven quite effective,
and have been applied in many areas of AI such as vision
[11] and robotics [21].
While playing a large role in AI, the application of particle
filters to decision processes has been limited. While Thrun
[20] and McAllester and Singh [14] have considered the use
of sampling methods to solve POMDPs, we are unaware
of studies using particle filters in the implementation of a
POMDP policy. In this paper we examine just this, focus-
ing on the use of fairly standard importance sampling tech-
niques. Assuming a POMDP has been solved (i.e., a value
function constructed), we derive bounds on the error in de-
cision quality associated with particle filtering with a given
number of samples. These bounds can be used a priori to
determine an appropriate sample size, as well as forming
the basis of a post hoc error analysis. We also devise an
adaptive scheme for dynamic determination of sample size
based on the probability of making an (approximately) op-
timal action choice given the current set of samples at any
stage of the process. We note that similar notions have been
applied to the problem of influence diagram evaluation by
Ortiz and Kaelbling [15] with good results—our approach
draws much from this work, though with an emphasis on
the sequential nature of the decision problem.
A key motivation for taking a value-directed approach to
sampling lies in the fact that monitoring is an online pro-
cess that must be effected quickly. One might argue that
if the state space of a POMDP is large enough to require
sampling for monitoring, then its state space is too large to
hope to solve the POMDP. To counter this claim, we note
first that recent algorithms [2, 9] based on factored repre-
sentations, such as dynamic Bayes nets (DBNs), can of-
ten solve POMDPs without explicit state space enumeration
and produce reasonably compact value function representa-
tions. Unfortunately, such representations do not generally

1While techniques exist for generating finite-state controllers
for POMDPs, there are still reasons for wanting to use value-
function-based approaches [17].



translate into effective (exact) belief monitoring schemes
[3]. Even in cases where a POMDP must be solved in a
traditional “flat” fashion, we typically have the luxury of
compiling a value function offline. Thus, even for large
POMDPs, we might reasonably expect to have value func-
tion information (either exact or approximate) available to
direct the monitoring process. The fact that one is able to
produce a value function offline does not imply the ability
to monitor the process exactly in a timely online fashion.
We overview POMDPs, structured solution techniques, and
monitoring in Section 2. Section 3 describes a basic par-
ticle filtering scheme for POMDPs and analyzes its error.
We also describe a dynamic sample generation scheme that
relies on ideas from group sequential sampling. We exam-
ine this model empirically in Section 4, and conclude with
a discussion of future directions.

2 POMDPs and Belief State Monitoring
2.1 Solving POMDPs

A partially observable Markov decision process (POMDP)
is a general model for decision making under uncertainty.
Formally, we require the following components: a finite
state space S; a finite action space A; a finite observation
space Z; a transition function T : S � A ! �(S);2 an
observation function O : S � A ! �(Z); and a reward
function R : S ! R. Intuitively, the transition functionT (s; a) determines a distribution over next states when an
agent takes action a in state s. This captures uncertainty in
action effects. The observation function reflects the fact that
an agent cannot generally determine the true system state
with certainty (e.g., due to sensor noise). Finally R(s) de-
notes the immediate reward associated with s.
The rewards obtained over time by an agent adopting a spe-
cific course of action can be viewed as random variablesR(t). Our aim is to construct a policy that maximizes the ex-
pected sum of discounted rewards E(P1t=0 �tR(t)) (where� is a discount factor less than one). It is well-known that
an optimal course of action can be determined by consid-
ering the fully observable belief state MDP, where belief
states (distributions over S) form states, and a policy � :�(S) ! A maps belief states into action choices. In prin-
ciple, dynamic programming algorithms for MDPs can be
used to solve this problem. A key result of Sondik [19]
showed that the value function V for a finite-horizon prob-
lem is piecewise-linear and convex and can be represented
as a finite collection of �-vectors.3 Specifically, one can
generate a collection@ of �-vectors, each of dimension jSj,
such that V (b) = max�2@ b�. Figure 1 illustrates a collec-
tion of�-vectors with the upper surface corresponding toV .
We define ma(b) = argmax�2@ b� to be the maximizing�-vector for belief state b.
Each � 2 @ corresponds to the expected value of
executing an implicit conditional plan at a given be-
lief state. This conditional plan, �(�), has the formha; o1; �1; o2; �2; � � �on; �ni, where a is an action, oi is an

