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Abstract

Making Them Behave
Cognitive Models for Computer Animation

John David Funge
Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

1998

For applications in computer game development and character animation, recent work in behavioral animation
has taken impressive steps toward autonomous, self-animating characters. It remains difficult, however, todirect au-
tonomous characters to perform specific tasks. We propose a new approach to high-level control in which the user gives
the character a behavior outline, or “sketch plan”. The behavior outline specification language has syntax deliberately
chosen to resemble that of a conventional imperative programming language. In terms of functionality, however, it is
a strictsuperset. In particular, a behavior outline need not be deterministic. This added freedom allows many behav-
iors to be specified more naturally, more simply, more succinctly and at a much higher-level than would otherwise be
possible. The character has complete autonomy to decide on how to fill in the necessary missing details.

The success of our approach rests heavily on our use of a rigorous logical language, known as thesituation calculus.
The situation calculus is well-known, simple and intuitive to understand. The basic idea is that a character views its
world as a sequence of “snapshots” known as situations. An understanding of how the world can change from one
situation to another can then be given to the character by describing what the effect of performing each given action
would be. The character can use this knowledge to keep track of its world and to work out which actions to do next
in order to attain its goals. The version of the situation calculus we use incorporates a new approach to representing
epistemic fluents. The approach is based on interval arithmetic and addresses a number of difficulties in implementing
previous approaches.
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Chapter 1

Introduction

Computer animation is concerned with producing sequences of images (or frames) that when displayed in order, at
sufficiently high speed, give the illusion of recognizable components of the image moving in recognizable ways. It is
possible to place requirements on computer animations such as “objects should look realistic”, or “objects should move
realistically”. The traditional approach to meeting these requirements was to employ skilled artists and animators. The
talents of the most highly skilled human animators may still equal or surpass what might be attainable by computers.
However, not everyone who wants to, or needs to, produce good quality animations has the time, patience, ability or
money to do so. Moreover, for certain types of applications, such as computer games, human involvement in run-time
satisfaction of requirements may not be possible. Therefore, in computer animation we try to come up with techniques
whereby we can automate parts of the process of creating animations that meet the given requirements.

Generating images that are required to look realistic is normally considered the precept of computer graphics, so
computer animation has focused on thelow-levelrealistic locomotion problem. For example, “determine the internal
torques that expend the least energy necessary to move a limb from one configuration to another” is an example of a
low-level control problem. While there are still many open problems in low-level control, researchers are increasingly
starting to focus on other requirements such as “characters should behave realistically”. By this we mean that we want
the character to perform certain recognizable sequences of gross movement. This is commonly referred to as thehigh-
level control problem. With new applications, such as video games and virtual reality, it seems that this trend will
continue.

In character animation and in computer game development, exerting high-level control over a character’s behavior
is difficult. A key reason for this is that it can be hard to communicate our instructions. This is especially so if the
character does not maintain an explicit model of its view of the world. Maintaining a suitable representation allows
high-level intuitive commands and queries to be formulated. As we shall show, this can result in a superior method of
control.

The simplest solution to the high-level control problem is to ignore it and rely, entirely, on the hard work and inge-
nuity of the animator to coax the computer into creating the correct behavior. This is the approach most widely used in
commercial animation production. In contrast, the underlying theme of this thesis is to continue the trend in computer
animation of buildingcomputational models. The idea is that the model will make the animator’s life easier by pro-
viding the right level of abstraction for interacting with the computer characters. The computational aspect stems from
the fact that, in general, using such models will involve shifting more of the burden of the work from the animator to
the computer. Figure 1.1 gives a graphical depiction of this process.

1.1 Previous Models

In the past there has been much research in computer graphics toward building computational models to assist an anima-
tor. The first models used by animators weregeometric models. Forward and inverse kinematics are now widely used
tools in animation packages. The computer maintains a representation of how parts of the model are linked together
and these constraints are enforced as the animator pulls the object around. This frees the animator from, necessarily,
having to move every part of an articulated figure individually.
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Figure 1.1: Shifting the burden of the work.

Similarly, using the laws of physics can free the animator from implicitly trying to emulate them when they generate
motion.Physical modelsare now being incorporated into animation packages. One reasonable way to do this is to build
a computer model that explicitly represents intuitive physical concepts, such as mass, gravity, moments of inertia etc.

Physical models have allowed the automation of animating passive objects, such as falling chains, and colliding
objects. For animate objects an active area of research is how to buildbiomechanicalmodels. So far, it has been possible
to use simplified biomechanical models to automate the process of locomotion learning in a variety of virtual creatures,
such as fish, snakes, and some articulated figures.

Our work comes out of the attempt to further automate the process of generating animations by buildingbehavior
models. Within computer animation, the seminal work in this area was that of Reynolds [96]. His “boids” have found
extensive application throughout the games and animation industry. Recently the work of Tu and Terzopoulos [114],
and Blumberg and Galyean [23], has extended this approach to dealing with some complex behaviors for more sophis-
ticated creatures. The idea is that the animator’s role may become more akin to that of a wildlife photographer. This
works well for background animations. For animations of specific high-level behaviors, things are more complicated.

We refer to behaviors that are common in many creatures and situations aslow-levelbehaviors. Examples of low-
level behaviors include obstacle avoidance and flocking behavior. Behaviors that are specific to a particular animal
or situation we refer to ashigh-levelbehaviors. Examples include creature-specific mating behaviors and “intelligent”
behavior such as planning. Many of thehigh-level behaviorsexhibited by the creatures in previous systems suffer from
the problem of being hard-wired into the code. This makes it difficult to reconfigure or extend behaviors.

Some of the work done by the logical programming community has some overlap with our work. In section 2.6,
we shall discuss some of the achievements and limitations of that field. The main problem, however, is the lack of any
satisfactory model of a character’s cognitive process. Consequently it might be hard for them to extend their work to
deal with important issues such as sensing, and multiple agents.

1.2 Cognitive models

Cognitive modelsare the next logical step in the hierarchy of models that have been used for computer animation. By
introducing such models we make it easier to produce animations by raising the level of abstraction at which the user
can direct animated characters. This level of functionality is obtained by enabling the characters themselves to do more
of the work.

It is important to point out that we do not doubt the ability of skillful programmers to put together a program that
will generate specific high-level behavior. Our aim is to build models so that skillful programmers may work faster,
and, less skilled programmers might be afforded success incommensurate with their ability. Thus, cognitive models
should play an analogous role as might physics or geometric models. That is, they are meant to provide a more suitable
level of abstraction for the task in hand – they are not,per se, designed to replace the animator.
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Building cognitive models is very much a research area at the forefront of artificial intelligence research. It was
thus to cognitive robotics that we turned for inspiration [68]. The original application area was robotics but we have
adapted their theory of action to related cognitive modeling problems in computer animation.

One of the key ideas we have adopted is that knowledge representation can play a fundamental role in attempting
to build computational models of cognition. We believe that the way a character represents its knowledge is important
precisely because cognitive modeling is (currently) such a poorly defined task. If a grand unifying theory of cognition
is one day invented then the solution can be hard-coded into some computer chips and our work will no longer be
necessary. Until that day, general purpose cognitive models will be contentious or non-existent. It would therefore
seem wise to be able to represent knowledge simply, explicitly and clearly. If this is not the case then it may be hard to
understand, explain or modify the character’s behavior. We therefore choose to use regular mathematical logic to state
behaviors. Of course, in future it may turn out that it is useful, or even necessary, to resort to moreavant-gardelogics.
We believe, however, that it makes sense to push the simplest approach as far as it can go.

Admittedly, real animals do not appear to use logical reasoning for many of their decision making processes. How-
ever, we are only interested in whether the resulting behavior appears realistic at some level of abstraction. For ani-
mation at least, faithfulness to the underlying representations and mechanisms we believe to exist in the real-world are
not what is important. By way of analogy, physics-based animation is a good example of how the real-world need not
impinge on our research too heavily. To the best of our current knowledge the universe consists of sub-atomic particles
affected by four fundamental forces. For physics-based animation, however, it is often far more convenient to pretend
that the world is made of solid objects with a variety of forces acting on them. For the most part this results in motion
that appears highly realistic. There are numerous other examples (the interested reader is referred to [35]) but we do
not wish to wallow any further in esoteric points of philosophy. We merely wish to quell, at an early stage, lines of
inquiry that are fruitless to the better understanding of this thesis.

1.3 Aims

By choosing a representation with clear semantics we can clearly convey our ideas to machines, and people. Equally
important, however, is the ease with which we are able to express our ideas. Unfortunately,convenienceandclarity are
often conflicting concerns. For example, a computer will have no problem understanding us if we write in its machine
code, but this is hardly convenient. At the other extreme, natural language is obviously convenient, but it is full of
ambiguities. The aim of our research is to explore how we can express ourselves as conveniently as possible, without
introducing any unresolvable ambiguity in how the computer should interpret what we have written.

1.4 Challenges

The major challenge that faced us in achieving our aims was that we wanted our characters to display elaborate behavior
whilst, possibly, situated in unpredictable and complex environments. This can make the problem of reasoning about
the effect of actions much harder. This is a possible stumbling block in the understanding of our work, so we want to
make our point as clear as possible.

A computer simulated world is driven by a mathematical model consisting of rules and equations. A forward simu-
lation consists of applying these rules and equations to the current state to obtain the new state. If we re-run a simulation
with exactly the same starting conditions we expect to obtain exactly the same sequence of events as the last time we
ran it. Therefore, it might not be clear to the reader in what sense the character’s world is “unpredictable”. To explain,
let us imagine a falling stack of bricks, the top one of which is desired by some character. In the real world, it is almost
impossible to predict, with any accuracy, where the bricks will come to rest. It makes more sense to have the character
wait (preferably at a safe distance) and see where the desired brick ends up. In a simulated world, we can, in principle,
run the forward simulation once to see where the bricks end up. Then we can re-run the simulation and tell the character
where the brick will end up. We can even give the character’s themselves the ability to run forward simulations. Such
a character would essentially be clairvoyant, it could pre-compute the final brick positions and go and quietly wait for
its desired brick. The point we wish to make is that this approach is complicated, inefficient and (for non-clairvoyant
characters) will result in unnatural behavior. Thus, the representation used for simulating the falling bricks is not nec-
essarily the appropriate one for our character to have. Indeed, it is highly unlikely that the representation we use for
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simulating the character’s world will be appropriate for the character’s internal representation of that world used for
deciding how to behave. A key consequence of this approach, however, is that events the character did not expect will
occur in the characters’ world. Hence, when we refer to the character’s world as complex and unpredictable, we mean
that it is so from the character’s point of view.

It is worth pointing out that there should be nothing shocking in having more than one representation for the same
thing. The practice is commonplace, and is central to computer graphics. For example, consider the process of render-
ing a geometric model. For building the model we may choose to represent the model as a parametric surface. To take
advantage of commonly available graphics hardware accelerators we may then move to a representation in terms of
strips of triangles in three dimensions. At the final stage of rendering the objects will be represented as rows of pixels
of differing intensities. The point is that at each stage a different representation of the same thing is appropriate.

Having multiple characters in a scene opens up possibilities for cooperative and competitive behaviors. However,
even in purely kinematic worlds, this greatly increases the difficulty of predicting future events. That is, if one character
is going to know what all the other characters are going to do in advance then it needs to have a complete and accurate
representation of all the other characters’ internal decision making processes. Even worse, it must be able to predict
how they all react with each other, with the environment, and to itself. If the reader remains unconvinced then we
need only consider the addition of user interaction to completely dispel all hopes of a character being able to predict
all elements of its environment with complete accuracy. Perhaps even more damning is the observation that super-
intelligent characters that can peer into each other’s minds and predict every event that occurs in their world are not
desirable. That is, we suppose that the majority of animations will want to reflect the fact that real world creatures are
not able to exactly predict the future.