2�(X) denotes the set of distributions over finite set X .
3For infinite-horizon problems, a finite collection may not al-

ways be sufficient, but will generally offer a good approximation.
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Figure 1: Geometric View of Value Function

observation, and �i is itself a conditional plan. Intuitively,
a plan of this form denotes the performance of action a fol-
lowed by execution of the remaining plan �i in response
to observation oi. We denote by A(�) the (first) actiona of �(�). Given belief state b, the agent should execute
the action with the maximizing �-vector: A(ma(b)). In-
deed, if one has access to the entire plan�(ma(b)), this plan
should be executed to termination. We note, however, that
the plans �(�) are rarely recorded explicitly.
One difficulty with these classical approaches is the fact
that the �-vectors may be difficult to manipulate. A sys-
tem characterized by n random variables has a state space
size that is exponential in n. Thus manipulating a single�-vector may be intractable for complex systems.4 Fortu-
nately, it is often the case that an MDP or POMDP can be
specified very compactly by exploiting structure (such as
conditional independence among variables) in the system
dynamics and reward function [1]. Representations such as
dynamic Bayes nets (DBNs) can be used, and schemes have
been proposed whereby the�-vectors are computed directly
in a factored form by exploiting this representation.
Boutilier and Poole [2], for example, represent �-vectors
as decision trees in implementing Monahan’s algorithm.
Hansen and Feng [9] use algebraic decision diagrams
(ADDs) as their representation in their version of incre-
mental pruning. The empirical results in [9] suggest that
such methods can make reasonably sized problems solv-
able. Furthermore, factored representations will likely fa-
cilitate good approximation schemes.

2.2 Belief State Monitoring
Given a value function represented using a collection @
of �-vectors, implementation of an optimal policy requires
that one maintain a belief state over time in order to ap-
ply it to @. Given belief state bt at time t, we determineat = A(ma(bt)), execute at, make a subsequent obser-
vation ot+1, then update our belief state to obtain bt+1.
The process is then repeated. Belief state monitoring is ef-
fected by computing bt+1 = Pr(Sjbt; at; ot+1), which in-
volves straightforward Bayesian updating. We denote byT (b; a; o) the update of any belief state b by action a and
observation o. We inductively defineT (b; a1; o1; � � � ; an; on) =T (T � � � (T (b; a1; o1); � � � ; an�1; on�1)an; on)

4The number of �-vectors can grow exponentially in the worst
case, but can often be approximated.



Even if the value function can be constructed in a com-
pact way, the monitoring problem itself is not generally
tractable, since each belief state is a vector of size jSj. Un-
fortunately, even using DBNs does not alleviate the diffi-
culty, since correlations tend to “bleed through” the DBN,
rendering most (if not all) variables dependent after a time
[3]. Thus compact representation of the exact belief state
is typically impossible. Belief state approximation is there-
fore often required. At any point in time we have an ap-
proximation ~bt of the true belief state bt, and must make our
decisions based on this approximate belief state. While sev-
eral methods for belief state approximation can be used (in-
cluding projection, aggregation, and variational methods),
and important class of techniques for dynamic problems is
sampling or simulation methods.

3 Particle Filtering for POMDPs
In this section we examine the impact of particle filtering
on decision quality in POMDPs. We first describe a typical
sequential importance sampling algorithm, and discuss the
use of partial evidence integration (EI) in the DBN to help
keep samples on track. We then analyze the error induced
by one stage of belief state approximation and show how
partial EI allows this analysis to be carried through multiple
stages (in a way that is not possible otherwise).

3.1 A Basic Filtering Method for POMDPs
Assume we have been provided with the value function for
a specific POMDP M . This value function is represented
by a finite collection@ of �-vectors. We assume an infinite-
horizon model so that we have a single set @. We also
assume that @ is of a manageable size, and that the vec-
tors themselves are represented compactly (using ADDs,
decision trees, linear combinations of basis functions, or
some other representation). We emphasize, however, that
even if the value function is represented in standard state
form, approximate monitoring is often needed. We note that
our methods can be applied to approximate value functions,
though our analysis assumes an exact set @.
Implementation of the policy induced by this value function
requires that a belief state bt be maintained over all timest. At any point in time we assume an approximation ~bt of
the true belief state bt, and make our decisions based on this
approximate belief state.
The basic procedure we consider is the use of a particle filter
for monitoring, with the approximate belief states so gener-
ated used for action selection in the POMDP. At any time t,
we have a collection ~bt of nt weighted particles, or system
states, approximating the true distribution bt. Each particle
is a pair hst(i); wt(i)i. We often simply write st(i) to refer to

the ith particle (i � nt). The total weight of the particle
set ~bt is wt = Pwt(i). The particle set ~bt represents the

following distribution (which we also refer to as ~bt):~bt(s) = Pfwt(i) : st(i) = sgwt
Given this approximation~bt of bt, action selection will take
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Figure 2: Partial Evidence Integration

place in the POMDP as if ~bt were the true distribution.
Thus, we let at = A(ma(~bt)), execute action at, and make
observation ot+1. Our new approximate belief state ~bt+1
is generated by repeating the following steps until nt+1 is
greater than some desired threshold:

1. Draw a state st from the distribution~bt.
2. Draw a state st+1 from the distributionPr(St+1jst; at).
3. Compute w = Pr(ot+1jst; at; st+1)
4. Add sample hst+1(i) ; wt+1(i) i = hst+1; wi to ~bt+1 and addw to total weight wt.