To summarize, the key point is that in one animation the representation of the world used by each of the animated
characters may vary, and it will not necessarily coincide with the representation for other purposes. Thus, when we say
the world is “unpredictable”, we mean that it is hard to predict using the representation the character has of that world.
It had, of course, better be entirely predictable from the simulation viewpoint!

Moreover, even if all characters represent the same type of things, what each of them actually “knows” about the
world may be quite different. That is to say each character will beautonomous. By making them independent, self-
contained entities, we replicate the situation in the real-world and thus ensure the level of realism normally required
in animations. We also simplify the task of instructing them since we need only concern ourselves with them one at a
time. As we pointed out above the correlation between the character’s representation of its world and the representation
for simulation should not solely be maintained by reasoning. The solution is thatsensingmust play a crucial role.

Figure 1.2: Many possible worlds.

Figure 1.2 depicts a scene in which a character is facing away from a light bulb. The character does not know if
the light bulb is on or not. It imagines many possible worlds, in some of which the light is on, in some of which it is
off. Of course, the worlds are also distinguished by the other things the character believes about its world. Perhaps, in
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some of the worlds, the character imagines it has selected a winning lottery number, in some of them not. Regardless,
from the point of graphical rendering the light bulb is indeed switched on. The correspondence between the character’s
view of the world and what is actually the case (which is presumably what we want to render) can be established by
the character turning around and looking. The act of sensing forces the character to discard, as impossible, the worlds
in which it imagined the light was on. We shall return to this topic in more detail in section 3.8.

1.5 Methodology

We have achieved our aims for high-level control of animated characters by adopting an unambiguous semantics for
a character’s representation of its dynamic world. In particular, we propose an approach in which the user gives the
character a behavior outline, or “sketch plan”. The behavior outline specification language has syntax deliberately
chosen to resemble that of a conventional imperative programming language. In terms of functionality, however, it is a
strict superset. In particular, a behavior outline need not be deterministic. This added freedom allows many behaviors to
be specified more naturally, more simply, more succinctly and at a much higher-level than would otherwise be possible.
The character has complete autonomy to decide on how to fill in the necessary missing details. For example, with some
basic background information we can ask a character to search for any path through a maze. That is, we do not initially
have to give an explicit algorithm for how to find a particular path. Later we may want to speed up the character’s
decision making process by giving more detailed advice.

Although the underlying theory is completely hidden from the user, the success of our approach rests heavily on
our use of a rigorous logical language, known as thesituation calculus. Aside from being powerful and expressive,
the situation calculus is well-known, simple and intuitive to understand. The basic idea is that a character views its
world as a sequence of “snapshots” known assituations. An understanding of how the world can change from one
situation to another can then be given to the character by describing what the effect of performing each given action
would be. The character can use this knowledge to keep track of its world and to work out which actions to do next
in order to attain its goals. The version of the situation calculus we use is inspired by new work in cognitive robotics
[68]. By solving the well-known “frame problem”, it allows us to avoid any combinatorial explosion in the number
of action-effect rules. In addition, this new work incorporates knowledge-producing actions (like sensing), and allows
regular programming constructs to be used to specify sketch plans. All this has enabled us to propel our creatures out
of the realm of background animation and into the world of character animation. Finally, there is active research into
extending the expressiveness of the situation calculus, and this makes it an exciting choice for the future.

We have developed a character design workbench (CDW) that is both convenient to use, and results in executable
behavioral specifications with clear semantics. We can use the system to control multiple characters in realistic, hard
to predict, physics-based, dynamic worlds. Interaction takes place at a level that has many of the advantages of natural
language but avoids the associated ambiguities. Meanwhile, the ability to omit details from our specifications makes
it straightforward to build, reconfigure or extend the behavior control system of the characters. The use of logical rea-
soning to shift more of the burden for generating behavior from the animator, to the animated characters themselves,
our system is ideal for rapid prototyping and producing one-off animations. Naturally, our system allows for fast replay
of previously generated control decisions. However, when the speed of the initial decision making process is crucial,
the user can easily assume more responsibility for efficiency. In particular, the behavioral controller can be gradually
fine-tuned to remove the non-determinism by adding in more and more algorithmic details.

The potential of our approach is demonstrated by some intriguing animations of physics-based “merpeople” char-
acters engaged in pursuit and evasion behaviors. Using our system meant that without having to state exactly which
one, the merpeople were able to pick any goal position that met some given specification. The animations were the
result of elegantly incorporating the existing lower-level reactive behavior system, described in [114], into CDW.

1.6 Contributions and Results

The main embodiments of our work are:

• A character design workbench to assist in the production of complex behavioral animations.
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Figure 1.3: Interaction between CDW, the animator and the low-level reactive behavior system.

• Various animations that demonstrate some important features of our approach. In particular, chapter 4 discusses
some of the potential uses of nondeterminism. Chapter 5, describes some compelling animations of physics-
based characters engaged in pursuit and evasion behaviors. These animations demonstrate the ability of our sys-
tem to use sensing to extend our logical approach to controlling characters in unpredictable environments.

• A tool that could, in the same vein as computer graphics is already used in scientific visualization, also be used
for investigative cognitive robotics.

In obtaining these results we have made a number of contributions, that we summarize below.

Knowledge RepresentationOur work stands as an exposition of the fact that a character’s representation of its world
can be distinct from other world representations used in producing an animation. Moreover, choosing a char-
acter’s representation of its world is an important and non-trivial task. That is, we establish the central position
that knowledge representation issues should have in trying to produce general and useful tools for synthesizing
high-level behavior in computer animation and computer games.

Clarity We demonstrate that a character’s representation of its world can be given a formal semantics. Our high-level
specifications of behavior can be communicated to human and machine with complete clarity. That is, our defi-
nitions are clear and consequences are explicitly statable and provable. This is important because unlike physical
or geometric models, there are no widely accepted cognitive theories of behavior and so any definitions we come
up with are liable to be controversial. We can thus aim to prove the presence or absence of (un)desirable proper-
ties from our character’s behavior early in the software life-cycle. This may help reduce the high costs associated
with testing production code [31]. Even when we do resort to testing, the clear nature of our specifications makes
identifying the cause of the problem potentially much easier. It is easier to spot an error in a few lines of an in-
tuitive high-level specification than it is to sift through hundreds of lines of C code. In addition, we can use
logical reasoning to automate part of the process of generating a character’s behavior. This is done by allowing
a character to fill in some of the details itself. The animator is thus relieved of some of the burden of the work.

Convenience In addition to being precise, the character’s representation of its world is intuitive. It understands world
dynamics in terms of actions and their effects. This makesdirectinga character simpler because we can interact
with it at a convenient level of abstraction. Our assumptions will be more explicit and we can ask it about what it
thinks about the state of its world, what it thinks the effects of actions would be, and, through logical reasoning,
the implications of what it thinks about these matters.

Maintainability One of the widely recognized advantages to using logic to express ourselves is that it is elaboration
tolerant. That is, we can add more information to our system without having to reprogram the underlying reason-
ing mechanism. In addition we identify the usefulness of separating a character’s backgrounddomain knowledge
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from its control information. The control information can be high-level which makes it quick and easy to recon-
figure or extend the behaviors. However, the use of nondeterminism can result in specifications for which no
(known) tractable algorithm exists. In some cases, however, more detailed control information, or new domain
knowledge, can be added to extend the controllers usefulness by improving efficiency.

Simplicity We show how interval-valued fluents can be used within the situation calculus to represent possible worlds
for the purposes of sensing. This makes implementation simpler than previous approaches based on modal logic.

Visualization It is often clear and intuitive to observe when an animated character is performing “intelligently”. This
makes our tool attractive for “debugging” theories of agent action, especially when compared to alternatives such
as Internet infobots or cumbersome and unreliable real-world robots. Even if the final application area is the real
world, a given control technique should be able to first prove itself in some simplified virtual world. Therefore,
it is hoped, we have also demonstrated a way of testing high-level robot control techniques in general.

Autonomy Finally, we will have reaffirmed the usefulness of autonomous agents to computer animation. At the same
time we have addressed some of the criticisms about directability that are sometimes leveled at them. We shall
have demonstrated that techniques from cognitive robotics can be successfully employed to produce convincing
animations of user specified high-level behavior.

1.7 Overview

In chapter 2 we will provide a categorization of some previous work that is mainly concerned with modeling the virtual
world for simulation purposes. This will be important for readers unfamiliar with computer animation. It will provide
the necessary background information to understand the ideas that follow. We will also show how behavior animation
came out as a natural consequence of continuing animation research. We will talk about some previous work and show
how it fits into computer animation research as a whole.

Chapter 3 will discuss the theoretical foundations of our work. We shall discuss previous work from which we
obtain the basic concepts. These concepts will be defined and explained with examples. Particular attention will be
paid to our approach to sensing to deal with the correspondence between the agent’s representation of its world and the
representation the computer maintains for simulation purposes.

The predictability of kinematic worlds means that our character-oriented view of the world, and our simulation-
oriented view of the world may coincide. In chapter 4 we will show how the situation calculus can be used to control
a character’s behavior in a very direct way. That is, it can be conveniently used right down to the locomotion level.
We shall demonstrate how the nondeterminism in our specification language can be used to succinctly specify behav-
iors. An interpreter for our language can then automatically search for behaviors that conform to the specification. We
conclude the chapter with a discussion of an exciting application of our work to cinematography.

Naively applying the situation calculus to physics-based applications leads to problems. In particular it is unlikely
that we would want to produce a complete axiomatization of the virtual worlds’ complicated causal laws as embodied
in the state equations. Therefore we use the situation calculus to model the agent’s high-level knowledge of some of the
relevant casual relationships in its domain. For the sake of realism, efficiency, or both, we may choose to leave some
of those relationships unspecified. For example, we probably don’t want to axiomatize the laws of physics by which
a ball in our domain moves. It thus becomes imperative that we incorporate sensing to obtain information about those
aspects we choose to omit. Chapter 5 therefore seeks to exemplify the use of sensing to allow reasoning in unpredictable
worlds. We give an example application of a physics-based underwater simulated world that is populated by, among
other things, merpeople. The underlying physical model is that of [113]. The underlying model gives us the required
level of unpredictability and allows us to produce visually appealing animations. Currently the merpeople can hide
from predators (e.g. a large shark) behind obstacles that they “reasons” will obscure it from the predator’s view.

Chapter 6 concludes the thesis, with a reverberant look at what has been accomplished and points out some promis-
ing directions for future work.
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Chapter 2

Background

In this chapter we shall give a brief overview of computer animation. This will enable us to carefully position our work
and give the necessary background information to understand the terminology we will be using. We shall embark on
our explanation by discussing geometric models, then we shall move on to physical models, biomechanical models
and, finally, behavioral models. The remainder of the thesis can then be seen as proceeding from this discussion by
describing our contribution to enforcing high-level behavior constraints through the use of cognitive models.

2.1 Kinematics

In the most general case the location and the shape of an object can change with time. A general scheme for describing
the shape and location of an object was given in [111]. In particular, let each point in some objectΩ (without loss of
generalityΩ = [0, 1]n) be named by itsmaterial (or intrinsic) coordinatesu. Then for some givenu ∈ Ω and time
t ∈ T the corresponding position inR3 can be given by specifying the functionq : Ω × T → R3.

Intuitively, q(u, t) describes the position of each point in the object as a function of time. Thus the object is free
to change position and shape without constraint.

2.1.1 Geometric Constraints

A geometric constraint is a method of stating that there are forces present that cannot be specified directly but are known
solely in terms of their effect on the motion of the system. Such constraints pose two problems:

1. The coordinates are no longer independent;

2. The forces required to realize a constraint are not furnisheda priori; they are among the unknowns that must be
calculated or eliminated.

If a (possibly time-dependent) constraint can be written in the form:f(q1,q2, . . . ) = 0, whereqi = qi(ui, t), then
the constraint is said to beholonomic, otherwise it is said to benonholonomic. Other constraints will be considered as
they arise but first consider one of the most common examples of a (holonomic) constraint, that of rigid body motion.
It can be expressed by equations that state that the distance between any two points in the body remains constant over
time: ∀t0, t1 ∈ T;a,b ∈ Ω (|q(a, t0) − q(b, t0)| − |q(a, t1) − q(b, t1)| = 0).