This sequential importance sampling procedure induces a
consistent, though biased, estimate ~bt+1 of bt+1, and will
converge to the true distributionaccording to the usual con-
vergence results. The significance of this method lies in the
fact that, for a great many systems, it is easy to sample suc-
cessor states according to the system dynamics (i.e., sample
from the conditional distribution in Step 2), and to evaluate
the observation probabilities for given states (i.e., compute
the weights in Step 3). In contrast, direct computation ofPr(St+1jbt; at; ot+1) is generally intractable.

3.2 Evidence Integration
One difficulty with the filtering algorithm above is that the
samples generated at time t + 1 are not influenced by ob-
servation ot+1, which often allows particles to drift from
the true belief state. Since we assume a DBN representa-
tion of dynamics, partial evidence integration (EI) or arc
reversal [8] can be used to partially alleviate this problem
[13]. The generic structure of a DBN (assuming a fixed ac-
tion) is shown in Figure 2(a); reversing the arc fromSt+1 toOt+1 results in a network shown in Figure 2(b). With this
structure, given a particle st(i) and observation ot+1, a par-

ticle st+1(i) can be drawn directly. Of course, the reweighting

given ot+1 must now be applied to the particles in ~bt. This
gives rise to the following particle filtering procedure used
throughout the remainder of the paper:

(a) Given particle set ~bt, select action at =A(ma(~bt)), and observe ot+1;

(b) Reweight samples st(i) according toPr(ot+1jst; at) and normalize to produce~bt0 ;
(c) Draw some number of particles st(i) according to~bt0 ;



(d) Sample particles st+1(i) given drawn prior particlesst(i) and ot+1 to produce ~bt+1.

Note that the reweighted distribution ~bt0 is an approxi-
mation of Pr(Stja0; � � �at; o1; � � � ; ot+1) in contrast to ~bt,
which represents Pr(Stja0; � � �at�1; o1; � � � ; ot).
When the DBN is factored, the arc reversal process can of-
ten be fairly expensive, since it increases the connectivityof
the network. However, the reversal process can take advan-
tage of the structure in CPTs represented as, say, decision
trees or ADD. In this way, the usual exponential increase in
table size with the number of added parents is often circum-
vented [5]. We use structured arc reversal techniques in our
experiments.

3.3 One-Stage Analysis
As a precursor to bounding the error in decision quality
associated with particle filtering, we consider the error in-
duced by one stage of approximation only (and acting using
exact inference at all other stages). We first note the follow-
ing important fact regarding POMDPs:
Fact 1 Let bt, ~bt be two belief states s.t. ma(bt) = ma(~bt).
For any sequence of k observations and actions,
let bt+k = T (bt; at; ot+1; � � �at+k�1; ot+k) and~bt+k = T (~bt; at; ot+1; � � �at+k�1; ot+k). Then
ma(bt+k) = ma(~bt+k).
This implies that, if we approximate bt at time t in such a
way that ~bt has the same maximizing�-vector as bt, then we
will: (a) choose the correct action at state t; and (b) choose
the optimal action at all subsequent stages if we monitor the
process exactly (w.r.t. ~bt) at all subsequent stages.
Now, assume we have been able to exactly compute bt�1,
have selected and executed action at�1 and made ob-
servation ot. Furthermore, assume that we can com-
pute Pr(St�1jat�1; ot) exactly. With these assumptions,
we can sample directly from the distribution bt =T (bt�1; at�1; ot) using the (arc-reversed) DBN to obtain
an unbiased estimate ~bt of bt. We analyze the error associ-
ated with selecting an �-vector that has maximum expected
value w.r.t. ~bt and executing its conditional plan to comple-
tion (or equivalently, acting using exact monitoring from
that point on).
Let fst(i)g be a collection ofnt state samples drawn from bt.
The value of any � 2 @ applied to true belief state bt is:�(bt) = � � bt = Ebt[�(s)] = V t�
where �(s) denotes the value of � at state s (i.e., the sth
component of �) and Ebt denotes expectation with respect
to distribution bt. Thus the value of � can be viewed as
a random variable whose expectation (w.r.t. bt) is V t�. As
such, each term �(st(i)) is a sample of this random variable

and the average of these is an unbiased estimate ~V t� of V t�.
We can apply (one-sided) Hoeffding bounds to determine
the accuracy of this estimate. Specifically:Pr( ~V t� � V t� + ") � 1� e�2nt"2=R2�Pr( ~V t� � V t� � ") � 1� e�2nt"2=R2�

whereR� is the range of values that can be taken by � (i.e.,R� = maxSf�(s)g �minSf�(s)g).
Given a particular confidence threshold � and a sample set
of size nt we can produce a (one-sided) error bound "� on
the accuracy of our estimate ~V t�:"� =sR2� ln(1� )2nt (1)