2.1.2 Rigid Body Motion

The problem of working out the effects of the rigid body constraints on the allowable motion is resolved (it turns out
that the internal forces of constraint cancel each other out) by Chasles’ theorem which states that the most general
displacement of a body satisfying the rigid body constraints is a translation plus a rotation1. This produces a simple

1It is possible to pick the body-set of coordinates to give a rotation about the direction of translation. Thisscrewmotion is much used in robotics.
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and convenient way of representing rigid body motion in terms of homogeneous transformations (see appendix B for
a definition of homogeneous coordinates and transformations).

A rigid body can be located in space (see [47] for a detailed discussion) by fixing, relative to the coordinate axes of
some external coordinate systemC0, a local coordinate systemC1 inside the rigid body. LetS1

0(t) be the homogeneous
transformation matrix that mapsC0 at time 0 intoC1 at timet, so thatS1

0(0) = I, whereI is the identity matrix. A
user can now specify the amount the object should be rotated or translated within some time∆t and the rigid body
can be moved by automatically forming the corresponding homogeneous transformationC and premultiplying it by
S1

0(t) to give the new homogeneous transformationS1
0(t + ∆t) = C S1

0(t). So, assumingq(u, 0) is given,q(u, t) =
S1

0(t)q(u, 0).

2.1.3 Separating Out Rigid Body Motion

In [110] the above ideas on rigid body location were incorporated into the more general formulation that allows for
deformation of shape. The basic idea was to produce a hybrid model with explicit deformable and rigid components.
Thus the body has its own coordinate frameC1 whose origin coincides with the body’s center of massc(t). The move-
ment ofC1 (represented by the transformation matrixS1

0) accounts for the rigid body motion, while the component due
to shape deformation is represented with respect toC1 by a reference componentr and a displacement componente:
q(u, t) = S1

0(r(u, t) + e(u, t)) (see Figure 2.1). Note that many instances ofS1
0 ande exist that account for the same

shape.
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Body Frame

Inertial Frame

Reference Component

Y

Z

X

c

e

Z

Y

X

r

q

Figure 2.1: Kinematics

2.1.4 Articulated Figures

By generalizing the ideas in section 2.1.2 it is possible to describearticulated figures. Many things, such as the human
skeleton, can be modeled as an articulated figure. An articulated figure consists of a number of objects, known aslinks,
connected by constraints, known asjoints. In general it is possible to have nonholonomic joint constraints but here
it will be sufficient to consider holonomic joint constraints. A holonomic joint corresponds to the removal of one or
more “degrees of freedom” from the object’s allowable range of motion. Such a joint can be decomposed, without loss
of generality, into a set of prismatic joints and a disjoint set of revolute joints. As the name suggests, prismatic joints
move by translating in a plane, while revolute joints move by rotating about an axis.

Consider the case of an articulated figure that consists of a chain of links each connected by a joint. For ann-axis
articulated figure there aren + 1 links (link 0 is thebaseand linkn is theend-effector) connected byn joints. Each
joint has a set ofjoint parametersassociated with it and each link has a corresponding set oflink parameters(see figure
2.2).

Let joint k connect linkk − 1 to link k, and define thekth joint variableas a function of timet: lk(t) = ξkθk(t) +
(1 − ξk)dk(t), whereθk(t) is the angle of jointk at timet, dk(t) is the linear displacement of jointk at timet, andξk

-  -



Kinematics 2§1

θ

Joint k

dk

X k

Z
k - 1

Y k - 1

k

X
k - 1

X
k

Y
k

Z
k

Joint k + 1

Joint k

a k

Z
k - 1

kα

Link k

Figure 2.2: Joint and Link Parameters

is a function such that:

ξk =
{

1 if joint k revolute,
0 if joint k prismatic.

Using the Denavit-Hartenberg notation [34], say, assign, for0 6 k 6 n, a link coordinate frameLk to the distal
end of each link (Ln ends up at the tip).

LetTk
k−1 be a function oflk(t); that is, if the user specifies the amount a link should be rotated or translated within

some time∆t thenTk
k−1(lk(t+∆t)) represents the corresponding homogeneous transformation that gives the position

of points in thekth link in terms ofLk−1.

Apropos section 2.1.2, letL0 = C1 and letS1
0(t) represent the rigid body motion of the whole articulated figure.

Then given a complete vector of joint variablesl(t) = (l0(t), . . . , ln(t)) it is possible to calculate the position of
the end-effector, at timet in terms ofC0: Sn

0 (l) = S1
0 T1

0(l1) · · ·Tn
n−1(ln). Problems arise with articulated figures

containing closed loops (see [39]), but with suitable relabeling all of the above extends to articulated figures with more
general topologies.

Thus, since linkk’s coordinate frame is defined in terms of linkk−1’s coordinate frame, rotating or translating link
k − 1, causes all thej > k links to move by the same amount. This makes direct manipulation of articulated figures
easier.

Forward Kinematics

Let the joint spaceL ⊂ Rn of an articulated figure be the set of all possible joint vectors, and let theconfiguration
spaceZ ⊂ R6 be the set of all possible configurations (position plus orientation) of the end-effector. Then theforward
kinematicsproblem is to determine the functionw : L → Z that maps joint vectors to configuration vectors.

The means to calculate a solution to the forward kinematics problem have already been outlined in section 2.1.4.
Such a solution can be conveniently expressed in the form:

Sn
0 (l) =

(
R p
0 1

)

whereR andp represent, respectively, the orientation and position ofln in C0 at timet.

Inverse Kinematics

Many problems in animation (and robotics) are naturally phrased as constraining the end-effector to be in some con-
figuration. Theinverse kinematicsproblem is to determine the functionw−1 : Z → L that maps configuration vectors
to joint vectors.
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It is possible to cast this problem as an optimization problem and, in the graphics literature [7, 8], describe a nu-
merical technique in which the user is given interactive control over how much time the algorithm spends on trying to
compute a solution. For a specific geometric model it may also be possible to obtain a closed-form solution. Unfor-
tunately no general technique exists for doing this and, even when such a solution does exist, it is usually difficult to
derive.

An alternative approach is to examine the differential relationship (with respect to time) betweenl(t) ∈ L and
z(t) ∈ Z: ż = J(l)l̇, whereJ (l) is known as theJacobian matrixof the end-effector:

Jkj =
∂wk(l)

∂lj
1 6 k 6 6, 1 6 j 6 n.

This matrix effects a linear transformation that maps instantaneous joint space velocities into instantaneous configura-
tion space velocities. This differential relationship can be used as the basis for numerical methods that can solve for a
joint spacetrajectoryin terms of a given configuration space trajectory. These techniques can also be extended to han-
dle over-constrained and under-constrained problems (see [99]). How a trajectory, in any space, might be computed to
start with is discussed in section 2.2 onwards.

2.2 Kinematic Control

2.2.1 Key-framing

Suppose an animation consists ofk frames, each of which depicts the position and shape of some object at timesti ∈
{t0, . . . , tk−1} ⊂ T. Letq : Ω×T → R3 be a user defined partial function that specifies the position of any point on
the object at the given times. Then for eachti the set of values{q(u, ti)|u ∈ Ω} is known as akey-frame.

The functionq need not be specified directly but can be calculated (using the techniques outlined previously) from,
say, a trajectory through joint space. At the practical level users usually define key-frames using interactive shape ma-
nipulation (assuming there is no rigid body motion constraint), forward and, if available, inverse kinematics procedures.
Once the scene is in the desired configuration it is recorded and the process repeated until as many scenes as required
are defined.

A widely used interactive direct manipulation technique is to have an actor kitted out with some motion detectors
and have the movements of the actor mapped, in some useful way, to a corresponding object in the scene. While this
ensures very realistic looking motion, it says nothing about the underlying mechanisms, it is hard to apply to figures
with a different topology to the one used for the motion detection, and is hard to modify in a realistic way. There
has even been some work [27] on trying to adapt dance notations (for example Labanotation) to develop a language
for describing these motions. Unfortunately while these “languages of movement” may have some merit as regards
description they have little use as an animation synthesis tool. It is simply too complicated and counterintuitive for a
non-expert to script or alter animations using the low-level constructs available in these languages.

The transition from a discrete set of samples through the space in question to a smooth path is achieved by inter-
polation. In the above example, for some givenu, q is made a total function by using the set of values{q(u, t)|t ∈
t0, . . . , tk−1} as control points for a space-time spline [106] (most modern day animation systems use interpolating
Catmull-Rom splines). In conventional animation this process of interpolation is commonly known asin-betweening
and was quickly adopted by computer animation systems by making the computer responsible for producing the in-
between frames [28]. Naively applying the same strategy to object orientations can lead to non-smooth rotations and
so [101, 17] gave methods for using interpolation of quaternions that produces the desired smooth rotations.

Key-framing is a very flexible approach but a major drawback is that the length and realism of an animation is
usually proportional to the amount of effort expended by the animator. However it remains the most commonly used
approach in commercial animation design today ([62] gives some helpful guidelines to would-be computer animators)
and can easily be used to produce popular effects such as shape “morphing.”
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2.2.2 Procedural Control

There are many other ways to non-interactively define a trajectory through some space using principally kinematic
methods. In particular [21, 95] showed how a general purpose programming language (with some extensions for ani-
mation purposes) could be used to define arbitrarily complicated trajectories. Indeed the literature abounds with such
definitions, usually they have been hand-crafted to solve some particular problem and sometimes they contain elements
that are useful in a wider context. To name but a few: [7] used a network of special purpose processors to produce ani-
mations of a human-like figure; [127] created a hierarchical animation system that used finite state machines to generate
walking and jumping motions; [45] used a mixture of inverse kinematics, simple rules and some simple dynamics to
create some very realistic animation of human walking; [65] gave an account of the robot motion planning problem
and expounded a solution using commonly available graphics techniques; [97] used a combination of rules and inverse
kinematics to calculate realistic grasps (this has also been the subject of much research in robotics); [90] described how
multiple kinematic constraints can be applied to a three-dimensional human body model, so that it can be interactively
manipulated with much more ease than would otherwise be possible; [61] described a manipulation motion planning
system inspired by robotics research; and [8] discussed human modeling using mainly kinematic methods.

2.3 Noninterpenetration

A noninterpenetration constraint states that the intersection of two bodies can never include more than their boundaries.
That is, for some objectA defineFA such that at any timet ∈ T and for any given pointq ∈ R3:

FA(q, t)




> 0 if q is outsideA,
= 0 if q is on the boundary ofA,
< 0 if q is insideA.

For any two bodiesA andB whose positions are, respectively, specified by functionsqA andqB a noninterpene-
tration is maintained by satisfying the nonholonomic constraint:

∀t ∈ T;uA ∈ ΩA;uB ∈ ΩB (FA(qB(uB, t), t) > 0 ∧ FB(qA(uA, t), t) > 0)).

The first part of the problem, known as thecollision detection problem, is to determine the time at which any two
bodies first collide. That is, we seek at for which equality in the above expression is reached. The problem of deter-
mining the subsequent motion is known as thecollision resolutionandresting contactproblem.

2.3.1 Collision Detection

Collision detection is a geometry problem and has been extensively studied in robotics and computer-aided design as
part of thecollision avoidanceproblem. The different demands of a collision detection algorithm for computer anima-
tion led [81] to study the problem in the context of computer animation. In particular an algorithm is given that uses
point sampling at a given time to find a set of interpenetrating points for time dependent parametric surfaces and con-
vex polyhedra2. A similar approach is used in [54] but the algorithm also searches for the time that the first collision
occurred. In [11, 12], for bodies composed of both polyhedra and convex closed curved surfaces, temporal coherence
is exploited to achieve faster average running times.

With the above approaches, if an object goes right through another object, between the times for which collisions
are checked, then the algorithm will fail. As argued in [81], this can be made unlikely by checking regularly but this
may be inefficient, especially if there is only a small number of collisions. So for time dependent parametric surfaces,
[120] uses the idea of a (user-definable) near-miss and analysis of derivatives for each surface type to avoid missing
collisions. An approach based on interval analysis is presented in [103, 104]. The algorithm is reported to be robust,
efficient, accurate to within a user specified tolerance and applicable to a wide range of time dependent parametric and
implicit surfaces. One of the most comprehensive treatments of collision detection can be found in [71].

2Concave polyhedra may be decomposed into a set of convex polyhedra.
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2.3.2 Collision Resolution and Resting Contact

When two rigid bodies first come into contact, they exert a large force on each other for an infinitesimally small amount
of time. This collision force, known as animpulse, results in a discontinuous change of velocity. The bodies may then
remain in resting contact whereresting contact forcesprevent subsequent interpenetration. In [81] the nondeterminis-
tic problem of multiple simultaneous collisions is dealt with by a propagation method while [11] uses a simultaneous
approach that is more efficient.

In [81] an analytic method that uses the principle of conservation of momentum to calculate the effects of impulsive
forces on rigid bodies (including articulated figures) is given. In addition, for rigid and deformablebodies, a nonanalytic
penalty method, equivalent to inserting a spring and damper between any two contact points, is described. Resting
contact is modeled as a sequence of collisions. For deformable bodies [92, 110] introduce arbitrary penalty forces
between colliding bodies to separate them.

Preventing interpenetration with penalty methods is slow and not necessarily physically correct so a series of papers
[11, 12, 13, 16, 14] sought to further investigate the use of analytic methods. The first step was to reformulate the
noninterpenetration constraint for curved surfaces in a form that was specific enough to be differentiable. Then (in
[11, 12, 13]) the problem of computing contact forces between a pair of bodies that contact at a point without friction
was considered. Next systems of bodies that behave according to the classical Coulomb model of friction was discussed.
This leads to systems in which there are no solutions to the classical constraint force equations, as well as systems that
admit multiple solutions for the constraint force equations and whose subsequent behavior is thus indeterminate. Both
computational and practical complexity results for simulating such systems were given. In [14] an alternative iterative
approach was presented that is claimed to be faster, more reliable, applicable to the case of dynamic and static friction,
and simple enough to be implemented by a nonexpert in numerical algorithms.

In [16] the analytic approach to noninterpenetration is applied to flexible bodies that are restricted to only undergo
shape deformations that can be expressed as a global deformation. There is a problem with exactly determining the con-
tact surface, which [42] solves by using a purely kinematic step in an implicit formulation of the notion of a deformable
body.

2.4 Dynamics

Some [90, 61] have pointed out that for low-speed motion the probability of producing physically implausible looking
motion is low and they even suggest using simple qualitative physics notions to improve the look of faster motion.
However all kinematic approaches to producing motion underconstrain the allowable motion so that objects may be
allowed to move in a completely unrealistic way.

The laws of classical physics constitute a precise statement of people’s preconceptions about how everyday ob-
jects are expected to move. Some physics that is relevant to computer animation has already been described in section
2.3.2. What follows describes the physics that is applicable to generating motion in general and discusses some of the
implementation issues that arise.

2.4.1 Physics for Deformable Bodies

The physically realistic simulation of deformable bodies for animation was first addressed in [111]. The equations of
motion can be written in Lagrange’s form as

∂

∂t
(µ

∂q
∂t

) + γ
∂q
∂t

+
δε(q)
δq

= f(q, t),

whereq(u, t) is the position of pointu at timet, µ(u) is the mass density,γ(u) is the damping factor,f(q, t) is the
net externally applied force andε(q) is a functional that measures the net instantaneous potential energy of the body.
δε(q)/δq is the variational derivative that measures the rate of change of the potential energy with respect to the de-
formation.

In [110] the corresponding equations for the hybrid model of section 2.1.3 were given (the different representations
give different practical benefits at the extremes of deformable behavior). The definition ofε(q), based on the theory
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of elasticity, allows for objects to display elastic and inelastic motion. Through a discretization, based on the finite
elements method, and the application of numerical integration techniques to the solution of the equations of motion,
a computer implementation was possible. The discretization is equivalent to a model consisting of a number of point
masses connected by springs. Such a model has been successful in modeling certain classes of animals such as snakes
[80] and fish [114]. To produce more efficient implementations the allowable deformations can be restricted as in [88,
124, 38, 128]. It is also possible to have articulated bodies with deformable links [79].

2.4.2 Physics for Articulated Rigid Bodies

There are two commonly used approaches to deriving the equations of motion for a rigid articulated body: the Lagrange-
Euler formulation and the Newton-Euler formulation. Both result in the same motion (indeed one may be derived from
the other [47]) but they have different computational properties.

Lagrange’s Equation

The Lagrange-Euler formulation is based on the concepts of generalized coordinates, energy and generalized force (see
[47] for an explanation). The approach makes the forces that maintain geometric constraints implicit, thus resulting in
a reduced set of coordinates. This has the advantage that complex dynamic systems can sometimes be modeled in a
simple, elegant fashion with a minimal set of coordinates. In addition, the terms in the final closed form equations often
have simple physical interpretations.

For ann-link articulated figure an appropriate set of generalized coordinates is the vector of joint variables. The
generalized coordinates are chosen so that they are, at least for the case of holonomic constraints, independent. In
particular, for articulated figures with no loops there are well knownO(n) methods for computing the accelerations
of the joints [39]. For figures containing loops, and other nonholonomic constraints, it is not necessarily possible to
derive a suitable set of generalized coordinates. Even if a set of coordinates can be found, computing the accelerations
has worst case complexity ofO(n3).

Newton-Euler Formulation

Unlike the Lagrange formulation, the Newton-Euler approach does not use the notion of generalized coordinates. This
results in a full set of coordinates that are no longer necessarily independent and for which the (explicit) forces of con-
straint must be determined. For a rigid body whose center of mass is given byc(t), the basic Newton-Euler equations
of motion are: ∑

f = mc̈ and
∑

τ = Iω̇ + ω × Iω,

wheref is the external force,m is the mass,̈c is the acceleration,τ is the external torque,I is the inertia tensor,ω is
the orientation anḋω is the angular velocity.

The main contribution of study in the dynamics of articulated rigid bodies has been to come up with fastO(n) recur-
sive solutions based on the Newton-Euler formulation [39]. The recursive formulation exploits the chainlike structure
of articulated figures, with the motion of each link represented with respect to its neighboring link. Given a joint-space
trajectory, the velocities and accelerations of each link are computed recursively, starting at the base and propagating
forward to the tip. This produces theforward equations, which are then used to compute the forces and torques acting
on each link, starting at the tip and working backwards to the base (thebackward equations).

Recently, [15] described a direct (i.e. nonrecursive, noniterative) technique based on Lagrange multipliers. The
Lagrange multipliers are the unknown constraint forces. Since internal forces do no net work we want to find the so-
lution such that the internal forces of constraint disappear. This amounts to solving a large sparse matrix, which by
exploiting its structure, can always be done in linear time. The approach handles arbitrary constraints, is conducive
to good software design, is simple to understand and implement. When there are no cycles the method has worst case
complexity ofO(n).
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2.4.3 Forward Dynamics

The forward dynamics problem is that of computing positions and velocities from given forces and torques. The un-
knowns in the equations of motion of the previous sections are the forces, torques and accelerations. So the first part
of the problem is to solve, in terms of the forces and torques, the equations of motion for the accelerations.

In general, this gives a set of coupled second order nonlinear differential equations. Any set ofn-th order differential
equations can be reduced to an equivalent first-order one of the form:ẋ = k(x(t),v(t)), wherev(t) supplies values
for all the unknown forces and torques. With suitable initial (or boundary) valuesx(t0) = x0 this system of equations
can be numerically integrated over some interval[t0, t1] to give positions and velocitiesx(t). A survey of numerical
integration techniques for computer animation is given in [48].

Much early work in animation (and robotics) was concerned with producing programs that embodied the equations
of motion for rigid body articulated figures [122, 5]. Software now exists that can take a physical description of some
articulated figure and produce the corresponding equations of motion (for example the “dynamics compiler” in [118]).
Such software is now available in robust and efficient commercialsimulatorssuch as [109]. Thus, for inanimate objects
it is possible to create realistic motion in a completely automatic way by usingsimulation. All the animator need do is
define the physical object descriptions, set the initial conditions and watch the animation unfold.

The situation is slightly complicated by the possibility that objects may collide. If a nonanalytic collision resolution
algorithm is used, the springs and dampers can either be incorporated when a collision is detected (see section 2.3.1)
or, if all the points of possible contact can be surmised in advance, they can be includeda priori in the equations of
motion. If an analytic method is used in which a discontinuous change of velocity occurs, then when the simulator
detects a collision it suspends the simulation, resolves the collision (see section 2.3.2) and then restarts the simulation
with the new initial conditions.

2.4.4 Inverse Dynamics

It is also possible to solve the equations of motion for the forces and torques in terms of the accelerations. Then given
some desired motion it is possible (by twice differentiating) to calculate these accelerations to, in turn, calculate the
forces and torques that would be required to produce such a motion.

In robotics the inverse dynamics formulation can be useful for calculating the torques necessary to move a robot
along some specific path. In animation the goal is determining the motion, so if this is already known there is not much
need to calculate the forces and torques that will produce it. Exceptions to this are when the forces and torques are
used to evaluate the feasibility of some defined motion, say for ergonomics [8]; or when a mixture of kinematic and
dynamics is used in one animation (see section 2.4.5).

2.4.5 Additional Geometric Constraints

Several authors have considered the problem of adding other types of constraints to a physical simulation: [18] pre-
sented a menagerie of possible constraints for rigid bodies; [92] considered the application of constraints to deformable
models.

The point of the constraint based approach is to ease the problem of controlling a dynamic simulation, that is part
of the simulation can be controlled kinematically (for example the endpoint of an articulated figure can be constrained
to follow some path) and the rest of the simulation will move in accordance with the laws of physics. By using inverse
dynamics to calculate the forces needed to enforce the constraint the effects of these forces can be incorporated into
the physics based part of the animation. This approach to animation is suggested by [58] in the context of articulated
figures.

2.5 Realistic Control

Most interesting animations will be ofactuated(or animate) objects, that is objects that can exert some control over
their motions. Up until now the only approach that has been mentioned for producing animations of actuated objects
has been simply to state their positions at given times. The point is that in the real world an animal cannot produce
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arbitrary forces and torques (as in the inverse dynamics approach) to enable it to follow any given path in space as it is
constrained to move using the finite resources available in its muscles. Therefore realistic motion of actuated figures can
only be achieved by either placing complete reliance on the skill of the animator to correctly interpret this limitation or
by adopting this requirement and solving an associated control problem. This section will explore the second alternative
for which some notions and nomenclature from control theory will be required, the reader is referred to appendix C for
a brief overview.

2.5.1 State Space

In computer animation the state vector (see appendix C) is the vector that must contain all the quantities that are re-
quired to completely specify the position and velocities of all the points of all the objects in the scene. The system state
equations are precisely the ones discussed in section 2.4.3 that are required to compute the forward dynamics solution.

2.5.2 Output Vector

The output vector (see appendix C) supplies the controller with all the information with which it must decide which
action to perform. The controllers used in [123, 32, 72, 119] are all functions of time (open-loop controllers), while in
[25, 118] functions of state (closed-loop controllers) are used. In [118] making the controller a function of the state is
problematic as the state space grows exponentially as the objects become more complex. So in [117, 87, 102] closed-
loop control functions of simple input sensors are used. Closed-loop controllers are more flexible in that their output
is not fixed by the current time (as in an open-loop controller) but is a function of the current situation. An open-loop
controller must be generated for each new scenario. Thus, where the cost of synthesizing a controller is prohibitive a
closed-loop controller represents a much more sensible approach.