The required sample size given error tolerance " and confi-
dence threshold � for the estimation of V t� is:N t�("; �) = R2� ln(1� )2"2 (2)

We can also bound the simultaneousconfidence that each of
our estimates of each �(bt) has (one-sided) precision "with
probability1��. Decreasing � to �j@j in Eq. 2 and maximiz-

ing over all �, we obtain the sample size N t("; �):N t("; �) = max�2@ N t�("; �j@j) (3)

Choosing the maximizing�-vector using an approximate~bt
with sample size N t("; �) ensures that a 2"-optimal choice
is made with probabilityat least 1��; if the error associated
with (arbitrary) nonoptimal behavior is bounded by h, then
the one-step approximation error is given by the following:

Theorem 2 If belief state ~bt is approximated withN t("; �)
particles, with exact monitoring used at all other stages of
the process, then the error E (i.e., difference in expected
value of the policy implemented and the optimal policy) is
bounded by E � �t+1(2"(1 � �) + �h)
Here the error incurred is discounted by �t+1 to reflect the
fact that the approximation error occurs at stage t of the pro-
cess. Note that the error h on nonoptimal behavior can be
easily bounded (rather loosely) usingh � max� maxs �s � �minsfR(s)g1� �
though simple domain analysis will generally yield much
tighter bounds on h.
One can also perform a post hoc analysis on the choice of�-vector to determine if an optimal choice has been made
with high probability. Assumingnt samples have been gen-
erated, let "t� be the error level determined by Eq. 1 usingnt
(this is generally tighter than the " used to determine sample
size in Eq. 3 since we are looking at a specific vector).

Corollary 3 Let �t = ma(~bt) and suppose that~bt�t � "t�t + � � ~bt�+ "t�; 8� 2 @ n f�tg
Then with probability at least 1� � a � -optimal policy will
be executed, and our error is bounded by:E � �t+1(� (1� �) + �h)



The parameter � represents the degree to which the value of
the second-best �-vector may exceed the value of the best
at ~bt in the worst-case. Note that this relationship must hold
for some � � 2". If the relationship holds for � = 0 (i.e.,
there is 2"-separation between the maximizing vector and
all other vectors at belief state ~bt) then we are executing the
optimal policy with probability at least 1� � and our error
is bounded by �t+1�h.

3.4 Multi-stage Analysis
The analysis above assumes that once an �-vector is cho-
sen, the plan corresponding to that vector will be imple-
mented over the problem’s horizon. In fact, once the first
action A(�) is taken, the next action will be dictated by re-
peating the procedure on the subsequent approximate belief
state. Due to further sampling error, the next action cho-
sen may not be the “correct” continuation of the plan �(�).
Thus we have no assurances that the 2"-optimal policy will
be implemented with high probability. In what follows, we
assume that our sample size and approximate belief state ~bt
are such that � = 0 at every point in time (i.e., our approx-
imate beliefs always give at least 2"-separation for the op-
timal vector). We discuss this assumption further below.
We make some preliminary observations and definitions be-
fore analyzing the accumulated error.� We first note that ~bt+1 is an unbiased estimate of the

distribution T (~bt; at; ot+1). Though particle filtering
does not ensure that ~bt+1 is unbiased with respect to
the true belief state bt+1, our evidence integration pro-
cedure and reweighting scheme produce “locally” un-
biased estimates. To see this, notice that the distribu-
tion ~bt0 obtained by reweighting ~bt w.r.t. ot+1 corre-
sponds to exact inference assuming the distribution~bt
is correct for St. (This exact computation is tractable
precisely because of the sparse nature of this approxi-
mate “prior” on St.) Thus, the procedure for generat-
ing samples of St+1 using~bt is a simple forward prop-
agation without reweighting, and thus provides an un-
biased sample of T (~bt; at; ot+1).� Let us say that a mistake is made at stage t if ma(~bt+1)
is not optimal w.r.t. T (~bt; at; ot+1). In other words,
due to sampling error, the approximate belief state~bt+1 differed from the “true” belief state one would
have generated using exact inference w.r.t. ~bt in such
a way as to preclude an optimal policy choice.