2.5.3 Input Vector

The actions the controller chooses to perform are represented by input vectors (see appendix C). As stated in section
2.4.3 in order to compute the forward dynamics solution (assuming the initial conditions are fixed) values must be
supplied for all the unknown forces and torques. Therefore the input vector must supply these values.

Supplying actual torques and forces is counterintuitive so usually a simple muscle model is used. In general no
attempt has been made to realistically model the intricate complexity of muscles and tendons (see [29, 86] for more
biomechanically based muscle models). Instead the effects are often approximated with aspring and damperwhich
acts as a proportional-derivativecontroller that will tend (over time) to bring a joint, say, to some desired length (angle).
As pointed out in [93], the spring and damper model emulates the ability of real animals to make their motion a lot
more efficient (especially at high speeds) by using the springiness of their muscles and tendons to store energy from
one movement to the next. Also as the spring extends further from its rest length the restoring force becomes larger,
thus automatically enforcing joint limits. A nonlinear spring is even more effective for enforcing joint limits but can
give rise to stiff differential equations.

For a deformable model made up of point masses and springs, muscles can be modeled by designating some of the
springs as actuated. This means that the input vector, as determined by some control function, is a reference setting
for the equilibrium point of each actuated spring. Or, put more simply, the rest lengths of the springs are allowed to be
changed by the control function. For an articulated figure an analogous (and common) technique is to insert a (possibly
rotary) spring and damper at each joint. If the joint is designated as actuated then the rest length (angle) of the spring
is again made the input value from some control function. By way of a concrete example, consider the case of a single
“muscle and tendon” represented by a linear spring and damper (see figure 2.3). Let the inputv (as determined by
some control functionp) represent the spring’s rest length. Then, assuming the output vector is just the system state,
the force exerted by the spring isf = ks(p(x)−x1)+ kdx2, whereks is the spring stiffness,kd is the damping factor,
andx = (x1, x2) is the state vector (the spring lengthx1 and velocityx2 = ẋ1). Incorporating this equation in the
system state equations means that control can be exerted over the system by varying the rest lengthp.

-  -



Chapter 2 Background

f

p

x1

x1 − p

Figure 2.3: “Muscle” represented as a spring and damper

2.5.4 Control Function

The control function (see appendix C) calculates values for the input vector from given output vectors.

Hand-crafted Controllers

One solution to producing a suitable control function to solve some control problem is simply to leave it up to some
human to come up with. A typical example of a difficult control specification that can behand-craftedin this way is
one of requiring a controller to make an object move like some particular animal.

For deformable models [80, 114] presented hand-crafted controllers (for snakes and fish, respectively) that consist
of parameterized sinusoidal contractions of spring rest lengths. There has been some success in hand-crafting con-
trollers for articulated figures: [26] generated parameterized human walks that used a mixture of kinematics3, dynam-
ics and rules about gaits; [77] produced a dynamic simulation of a walking statically stable cockroach controlled by
sets of coupled oscillators; [24] achieved similar results for a real-world six-legged creature; [93] showed how useful
parameterized controllers of hoppers, kangaroos, bipeds, and quadrupeds can be achieved by decomposing the problem
into a set of simpler control problems; [107] created a dynamic simulation of a biped walking by defining a finite-state
machine that adds and removes constraint equations. A good survey of these kinds of approaches can be found in [10].

Many of these approaches produce very useful parameterized controllers. The big drawback with hand-crafted
solutions, other than that they can be extremely difficult to derive (especially for a complex articulated figure), is that
they are not necessarily applicable to other systems. However, for obvious reasons, human beings are often the subject
of computer animations and so hand-crafting a collection of useful controllers for a human like object is bound to be
useful. It may even be possible to justify such an approach for other common animals.

Control Through Optimization

The optimal control approach uses optimization to try and produce anoptimal controller. In producing an animation
the evaluation criterion is largely an aesthetic one, which in most cases only induces a partial order on the state space
trajectories. Therefore the choice of a performance index is largely subjective. For some problems a natural perfor-
mance index exists, for instance if an animation is required of a creature doing a high jump then it is natural to choose
a performance index that will prefer higher jumps over lower ones. In many situations it seems natural to assume that
a solution that uses less energy and less time should be preferred. In practice a user-definable weighted combination of
various criteria can be used to form a suitable performance index. By changing the weights the user can try and exert
some rather indirect control over the look of the motion.

By using simple performance indices that reward low energy expenditure and distance traveled in a fixed time in-
terval [117, 87, 102, 112, 119], motions have been produced that bear a distinct qualitative resemblance to the way that
animals with comparable morphologies perform analogous (usually periodic) locomotion tasks. However it is not clear

3The kinematics is only used after the fact to improve the look of the motion.
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that suitable performance indices could be formulateda priori that could be predicted to produce something like, say,
a “happy walk”. Also, the approach can not deal with really dynamic factors.

Objective Based Control

It has already been seen in section 2.2 that a common way to specify the desired motion in a computer animation is
by using key-frames. It was only natural therefore that some of the earliest approaches to realistic control in anima-
tion should look at ways of producing physically plausible motions that “interpolated” given key-frames [123]. Given
that the animation starts in one key-frame, the other key-frames define a goal that must be achieved. In addition it is
also necessary to concurrently satisfy the goal that the motion be in accordance with the laws of physics and that it be
produced using the finite resources available in the creatures “muscles.”

One approach that has been taken to solving these problems [123, 32, 72] has been to define a performance index
and treat the problem as a constrained optimization problem. The idea is that an open-loop controller is synthesized by
searching for values of the state space trajectory and the forces and torques that satisfy the goal and are minimal with
respect to the performance index. This is achieved by numerical methods that iteratively refine a user supplied initial
guess. The problem of dealing with overconstrained motion is obviated by giving the constrained optimization algo-
rithm responsibility for arbitrating between the constraints (or goals). Unfortunately this means that for overconstrained
problems compromise solutions can be produced that are not necessarily what the user wants. Even if the motion is not
technically overconstrained the numerical algorithm may still not be able to find a solution that completely satisfies the
constraints.

Often what the user wants is that no compromise should be made with the laws of physics. If this is so then a
method must be chosen in which the laws of physics are incorporated in some inviolable way. A common way to do
this [118, 117, 87, 102, 119] is to simply reformulate the problem as anunconstrainedoptimization problem (as in
section 2.5.4). This means that the constraints are no longer hard and fast but rather the performance index is modified
to reward motions the closer they come to satisfying the constraints.

2.5.5 Synthesizing a Control Function

There are some additional issues that arise in the process of synthesizing a control function:

Collisions and friction. Collisions and friction can have a detrimental effect on the numerical optimization algorithms
that require access to derivatives [123, 32, 72]. This means that it is often necessary to formulate the problem
so that arbitrary control, or no feedback control is exerted during periods of time in which collisions occur. In
contrast the stochastic optimization techniques used in [117, 87, 102, 119] often produce trajectories that can be
seen to take advantage of collisions and friction.

Generality. One of the first attempts to synthesize a controller for animation purposes was given in [25]. The paper
employed techniques from optimal control theory for linear systems to create optimal controllers. Where an
animation of a linear system is required this approach is ideal. However, control problems are made much harder
by nonlineararities and, unfortunately, most interesting animations are highly nonlinear.

Local minima. In practice all numerical methods suffer from the problem of becoming trapped in local minima and
thus it can not be guaranteed that the best solution has been attained. “Global” (stochastic) optimization algo-
rithms can help in this regard [117, 87, 102]. Convergence to the global solution is guaranteed but the price paid
is slow convergence, they are generally computationally intensive. Indeed [87, 102] avail themselves of a mas-
sively parallel computer to achieve faster results and [87] circumvent an aspect of the problem by controlling
the limb placement kinematically. In [32] it is recognized that the application for the work is animation (as op-
posed to autonomous agents in robotics, say) and thus user interaction is allowed, even at the level of helping the
optimization process out of local minima.

Post-processing.In [117] a stochastic generate-and-test procedure is used to learn the weights for a network of con-
nections between binary sensors and actuators. These weights are then refined by a modify-and-test procedure
that searches for better solutions in the immediate vicinity. For deformable models [52] uses a post-processing
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step to transform learned low-level control functions into a Fourier basis. It is then possible to abstract (by ignor-
ing components with coefficients below a certain level) the control functions to yield a compact representation
that is suitable for parameterization. The low-level control functions are open-loop controllers but they are in-
corporated into a high-level controller that is a function of the system state. This is done by simulating the effects
of each possible low-level controller over some time interval and then picking the one that, in terms of the cur-
rent goal, worked best. If simulation is computationally expensive and there are many low-level controllers then
this is inefficient. It is interesting to note that for non-statically stable motions this approach cannot generally be
used in a real-world controller. This is because in the real world we can not run time backwards to “undo” our
mistakes.

Representation. In practice the control function and the state space trajectory are represented by a discrete set of basis
functions over some finite interval of their domain. In [123] they are discretized as a finite set of samples. This
can lead to problems of unwieldy dimensionality, so [32] split motions into different spacetime windows and con-
strained the motion to be representable by a spline basis function. The dimensionality of the problem is further
and drastically reduced in [72] by using techniques from compiler optimization to factor out common subex-
pressions and by using a hierarchical wavelet basis function to represent the motion. This purportedly leads to
smaller control problems, better numerical conditioning and faster convergence. For highly non-linear problems,
however, difficulties may still remain in the numerical solution. The control function in [119] is a step function
(called a “pose control graph”) that can be viewed as a (cyclic) finite state machine with timed transitions between
states.

Usability. The approach in [118] produces a family of optimal control solutions that can be reused and conveniently
sequenced to produce complicated motion sequences. In [117, 87] the user is only required to supply a physical
description of the object (including its sensors and actuators) and the algorithm will attempt to calculate “useful”
modes of locomotion. In [102] even the creature morphology is generated automatically. While this may contain
a degree of novelty it is hard to imagine a wide range of situations in which an animator may be able to allow a
creature’s appearance to be chosen at random.

2.6 High-Level Requirements

Enforcing high-level constraints on character behavior is an example of a high-level requirement. The use of models
to enforce such constraints within computer animation has, however, been somewhat uncommon. The seminal paper
in this area was Reynolds [96], in which reactive behaviors, such as flocking behavior, were synthesized. Since then
others have taken the approach to new levels of sophistication. In [114] the utility of autonomous agents for animat-
ing natural ecosystems was demonstrated. This approach is ideal, when compared with conventional “key-framing”
approaches, for producing convincing “background” animations. In [23] a similar (kinematic) system is described that
can potentially be used to bring autonomous agents more into the foreground. By allowing the user to interactively
direct an agent they demonstrate their system to be a powerful tool for virtual reality.

Some of the high-level behaviors achieved in [114, 23] (such as “escaping”, “mating”, etc.) overlap with the capa-
bilities of our system. However, the creatures in these systems have no “understanding” at all of what they are doing.
Their behaviors are a direct result of the detailed rules programmed into them, and any interactive direction. Conse-
quently, it is difficult to build, reconfigure or substantially extend the resulting behavior control systems. Moreover,
while this previous research demonstrates how behavioral animation makes producing animations easier once the be-
haviors are defined, it does not address the issue of how to makedevelopingsuch behaviors easier. For the low-level
behaviors common to all creatures (such as “avoiding obstacles”) this issue is less important because they need only
be implemented once. However, high-level behaviors (such as “if you lost your sword, then hide from monsters”) are
what define the character. Consequently, every time we want a new character (with significantly different behavior)
we will need to rewrite the high-level behaviors. Previous work implicitly assumes that any imperative computer pro-
gramming language will suffice for this task. However, the computer program corresponding to the desired behavior
will not generally be at all obvious. This is because a computer program is a specification of how we want the com-
puter to behave. As such we may be forced to think in terms of machine state and assignment operators, instead of
intuitively in terms of actions and effects. For example, it is simple to specify a sorted list but it took a great deal of
ingenuity to go from this to the first implementation the “heap sort” algorithm. Even understanding how a given com-
puter program implements a given specification can take a long time. Therefore there are many advantages to only
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concerning ourselves with high-level specifications. The penalty for such an approach will invariably be inefficiency,
but, there are numerous occasions efficiency is not a primary concern. That is, with any computer program there is a
trade off between the programmer’s extra time spent developing an efficient program versus the user’s extra time spent
waiting for an inefficient program. For a one-off animation the trade-off may well be weighted in favor of reducing the
programmer’s effort. This is also the case in rapid prototyping.

There is an extensive and important body of relevant work in the intelligent autonomous agents literature [19, 121].
One piece worthy of particular mention is that described in [126]. In terms of motivation and results, this work has some
overlap with the material we present in chapter 4. However, our work differs from all previous work in that it tries to be
as “neat” as possible in dealing with the same set of problems. It may turn out that a completely formal and mathematical
approach is not always appropriate. We simply want to try to push the formal approach as far as possible. If we are
successful then we will have lost nothing but gained all the advantages associated with a high-degree ofclarity.

Our work has much in common with work in the logic programming community [3], in which a more intuitive,
declarative approach to specifying character behavior is used. In particular, we have been highly motivated by work
that has been applied to computer animation [41, 9, 73]. Our work is different in that the semantics for our behavior
specifications are given entirely by first-order logic. As far as we aware none of the work in this area, applicable to the
problems we address (aside from that we shall discuss later), uses such simple semantics for their theories of action.
We do not refute the need for more powerful logics. It is just that we want to try to use the simplest, best understood,
and most widely known logic, that we perceive as being adequate, to solve as many problems as we can. To this end we
have chosen to use a rigorous and general first-order theory of action based on a version of the situation calculus [76].
The situation calculus is well-known, simple and intuitive to understand. The version we use is inspired by new work
in cognitive robotics that solves the frame problem [94], incorporates knowledge-producingactions (like sensing) [98],
and allows advice to be conveniently given as a “sketch plan” [68].
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Figure 2.4: Design Space

Figure 2.4 attempts to show pictorially how our work extends previous work in the area. Like previous work our
approach can handle low-level and high-level behavior in virtual worlds of low complexity. As we start to consider
physics-based worlds or include multiple agents other approaches start to founder. Our work is able to venture into this
area because we include a notion of sensing. This addition allows us to use the situation calculus beyond its widely
perceived limitations to reason about dynamic worlds with multiple agents. We believe that in the future our work can
also handle low-level behavior in unpredictable worlds. To be fully convincing, however, we will need to pay more
attention to continuous actions.
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Chapter 2 Background

2.7 Our Work

This chapter has given a clear picture of where our work fits in to computer animation research. In addition the reader
will have a clear understanding of the foundations and terminology that we shall employ in what follows. It should also
be clear that our work is a natural progression in the attempt to build computer models to satisfy ever more sophisticated
requirements. In particular we would like to build cognitive models to help us automatically produce realistic behavior.
These models will sit on top of biomechanical, physical and kinematic models. Moreover, the theory of action that we
use to build our cognitive models is independent of the realization of the actions and of the underlying models. In
chapter 4 the underlying models are kinematic, whereas in chapter 5 they are physics-based.

Communication between the different levels in the hierarchy is by virtue of actions. Actions to be performed are
communicated to the lower levels where they are executed by the appropriate routines. Some actions are sensing ac-
tions. Their function is to prompt the lower levels to return pertinent information about the state of the world to the
cognitive level. Because we use logic for our cognitive models it is not immediately obvious how to write down things
about the lower levels about which we are uncertain. That is we must always write down things that are true but we
are not precisely sure what is true. In previous work researchers have used modal logic approaches to write down facts
about what the possible state of the world is. We prefer instead to use intervals. Intervals give us a succinct and prac-
tical way to make concrete statements about quantities we may not know precisely. We shall discuss the details of the
cognitive modeling language in the next chapter.

It is possible that there are examples where the clean stratification into cognitive and non-cognitive models is not
appropriate. However, there is a large and useful body of problems where it is a useful abstraction. It is thus a sensible
place to start and we shall focus on this paradigm for the remainder of the thesis. If and when it proves inadequate we
can seek to further push our approach into this new more complicated arena.
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Chapter 3

Theoretical Basis

The cornerstone of our approach to generating high-level behavior is to use thesituation calculusto model the virtual
world from the animated character’s point of view. The situation calculus [76, 94] is a way of describing change in
sorted first-order logic. In this chapter we shall give the mathematical details required to understand the situation cal-
culus and how we use it. We necessarily assumes some familiarity with mathematical logic and the reader is referred
to [37] for any additional background information required.

We shall use the following simple example, after [55], to illustrate various points about the situation calculus:

Suppose we have two, call them Dognap and Jack, characters situated in some virtual world. The virtual
world may be part of some computer game or perhaps the basis for some “virtual movie director” software.
Regardless, let us suppose that Dognap is armed with a gun, and that Dognap wants to kill Jack. Let us
further suppose that Jack is initially alive and that the gun is initially empty.

3.1 Sorts

A situation, of sort SITUATION, is a “snapshot” of the state of the world. A domain-independent constantS0, of sort
SITUATION, denotes the initial situation.

We want to use various number systems in our theory of action. Logical accounts of numbers are, however, prob-
lematic. Consequently, we wish to avoid giving such an account, and thus becoming embroiled in a task that would be
at odds with the purpose of this chapter. That is, we want to remain focussed on building cognitive models for animated
characters. The main artifices we shall use to allow us to eschew the messy details of arithmetic are as follows:

• A collection of sorts for various number systems:

B , Boolean numbers,

N , Natural numbers,

Z , Integer numbers,

Q , Rational numbers,

R , Real numbers.

To avoid misunderstanding, we briefly clarifyB.1 In particular, there are two constants of sortB, namely0 and
1. There is one unary function¬, and two binary functions∧,∨.

Later on, we shall want to ensure that all our number systems have maximal and minimal elements. We shall
indicate these augmented number systems with a?, for example the extended real numbers:R? = R∪{−∞,∞}.
We shall also denote subsets of our number systems with appropriate designators, for example the non-negative
realsR+.

1See [57] for further detailed discussion on the subject.
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• For each number system sort, we will only consider standard interpretations. That is, we shall work with in-
terpreted theories in which the various functions and constants, associated with the sort, are fixed. There are
functions and predicates corresponding to all the standard mathematical functions and predicates for the sort.

• For each number system sort, we assume the existence of an “oracle” that is capable of determining the truth or
falsity of sentences about relationships between objects of that sort.2

All other objects are of sortOBJECT.

3.2 Fluents

Any property of the world that can change over time is known as a fluent. Afluentis a function, with a situation term
as (by convention) its last argument. We shall restrict fluents to taking on values in one of the number system sorts. For
any functional fluentsfoo that take on values inB we shall adopt the standard abbreviation thatFoo(s) is just shorthand
for foo(s) = 1. We may refer to such fluents asrelational fluents.

Let us now introduce some fluents to capture the salient details of our example. This will enable us to formalize
the scenario within the situation calculus.

Alive(s) − Jack is alive in states.
Aimed(s) − The gun is aimed at Jack in states.
Loaded(s) − The gun is loaded in states.

Actions, of sortACTION, are the fundamental instrument of change in our ontology. The situations′ resulting from
doing actiona in situations is given by the distinguished functiondo : ACTION × SITUATION → SITUATION, such that,
s′ = do(a, s). In our example, we introduce the following actions:

load − Load the gun.
aim − Aim the gun at Jack.
shoot − Shoot the gun.

The possibility of performing actiona in situations is denoted by a distinguished predicatePoss : ACTION ×
SITUATION. Sentences that specify what the state of the world must be before performing some action are known as
precondition axioms. We can give such axioms for the actions in our example:3

Poss (load, s) − The gun can always be loaded.
Poss (aim, s) − The gun can always be aimed at Jack.
Poss (shoot, s) ⇒ Loaded(s) − The gun can only be shot if it’s loaded.

3.3 The Qualification Problem

Thequalification problem[75] is that of trying to infer when an action is possible. In our example, we only wrote
down certain necessary conditions, we did not enumerate all the things that may prevent us from shooting the gun. For
instance, we cannot shoot if the trigger is too stiff, or if the gun is encased in concrete, etc. By employing aclosed-
world assumption, we may obviate this problem and assume that our set of necessary conditions is also a sufficient set.
For instance, under this assumption our precondition axiom forshoot now becomes:

Poss (shoot, s) ⇔ Loaded(s).

In general, we have the following definition:

Definition 3.3.1 (Action precondition axioms). Action precondition axioms give necessary and sufficient conditions
πa(~x, s) for when an actiona(~x) is possible. They are of the form:

Poss (a(~x), s) ⇔ πa(~x, s).

In [44, 70], some additional subtleties, including those that arise when we allow state constraints, are discussed.
2From a practical point of view, we might use mathematical software packages (such as Maple) to handle a wide range of useful queries.
3Throughout, all unbound variables are implicitly assumed to be universally quantified.
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3.4 Effect Axioms

Effect axioms give necessary conditions for a fluent to take on a given value after performing an action. We can use
effect axioms to state the effects of the actions on the defined fluents in our example:

Loaded(do(load, s)) − The gun is loaded after loading it.
Aimed(do(aim, s)) − The gun is aimed at Jack after aiming it.
Poss (shoot, s) ∧ Aimed(s) ⇒ ¬Alive(do(shoot, s))

− If the gun is aimed at Jack and it can be
shot then he is dead after shooting it.

All that now remains to complete our first pass at formalizing our example is to specify the initial situation:

Alive(S0) − Initially Jack is alive.
¬Aimed(S0) − Initially the gun is not aimed at Jack.
¬Loaded(S0) − Initially the gun is not loaded.

3.5 The Frame Problem

Unfortunately, there are still some impediments to using the situation calculus in real applications. The most notable
of these is the so calledframe problem[76]. The frame problem is that of trying to infer what remains unchanged by
an action. In our example, we only wrote down what changed after an action; we did not write down all the things that
stayed the same. For instance, the gun stayed loaded after aiming it, or the gun did not turn into a horse after loading
it, etc. In common-sense reasoning about actions, it seems essential to assume that, unless explicitly told otherwise,
things stay the same. To formally state this “law of inertia”, without changing our effect axioms, causes problems. In
particular, if we haveA actions andF fluents, then we must write down a set ofA×F “frame” axioms. The problem
is exacerbated by the planner having to reason efficiently in the presence of all these axioms.

At this point it is worth commenting on how the frame problem is dealt with in other fields that tackle related prob-
lems. Notably in control theory. In control theory we have the notion of a state vector. Each component of the state
vector is similar to a fluent. The frame problem is tackled by simply assuming that the state vector completely char-
acterizes the system in question and that values for all the components are explicitly specified. That is, if part of the
state vector is unchanged then we must explicitly say so. Usually state vectors are chosen to be short so that this task
is not too irksome. It does, however, put our approach into context. We do not want to be constrained to have to give
our state vector at the outset. Moreover, we do not want (for reasons given in the preceeding paragraph) to list out all
the things that don’t change. In our approach we can, at any point, mention some new fluent and have the system infer
its value with respect to its value in the initial situation. Furthermore, if so desired, we can leave the initial situation
underspecified. For example, suppose in the initial situation we say that the car iseitherblueor yellow. Now further
suppose we perform no actions to affect the color. Then, after the action sequence, we will be able to infer that the car’s
color is still either blue, or yellow.