We can now analyze the error in decision quality associated
with acting under the assumption that � = 0. Let stage t
be the first stage at which a mistake is made. If this is the
case, we have that ma(~bk+1) = ma(T (~bk; ak; ok+1)) for
all k < t. By Fact 1, this means that ma(bk) = ma(~bk)
for all k < t (where bk is the true stage k belief state one
would obtain by exact monitoring). Thus, if stage t is the
first stage at which a mistake is made, we have acted ex-
actly as we would have using exact monitoring for the first t
stages of the process. Since our sampling process produces
an unbiased estimate ~bk+1 of T (~bk; ak; ok+1) at each stage,

the probability with which no mistake is made before staget is at least (1 � �)t�1. Assuming a worst-case bound ofh on the performance of an incorrect choice (w.r.t. the opti-
mal policy) at any stage (which is thus independent of any
further mistakes being made), we have expected errorE on
the sampling strategy where N (�; ") samples are generated
at each stage; E is bounded as follows:
Theorem 4E � 1Xt=1 �(1� �)t�1�th = h��1� � + ��
The above reasoning assumes that � reaches zero at each
stage of the process, a fact which cannot be assumed a pri-
ori, since it depends crucially on the particular (approxi-
mate) belief states that emerge during the monitoring of the
process. Unfortunately, strong a priori bounds, as a simple
function of " and �, are not possible if � > 0 at more than
one stage. The main reason for this is that the conditional
plans that one executes generally do not correspond to �-
vectors that make up the optimal value function. Specifi-
cally, when one chooses a � -optimal vector (for some 0 <� � 2") at a specific stage, a (worst-case) error of � is intro-
duced should this be the only stage at which a suboptimal
vector is chosen. If a � -optimal vector is chosen at some
later stage (� > 0), the corresponding policy is � -optimal
with respect to a vector that is itself only approximately op-
timal. Unfortunately, after this second “switch” to a subop-
timal vector, the error with respect to the original optimal
vector cannot be (usefully) bounded using the information
at hand.5

However, even without these a priori guarantees on deci-
sion quality, we expect that in practice, the following ap-
proximate error bound will work quite well, specifically as
a guide to determining appropriate sample complexity, as
discussed below:E � 2"�1� � + 2"h��1� � + �� (4)

Intuitively, at each stage of the process a 2"-optimal vec-
tor will be chosen with high probability. Though we cannot
ensure this, in practice we expect that the cumulative error
over those stages where mistakes are not made can be use-
fully estimated by the first term. The second term accounts
for the possibilityof mistakes, as in Theorem 4. Here a mis-
take refers to the probability1�� event of choosing a vector
at a specific stage that is not 2"-optimal.
We also note that a post hoc analysis like that described for
one-stage analysis can be used to bound error:
Proposition 5 Let t be the first stage of the process at
which � > 0, and t+ k be the second such stage. ThenE � h��1� � + �� + �t+12"+ �t+k+1h
The first term in this bound denotes the error associated
with mistakes. The second term reflects the 2" bound on er-

5In particular, it is not the case that the error is bounded by 2�
[17].



ror associated with the first switch to an approximately op-
timal vector at stage t, while the third reflects the second
switch. The main weakness in the bound again lies in this
last term and its reliance on h to bound error after a second
switch. One way in which these bounds can be strengthened
is through the use of switch set analysis, a technique de-
scribed in [17]. The set of constraints imposed by the sam-
pling scheme on the true belief state are linear and a priori
error bounds can be computed by dynamic programming.
Details are beyond the scope of this paper.

3.5 Dynamic Sample Generation
The analysis above allows us to determine a priori the sam-
ple complexity required to achieve a certain error with a
specified probability. Our objective is ultimately to be rea-
sonably sure we choose the correct (maximizing) �-vector
at each stage of the process. The method above ensures this
by requiring that V t� is estimated reasonably precisely for
each �. The post hoc analysis of value separation suggests
that great precision is not needed if the vectors are widely
separated at the true belief state, specifically, if the best vec-
tor has value much greater than the second best. Draw-
ing on ideas from the literature on group sequential meth-
ods [12] and multiple-comparisons with the best (MCB)
[10] that analyze decision making from this perspective,
we describe a method that at each stage generates samples
dynamically, using a sampling plan whose termination de-
pends on results at earlier stages of the plan. The method is
inherently simple: we will take samples in batches until we
can select an �-vector satisfying certain requirements. Our
method recalls the application of MCB results and group se-
quential methods by Ortiz and Kaelbling to influence dia-
grams (see [15] for details and further references).
Suppose we are trying to select the maximizing �-vector
at stage t, using belief state ~bt. The basic structure of our
dynamic approach requires that we generate samples fromT (~bt; at; ot+1) in batches, each of some predetermined size.
To generate the jth batch:

(a) we determine a suitable confidence parameter �j
(b) we generate the jth batch of mj samples fromT (~bt; at; ot+1)
(c) we compute estimates ~V t�[j] for all vectors �

based on the samples in all j batches, correspond-
ing precisions "�[j], and let ��j be the vector with

greatest value ~V t�[j]
(d) we compute threshold ��j = ~V t��j [j]� "��j [j] �max�6=��j ( ~V t�[j] + "�[j]) and terminate if �j

reaches a certain stopping criterion

We now elaborate on this procedure.
We use MCB results to obtain confidence lower bounds
(or one-sided confidence intervals) on the difference in true
value between that of the vector with largest value estimate
with respect to all the samples in the batches so far and the
best of the other vectors. Suppose m1 samples are gener-
ated in the first batch. Given simultaneous confidence pa-
rameter �1, we obtain the one-sided bounds "�[j] according

to Eq. 1 using � = �1=j@j as the individual confidence pa-
rameter and nt = m1 as the number of samples. Defining�1 as above, and combining a lower bound for ��1 with an
upper bound for all the others, we havePr(V t��1 � max�6=��1 V t� � ��1) � 1� �1 (5)

If � = �1 is nonpositive,��1 is the optimal vector with prob-
ability at least 1 � �1. In general, if we stop immediately
after processing the first batch and select ��1, the error in-
curred will be at most max(0; � ) � 2"1 = 2max� "�[1].
If we are unsatisfied with the precision � achieved, we gen-
erate a second batch of m2 samples, and propose thatPr(V t��2 � max�6=��2 V t� � ��2) � 1� �2
This bound holds if we insist beforehand that we will gen-
erate the second batch; but it ignores that fact that we gen-
erate this batch only after realizing our stopping condition
was not satisfied using the first batch. This dependence on
the bound resulting from the first batch—since these bounds
are random variables, this means we do not know a priori
whether we will generate a second batch—requires that we
correct for multiple looks at the data. We do this by insist-
ing that both bounds hold jointly, conjoining the bounds ob-
tained after two batches using the Bonferroni inequality and
letting � = minfjjj�2;��j=��2g �j :Pr(V t��2 � max�6=��2 V t� � �� ) � 1� (�1 + �2)
Hence, if we stop after processing at most 2 batches, then
our error in selecting ��2 will be at most max(0; � ) with
probability at least 1 � (�1 + �2). Applying this argument
up to k batches, we obtainPr(V t��k � max�6=��k V t� � �� ) � 1� kXj=1 �j
where � = minfjjj�k;��j=��kg �j .

The method as described above will stop at the first batchl such that �j � 0: at this point we are assured of select-
ing the optimal vector with high probability. If we insist
that we force � to zero, the number of batches k cannot be
bounded; thus, we must set the sequence of confidence pa-
rameters �j such that

P1j=1 �j � �. For example, we might
set �j = �=(j(j + 1)) and the individual confidence pa-
rameters as �j=j@j. If there is separation between the value
of the optimal vector and the second best, the process will
stop after a finite number of batches. Hence, we can con-
tinue the process until � = 0. However, since the error
in the individual estimates decreases only proportionally topln j=j, termination might take longer than we wish, de-
pending on the amount of separation and the vector-value
variance. This problem is exacerbated by our use of loose
ranges in the computation of the precisions "�[j].
If we impose a limit B on the number of batches, and want
to make sure that our assessment of � holds with proba-
bility at least 1 � �, we need to set the sequence of con-
fidence parameters �j such that

PBj=1 �j � �. The easi-
est way to accomplish our global confidence requirements



is to set �j = �=B. Furthermore, if we want to be sure
that the method selects a vector with true value that is no
less than 2� from the optimal with the same confidence,
then one alternative is to set the number of samples mj in
each batch j to the

�(max�R2�=(2B"2)) ln (Bj@j=�)�. If
we do not impose specific requirements then the setting ofmj is arbitrary, but needs to be fixed in advance. This is
because for our analysis to hold, mj cannot depend on the
outcomes from the samples themselves. Althougharbitrary,
in general, the setting of mj should take into consideration
a trade-off between reducing the expected total number of
samples before the method stop versus reducing the varia-
tion on the total number of samples.
In general, we expect this method to be effective when there
is sufficiently large gap between the best vector and the rest,
and/or the ranges in vector values are sufficiently small rel-
ative to the value separation and the error tolerance. By us-
ing loose upper bounds on the variances and accuracy pa-
rameters, the theoretical bounds can become very loose, and
hence do not reflect the potential gains we expect. The ver-
sion presented in this paper is very simple. Many variations
on the same idea are possible to try to bring the theoret-
ical bounds more in accordance with our belief about the
expected behavior of the method (for instance, using infor-
mation about range of differences in value between vector
pairs, allocating some samples to estimate variance, etc.),
but this is beyond the scope of this paper.
As before, unless we push the error tolerance � to zero at
each stage of the monitoringprocess, we cannot obtain tight
bounds on error after that point. However, we can assert:
Theorem 6 Suppose beliefs are monitored according to
the dynamic procedure described above using global con-
fidence parameter �. Furthermore, suppose that � = 0 at
each stage. Then error E satisfiesE � h��1� � + ��
However, as noted above, the computational demands of
insisting that � = 0 can be severe if the belief state at
some time t is such that little separation exists between the
best vector and the second-best (that is, if ~bt lies close to a
“edge” of the value function, where two optimal �-vectors
intersect). If � � 0 at all stages up to time t, then the bound
described in Proposition 5 holds for this dynamic scheme.

4 Empirical Evaluation
Three test problems were used to carry out experiments test-
ing the efficacy of our sampling procedures (we refer to [16]
for the full specification of those problems; see also [18] for
a summary). Each of the three problems was solved using
Hansen and Feng’s [9] ADD implementation of incremental
pruning (IP) to produce a set @ of�-vectors using a compact
ADD representation.
In the following experiments, we report on the use of sam-
pling for approximate belief state monitoring on three test
problems. The goal of the experiments are twofold: to
evaluate (i) the impact on decision quality induced by sam-
pling techniques and (ii) the sample complexity necessary

Problem State Space Size Size of @
maximum average

Coffee 32 102 56
Widget 32 205 121
Pavement 128 39 16

Table 1: Statistics for the three test problems. The maxi-
mum and average size of @ are taken over a 15-stage pro-
cess.

to guarantee some level of decision quality. Note that the
experiments do not evaluate the running time of sampling
methods since that is not the focus of this paper and the ef-
ficiency gains of such methods have already been clearly
demonstrated [11, 21]. In theory, exact monitoring has time
complexity on the order ofO(jSj2) whereas sampling has a
time complexity in the order ofO(m log jSj) (m is the num-
ber of samples). Thus, a sampling strategy provides time
savings when m < jSj2= log jSj. The reader should also
be warned that the scope of the empirical evaluation was
limited to test problems for which a set of �-vectors cor-
responding to an optimal value function can be computed.
Hence, as shown in Table 1, jSj and j@j are fairly small, and
consequently the following experiments should be consid-
ered preliminary.
The first experiment compares the expected loss incurred
by sampling methods to that of a random monitoring ap-
proach. More precisely, 5000 initial belief states are picked
uniformly at random and for each initial belief state, the op-
timal expected total reward is compared to the cumulative
rewards earned by an agent that approximately monitors its
belief state over 15 stages. The difference between the opti-
mal expected total return and the actual return is the loss due
to approximate monitoring. Table 2 shows the average loss
due to a single approximation at the first stage (assuming
exact monitoring for the remaining 14 stages), whereas Ta-
ble 3 shows the average cumulative loss due to approximate
monitoring at each of the 15 stages. When doing random
monitoring, the agent picks a belief state at random (uni-
formly) and executes the optimal action for this random be-
lief state. This random method can be viewed as a naive
strategy that any other approximation method should be
able to beat. The sampling methods implemented are basic
particle filtering (with partial evidence integration) where a
fixed number of particles (20, 40, 80 or 160) are sampled
for each approximate belief state. The column “worst” re-
ports the worst possible expected loss that can be achieved
by consistently choosing the worst actions.6 The worst ex-
pected loss is included to give some idea of the scale of po-
tential losses due to approximate monitoring.
As expected, the experiments show a gradual decrease in
average expected loss as the number of samples increases.
When compared to the random strategy (and considering
the range of values obtainable across the set of possible be-
haviors), sampling methods perform quite well. In Table 2,

6This worst strategy can be computed by minimizing (in-
stead of maximizing) the expected total reward while solving the
POMDP.



Prob Average Single Error
Rand Sampling Worst20 40 80 160

Coff 0:261 0:008 0:005 0:003 0:002 1:2632� 1:796 1:270 0:898 0:635
Widg 0:101 0:034 0:021 0:012 0:007 1:0992� 0:315 0:223 0:158 0:111
Pav 0:201 0:030 0:020 0:013 0:009 1:9682� 1:266 0:895 0:633 0:448

Table 2: Comparison of the average error due to a single
approximation at the first stage of a 15-stage process (exact
monitoring being performed for the remaining 14 stages).