In [94], it is shown how we can avoid having to list out all the frame axioms. The idea is to assume that our effect
axioms enumerate all the possible ways that the world can change. This closed world assumption provides the justifi-
cation for replacing the effect axioms withsuccessor stateaxioms. For instance, the successor state axiom forAlive(s)
states that Jack is alive, if and only if, he was alive in the previous state and he was not just shot:

Poss (a, s) ⇒ [Alive(do(a, s)) ⇔ Alive(s) ∧ ¬(a = shoot ∧ Aimed(s))]. (3.1)

In general, we have the following definition:

Definition 3.5.1 (Successor state axioms).Supposeγf (~y, z, a, s) is a first-order formula whose free variables are
among~y, z, a, s. Assume it states all the necessary conditions under which actiona, if performed ins, results inf(~y, s)
becoming equal toz. Then, the corresponding successor state axiom, that assumes the given conditions are also suffi-
cient ones, is of the form:

Poss (a, s) ⇒ [(f(~y, do(a, s)) = z) ⇔ (γf (~y, z, a, s)) ∨ (f(~y, s) = z ∧ ¬∃z′ γf (~y, z′, a, s))]. (3.2)
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It is instructive to consider what this definition means for a relational fluentF . Let γ+
F (~y, a, s) be a disjunction of

all the positive effects of the actiona, andγ−
F (~y, a, s) be a disjunction of all the negative effects. Then the successor

state axiom forF is:

Poss (a, s) ⇒ [F (~y, do(a, s)) ⇔ (γ+
F (~y, a, s) ∨ (F (~y, s) ∧ ¬γ−

F (~y, a, s)))].

3.5.1 The Ramification Problem

Suppose we add to our example the fluents

NearBomb(s) − Jack is near the position of the bomb in states;
Fire(s) − There is a fire in states;

the action
detonate − The bomb is detonated;

the effect axiom (assuming it is always possible to detonate the bomb):

Fire(do(detonate, s)) − There is a fire after detonation;

and the state constraint

Fire(s) ∧ NearBomb(s) ⇒ ¬Alive(s)
− If Jack is near a fire, then he is dead.

Then detonating the bomb, when Jack is next to it, has the implicit side effect of killing Jack. Such side-effects are
known as ramifications. So theramification problemis that of trying to determine all the implicit side-effects of actions
caused by the presence of state constraints. In general, state constraints may give rise to intractable problems (see [70]).
However, in some cases, we can deal with the ramification problem by making all the side effects explicit. This can be
done automatically (see [70]) by “compiling” the state constraint into the successor state axioms. For example, we can
modify the successor state axiom forAlive(s) as follows:

Poss (a, s) ⇒ [Alive(do(a, s)) ⇔ Alive(s) ∧ ¬(a = shoot ∧ Aimed(s))∧
¬(a = detonate ∧ NearBomb(s)).]

3.6 Complex Actions

A human actor receives advice on how to behave from a director. We would like to develop an analogous approach
for directing synthetic actors. The required notion of an advice taker as a useful tool for computer science was first
proposed in 1963 by John McCarthy [74]. It provided the original motivation for the situation calculus, but a realistic
proposal for incorporating advice has only recently been developed [68]. In this section, we describe how this approach
can enable a character to intelligently follow an animator’s high-level advice. In particular, we describe the language
used to give these instructions and show how the character can use its background knowledge to fill in the details that
the animator chooses not to specify.

The actions we discussed previously, defined by corresponding precondition and successor state axioms, are re-
ferred to as aprimitive actions. We have explained how they can be used by the character to keep track of its changing
world. Until now, however, we have not mentioned where the actions come from in the first place. This is the issue to
which we now turn our attention. In particular, by using the notion of macros, [67, 66] show how to define newcomplex
actionsin terms of the previously defined primitive actions. For example, we may want to add a complex action like:

if haveExtinguisher then detonate elseshoot.

Here the state argument of fluents in complex actions is suppressed. It is re-inserted as the macro is expanded into the
corresponding situation calculus term, see appendix D for details.

Complex actions correspond to our previous informal notion of a “sketch plan”. The effect of a complex actionα
is defined by the macroDo (α, s, s′), wheres′ is a state that results from doingα in states. Thesemacrosexpand out
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into situation calculus expressions, thus ensuring complex actions inherit the solution to the frame problem for primitive
actions. Given some advice, represented as a complex actionprogram, the underlying theorem prover (reasoning engine)
in the character’s reasoning system attempts to prove:

AXIOMS |= ∃s Do (program, S0, s).

The resulting (constructive) proof results in a terms = do(an, · · · , do(a1, S0)), such that[a1, . . . , an] is the sequence
of primitive actions that the character should perform in order to follow our advice.

The complete list of operators for defining the complex actions that we use is given below. Together they define
thehigh-level control languageused for issuing advice to characters. The mathematical definitions for these operators
is given in appendix D.

(Sequence)α o
9 β means do actionα, followed by actionβ;

(Test)p? means do nothing ifp is true, otherwise fail;

(Conditionals)if p then α elseβ, means doα if p is true, otherwise doβ;

(Non-deterministic iteration)α?, means doα zero or more times.

(Iteration)while p do α od, means doα while p is true;

(Nondeterministic choice of actions)α|β means do actionα, or actionβ;

(Nondeterministic choice of arguments)(πx)α(x) means pick some argumentx and perform the actionα(x);

(Procedures)proc P (x1, . . . , xn)α enddeclares a procedureP (x1, . . . , xn).

A key feature to notice is the ability to use nondeterminism. This allows us to, potentially, write extremely high-
level specifications of behavior. For example, at one extreme, we have the classic planning problem represented by the
“program”:

while ¬Goal

(π a)[Appropriate(a)? o
9 a]

od.

At the other extreme we can choose to stick to laboriously specify every detail as in conventional programming. The
middle ground between these two alternatives makes for a useful and novel methodology for writing controllers.

For example, the following “program” illustrates some of the power of the approach.

proc kill

detonate|(shoot) ?

end

kill o
9 arrangeFuneral

Thekill procedure is defined to instruct Dognap to detonate the bomb or to shoot zero or more times. Imagine that Jack
first considers detonating the bomb. One of the effects of the detonation is that Dognap looses all his money in com-
pensation claims. Thus he would be unable to pay for the funeral. That is, we suppose being rich to be a precondition of
thearrangeFuneral action. This will cause the interpreter to backtrack to search for alternatives. Next Dognap considers
shooting Jack. Unfortunately, the effect of shooting Jack once is only to wound. There can be no funeral without a
corpse and so the interpreter back tracks again. It once again rejects an explosion and moves on to consider shooting
twice. This time Jack will be dead and Dognap can still afford the funeral costs. Therefore the interpreter selects this
course of action as the right one. Moreover, the other conditions can be specified concisely and, thanks to the above
solution to the frame problem, perspicuously.

The possibility also exists for incremental refinement of a specification, perhaps, from a high-level specification to
the point where it more closely resembles a controller written using a conventional imperative programming language.

In appendix E we discuss some issues that surround implementing an interpreter for complex actions.
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3.7 Exogenous Actions

It will often be the case that there are aspects of the domain that we can not, or do not want to, formalize. For example,
suppose we are interested in the position of a ball floating in the (virtual) sea. It is somewhat irrelevant to attempt to
formalize the motion of the waves, wind, etc. This will often be the case for phenomena that are outside the characters
ability to control. We should like to simply define an action likemoveBall(x) and say that it is caused by mysterious
external forces. Such actions are referred to asexogenousactions. While the cause of an exogenous action is difficult
to state its effect need not be. For example, themoveBall(x) simply moves the ball to the positionx.

Exogenous actions can be incorporated into the situation calculus by modifying the definition of the macro expan-
sion for complex actions to allow for the possible occurrence of exogenous actions. We shall see an example of this in
section 5.4.2 where we consider physics-based virtual worlds.

3.8 Knowledge producing actions

Up until now we have thought of actions as having effects on the world. We can, however, imagine actions whose only
effect is to change what the character knows about its world. A good example is a character trying to make a phone call.
The character needs to know the number before dialing. The action of looking up the phone number has no effect on
the world, but it changes the character’s knowledge. Sensing actions are therefore referred to asknowledge producing
actions.

In [98], an approach to incorporating knowledge producing actions into the situation calculus is described. The idea
behind the approach is to define an epistemic fluent to keep track of all the worlds a character thinks it might possibly
be in. In chapter 1, figure 1.2 depicted a character unable to decide which world it was in. That is, whether in its world
the light was on or off. Figure 3.1 shows the character turning around to see that the light is in fact turned on. The result
of this sensing action is shown in the figure as the character discarding some of the worlds it previously thought were
possible. In particular, since it now knows that the light is on in its world, it must throw out all the worlds in which it
thought the light was turned off. In this section we give the mathematical details of how this notion is modeled in the
situation calculus.

Figure 3.1: After sensing, only worlds where the light is on are possible.

3.8.1 An epistemic fluent

The way a character keeps track of the possible worlds or, as the case may be, possible situations is to define an epistemic
fluentK. The fluent keeps track of all theK-related worlds. TheseK-related worlds are precisely the ones in the bubbles
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above the characters head in above mentioned figures. They are the situations that the character thinks might be its
current situation. So we writeK(s′, s) to mean that in situations, as far as the character can tell, it might be in the
alternative situations′. That is, the character’s knowledge is such thats ands′ are indistinguishable. It can only find
out if it is or not by sensing the value of certain terms, for example terms such aslight(s).

When we say a characterknowsthe value of a termτ , in a situations, is some constantc, we mean thatτ has the
valuec in all theK-related worlds. For convenience, we introduce the following abbreviation:

Knows (τ = c, s) , ∀s′ K(s′, s) ⇒ τ [s′] = c, (3.3)

whereτ [s′] is the termτ with the situation arguments inserted. For example, ifτ = phoneNo(Jack) thenτ [s] =
phoneNo(Jack, s). Note that for simplicity we are considering the case where we only have one character. For more than
one character we simply need to make it clear which character knows what. For example,Knows (Dognap, τ = c, s)
indicates thatDognap knows the value ofτ .

When a character knows the value of a term, but we do not necessarily know the value of the term, we use the
notationKref (τ, s) to say that the characterknows the referentof τ :

Kref (τ, s) , ∃z Knows (τ = z, s). (3.4)

We now introduce some special notation for the case whenτ takes on values inB. In particular, since there are only
two possibilities for the referent, we say weknow whetherτ is true or not:

Kwhether (τ, s) , Knows (τ = 1, s) ∨ Knows (τ = 0, s). (3.5)

3.8.2 Sensing

As in [98], we shall make the simplifying assumption that for each termτ , whose value we are interested in sensing,
we have a corresponding knowledge producing actionsenseτ . In general, if there aren knowledge producing actions:
senseτi , i = 0, . . . , n − 1, then we shall assume there aren associated situation dependent terms:τ0, . . . , τn−1. The
corresponding successor state axiom forK is then:

Poss (a, s) ⇒ [K(s′′, do(a, s)) ⇔
∃s′ (K(s′, s) ∧ (s′′ = do(a, s′))) ∧
((a 6= senseτ0 ∧ · · · ∧ a 6= senseτn−1)
∨ (a = senseτ0 ∧ τ0(s′) = τ0(s))

...

∨ (a = senseτn−1 ∧ τn−1(s′) = τn−1(s)))]. (3.6)

The above successor state axiom captures the required notion of sensing and solves the frame problem for knowl-
edge producing actions. We shall explain how it works through a simple example. In particular, let us consider the
problem of sensing the current temperature. Firstly, we introduce a fluenttemp : SITUATION → R+, that corresponds to
the temperature (in Kelvin) in the current situation. For now let us assume that the temperature remains constant:

Poss (a, s) ⇒ temp(do(a, s)) = temp(s). (3.7)

We will have a single knowledge producing actionsenseTemp. This gives us the following successor-state axiom forK:

Poss (a, s) ⇒ [K(s′′, do(a, s)) ⇔ ∃s′ (K(s′, s) ∧ (s′′ = do(a, s′))) ∧
((a 6= senseTemp) ∨ (a = senseTemp ∧ temp(s′) = temp(s)))]. (3.8)

The above axiom states that for any action other thansenseTemp the set ofK-related worlds is the set of images of the
previous set ofK-related worlds. That is, ifs′ wasK-related tos, then the images′′ = do(a, s′), of s′ after performing
the actiona is K-related todo(a, s). Moreover, when the character performs asenseTemp action, in some situations,
the effect is to restrict the set ofK-related worlds to those in which the temperature agrees with the temperature in the
situations. In other words,senseTemp is the only knowledge producing action, and its effect is to make the temperature
denotation known:Kref (temp, do(senseTemp, s)). The reader is referred to [98] for any additional details, examples or
theorems on any of the above.
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3.8.3 Discussion

The formalization of knowledge within the situation calculus using the epistemic fluentK makes for an elegant mathe-
matical specification language. It is also powerful. For example, suppose we have an effect axiom that states that if a
gun is loaded then the character is dead after shooting the gun:

Loaded(s) ⇒ Dead(do(shoot, s)).