Prob Average Cumulative Error
Rand Sampling Worst20 40 80 160

Coff 1:653 0:100 0:043 0:018 0:017 8:014
Widg 0:109 0:098 0:069 0:045 0:022 5:778
Pav 2:319 0:124 0:072 0:045 0:024 34:24

Table 3: Comparison of the average cumulative error due to
approximate monitoring at each stage of a 15-stage process.

the first row of each problem indicates the actual error in-
curred and the second row indicates the upper bound 2� pre-
dicted by the theory (for � = 0:1). This bound is loose when
compared to the actual error due to the worst-case nature of
the analysis. The bounds may still provide some guidance
regarding the amount of sampling desired to reduce the av-
erage expected loss to some suitable level (assuming a more
or less constant ratio between the bounds and the actual er-
ror).
In a second experiment, we evaluate the benefits of dynam-
ically determining the amount of sampling. For given �
and �, we evaluate the total number of samples necessary to
guarantee that the one-stage sampling error is bounded by2�with confidence 1��. Table 4 shows how this total num-
ber of samples varies as we increase the maximum number
of batches. Once again, 5000 random initial belief states
are chosen and the average number of samples required to
decrease � below 2� is reported. The column for 1 batch
corresponds to the standard non-dynamic sampling proce-
dure. Table 4 reveals that for the widget and pavement prob-
lems, a dynamic sampling procedure can reduce the sam-
pling complexity quite dramatically for a well-chosen max-
imum number of batches. Unfortunately, the dynamic ap-
proach does not appear to have offered any savings in the
coffee problem. Further investigation is necessary to assess
the optimal (maximum) number of batches in general.
In a related paper [18], Poupart and Boutilier also tackle the
belief state monitoring problem, but using a vector space
method that exploits conditional independence. The idea
is to repeatedly approximate belief states using projections
as initially proposed by Boyen and Koller [3]. Projec-
tion schemes and sampling approaches differ in many as-
pects including the properties of POMDPs for which they

Prob Maximum number of batches1 2 3 4 5 6 7 8 9 10
Coff 258 266 278 277 250 256 267 248 254 265
Widg 139 107 93 84 82 86 80 78 78 80
Pav 106 64 62 52 66 62 60 55 58 59

Table 4: Comparison of the average number of samples re-
quired for adaptive sampling at the first stage of a 15-stage
process (� = 0:1 and � = 2 for coffee and pavement,� = 0:1 and � = 0:5 for widget).

are most suitable. Sampling methods exploit the sparsity
of belief distribution whereas projection schemes exploit
conditional independence. Given that the coffee, widget
and pavement problems are factored POMDPs, the vector
space methods tend to perform better than sampling with
respect to decision quality. For instance, average losses
due to single-stage approximation using the max VS-search
method are respectively 0.0013, 0.0082, 0.0014 for the cof-
fee, widget and pavement problems; similarly, the average
cumulative losses over 15 stages are respectively 0.0154,
0.0519 and 0.0071. However, the computational overhead
associated with sampling is minimal while the overhead as-
sociated with choosing good projection schemes is nontriv-
ial. We expect the two approaches can be combined in fruit-
ful ways (as we discuss below).

5 Concluding Remarks
Our value-directed sampling technique can be seen as ap-
plying methods from the MCB and group sequential sam-
pling fields to the problem of particle filtering for POMDPs.
We are able to derive (worst-case) error bounds on such an
approach, and use these bounds to suggest methods to direct
sampling in such a way as to choose optimal actions rather
than (necessarily) accurately estimate their values. Our ini-
tial empirical results are encouraging, though clearly much
more substantial testing is needed, a task in which we are
currently engaged.
This research can be extended in a number of ways in a
number of very interesting ways. One important challenge
is to provide a stronger analysis of error when the precision
parameter � > 0. One strategy to circumvent this diffi-
culty builds on the idea of constructing the set of alternative
conditional plans that may be executed when � > 0 [17].
Another challenge is to provide an analysis in the absence
of partial EI (which locally removes bias): one idea is to
use information from the DBN parameters to compute a pri-
ori error bounds; another is to use absolute approximation
bounds similar to those used in this paper or optimal rela-
tive approximation methods to obtain a posteriori bounds
on the error tolerance � .
We are very interested in adapting these techniques to other
value function representations (e.g., grid-based value func-
tions) and providing an error analysis of this method when
the value function is itself an approximation of the true
value function. Finally, previous work using value-directed
projection schemes [3, 17] has been used successfully to ex-



ploit the conditional independence present in certain fac-
tored POMDPs to speed up belief monitoring. The sam-
pling approach described in this work does not exploit this
type of structure; however, one could sample the variables
defining the factored state space in a “stratified” fashion, or
apply Rao-Blackwellisation methods [6, 7].
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