Furthermore, suppose we know the gun is initially loadedKnows (Loaded, S0), then we can infer that we know the char-
acter is dead after shooting the gunKnows (Dead(do(shoot, S0)).

Unfortunately, there are some problems. One set of problems is associated with implementation, the second applies
to reasoning about real numbers, both in theory and in practice.

Implementation

The implementation problems revolve around how to specify the initial situation. For example, if we choose an imple-
mentation language like Prolog, specifying the initial situation may involve having to list out an exponential number of
possible worlds. For example, if we do not initially know if the gun is loaded then we might consider explicitly listing
the two possible worldss_a , ands_b , such that:

k(s_a,s0).
k(s_b,s0).
loaded(s_a).

As we add more relational fluents, that we want to be able to refer to our knowledge of, the situation gets worse. In
general, if we haven such fluents, there will be2n initial possible worlds that we have to list out. Once we start using
functional fluents, however, things get even worse: we cannot, by definition, list out the uncountably many possible
worlds associated with not knowing the value of a fluent that takes on values inR.

Intuitively, we need to be able to specify rules that characterize, without having to list them all out, the set of initial
possible worlds. It may be possible to somehow coerce Prolog into such an achievement. Perhaps, more reasonably, we
could consider using a full first-order logic theorem prover. However, first-order logic theorem provers are inefficient
and experimental. In addition, in section 1.5 we advance the idea that our approach can be used for rapid prototyping.
This claim relies on the possibility of gradually removing the non-determinism from our specifications. In this way we
might hope to eventually refine a specification so that it can be run without the need for an underlying theorem prover.
This idea must, sadly, be forsaken if we are to ingrain the need for a theorem prover into our approach to sensing.

Ignoring all the above concerns let us assume that we can specify rules that characterize the set of initial possible
worlds. For example, suppose that initially we know the temperature is between10 and50 Kelvin. We might express
this using inequalities:

∀s′ K(s′, S0) ⇒ 10 6 temp(s′) 6 50.

This, however, brings us to our second set of problems related to reasoning about real numbers.

Real numbers

We just wrote down the formula that corresponds to:

Knows (10 6 temp 6 50, S0). (3.9)

Suppose, we are now interested in what this tells us about what we know about the value of the temperature squared.
In general, if we know a termτ lies in the range[u, v] we would like to be able to answer questions about what we
know about some arbitrary functionf of τ . Such questions take us into a mathematical minefield of reasoning about
inequalities. Fortunately, a path through this minefield has already been charted by the field of interval arithmetic.
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3.9 Interval arithmetic

To address the issues we raised in section 3.8.3 we turn our attention to interval arithmetic [82, 83, 115]. Some of the
immediate advantages interval arithmetic affords us are listed below:

• Interval arithmetic enables us to move all the details of reasoning about inequalities into the rules for combining
intervals under various mathematical operations.

• Interval arithmetic provides a finite (and succinct) way to represent uncertainty about a large, possibly uncount-
able, set of alternatives. Moreover, the representation remains finite after performing a series of operations of
the intervals. In [89] interval arithmetic is compared to probability as a means of representing uncertainty.

• Writing a sound oracle for answering ground queries about interval arithmetic is a trivial task. Moreover, we
can answer queries in time that is linear in the length of the query. Returning valid and optimal intervals is more
challenging (see section 3.12). This should, however, be compared to the vastly unrealistic assumption we (and
others) made earlier about the existence of oracles for answering queries about the real numbers.

• There is no discrepancy between the underlying theory of interval arithmetic, and the corresponding implemen-
tation. Thus we re-establish our claims about using our approach for rapid prototyping.

We construct interval arithmetics from our previously available number systems as follows:

• For each number systemX, we add a new number system sortIX. The constants ofIX are the set of pairs〈u, v〉
such thatu, v ∈ X andu 6 v. There are functions and predicates corresponding to all the functions and predicates
of X.

• For an intervalx = 〈u, v〉, we use the notationx = u for the lower bound, andx = v for the upper bound.

• The functionwidth, returns the width of an intervalx, i.e. width(x) = x − x.

• When we have a numberx and an intervalx = 〈u, v〉, such thatu 6 x 6 v we say thatx containsx, we write
x ∈ x. Similarly for two intervalsx, y such thaty 6 x andx 6 y, we say thaty containsx, we writex ⊆ y.

• For two intervalsx0, x1 we say thatx0 ≤ x1 if and only if x0 6 x1.

• We let⊥ and> represent, respectively, the minimum and maximum elements of the number system in question.
For example, inR?, 〈⊥,>〉 = 〈−∞,∞〉.

For example, consider the case of the number systemIB. There are three numbers in the number system:〈0, 0〉,
〈0, 1〉 and〈1, 1〉. Note that we have〈0, 0〉 6 〈0, 1〉 6 〈1, 1〉, 〈0, 0〉 ⊂ 〈0, 1〉, and〈1, 1〉 ⊂ 〈0, 1〉. In B, 1 and0 can
be used to represent, respectively, “true” and “false”. Similarly,〈1, 1〉, 〈0, 1〉 and〈0, 0〉 in IB can be used to represent,
respectively, “known to be true”, “unknown”, and “known to be false”. We will discuss the details of how this is done
in section 3.10.

By way of analogy, complex numbers are also made up of a pair of (real) numbers, and operations on them are
defined in terms of operations on the reals. However, it would lead to confusion, if when reading a text on complex
analysis we could not comprehend complex numbers as a separate entity, distinct from pairs of real numbers. We there-
fore forewarn the reader against making the same mistake for intervals. That is, although numbers inIX are made up
of a pair of numbers fromX it is important to treat them as “first-class” numbers in their own right.

Traditionally, interval arithmetic was used to address the innumerous problems with the ability of floating point
arithmetic to accurately represent real arithmetic. For example, consider the real number

√
2. This real number cannot

be represented exactly by any finite decimal. However, it can be represented by theexactinterval〈1.41, 1.42〉. What
this interval can be used to express is that the

√
2 lies somewhere between1.41 and1.42. That is, it expresses our

uncertainty about the exact value of the
√

2 when expressed as a decimal. With modern computers our degree of un-
certainty can be made miniscule and this is part of the appeal of interval arithmetic. Of course, the other part of interval
arithmetic has to do with the arithmetic of intervals. We shall, however, delay any such discussion until section 3.12.
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3.10 Interval-valued fluents

The epistemicK-fluent that we discussed previously allowed us to express a character’s uncertainty about the value of
a fluent in its world. Unfortunately, in section 3.8.3 we saw there were implementation problems associated with trying
to represent a character’s knowledge of the initial situation. Fortunately, in the previous section we saw that intervals
also allow us to express uncertainty about a quantity. Moreover, they allow us to do so in a way that circumvents the
problem of how to represent infinite quantities with a finite number of bits. It is, therefore, natural to ask whether we
can also use intervals to replace the troublesome epistemicK-fluent.

The answer, as we shall seek to demonstrate in the remainder of this chapter, is a resounding “yes”. In particu-
lar, we shall introduce new epistemic fluents that will be interval-valued. They will be used to represent a character’s
uncertainty about the value of certain non-epistemic fluents.

We have previously used functional fluents that take on values in any of the number systems:B, R, etc. There is
nothing noteworthy about now allowing fluents that take on values in any of the interval numbers systems:IB, IR.
Firstly, let us distinguish those regular fluents whose value maybe learned through a knowledge-producing action. We
term such fluentssensory fluents. Now, for each sensory fluentf , we introduce a new corresponding interval-valued
epistemic (IVE ) fluentIf .

For example, we can introduce an IVE fluentItemp : SITUATION → IR?+ . We can now use the intervalItemp(S0) =
〈10, 50〉 to state that the temperature is initially between 10 and 50 Kelvin. Similarly, we can even specify that the
temperature is initially completely unknown:Itemp(S0) = 〈0,∞〉.

Our ultimate aim is that in an implementation we can use IVE fluents to completely replace the troublesomeK-
fluent. Nevertheless, within our mathematical theory, there is nothing to prevent our IVE fluents co-existing with our
previous sole epistemicK-fluent. Indeed, if we define everything correctly then there are many important relationships
that should hold between the two. These relationships take the form of state constraints and, as we shall show, can be
used to express the notion of validity and optimality of our IVE fluents. If these state constraints are maintained as
actions are performed then the IVE fluents completely subsume the troublesomeK-fluent. This will turn out to be true
until we consider knowledge of general terms. In which case we can maintain validity but may have to sacrifice our
original notion of optimality (see section 3.13).

Seeking to make IVE fluent ubiquitous necessitates an alternative definition forKnows that does not mention the
K-fluent. To this end, we introduce a new abbreviation,IKnows such that for any termτ , IKnows (τ, s) = 〈u, v〉 means
thatτ ’s interval valueis 〈u, v〉. By “interval value” we mean the value we get by evaluating the expression according
the set of rules that we shall discuss in section 3.13. For now, let us just consider the case whenτ is some fluentf . When
f is a sensory fluent thenIKnows is the value of the corresponding IVE fluent, otherwise it is completely unknown:

IKnows (f, s) =
{ If (s) if f is a sensory fluent,

〈⊥,>〉 otherwise.
(3.10)

We now take the important step of redefiningKnows to be the special case whenIKnows (τ, s) has collapsed to a
thin interval:

Knows′ (τ = c, s) ⇔ IKnows (τ, s) = 〈c, c〉. (3.11)

The definitions ofKref , andKwhether are now in terms of the new definition forKnows′ . As required, this new defi-
nition does not involve the problematic epistemicK-fluent.

We are now in a position to define what it means for an IVE fluent to be valid:

Definition 3.10.1 (Validity). For every sensory fluentf , we say that the corresponding IVE fluentIf is avalid interval
if f ’s value in all of theK-related situations is contained within it:

∀s, s′ K(s′, s) ⇒ f(s′) ∈ If (s).

Note that since we have a logic of knowledge (as opposed to belief) we have that every situation isK-related to
itself: ∀s K(s, s). Thus, as an immediate consequence of definition 3.10.1, we have that if an IVE fluentIf is valid
then it contains the value off : ∀s f(s) ∈ If (s).
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The validity criterion is a state constraint that ensures the interval value of the IVE fluents is wide enough to contain
all the possible values of the sensory fluents. It does not however prevent intervals from being excessively wide. For
example, the interval〈−∞,∞〉 is a valid interval for any IVE fluent that takes on values inIR? . The notion of narrow
intervals is captured in the definition of optimality:

Definition 3.10.2 (Optimality). A valid IVE fluentIf is alsooptimal if it is the smallest valid interval:

∀ y, s, s′ K(s′, s) ⇒ (f(s′) ∈ y ⇒ If (s) ⊆ y).

3.11 Correctness

In this section we shall consider some of the consequences and applications of interval-valued fluents to formalizing
sensing under various different assumptions. Our goal will be to show that we can maintain valid and optimal intervals
as we perform actions. The first step will be to define successor state axioms for IVE fluents. This is done in much the
same way as it was for regular fluents. For example, suppose we have a perfect sensor, then the following successor-
state axiom states that after sensing, we “know” the temperature in the resulting situation

Poss (a, s) ⇒ [Itemp(do(a, s)) = y ⇔
(a = senseTemp ∧ y = y = temp(s)) ∨ (a 6= senseTemp ∧ Itemp(s) = y)]. (3.12)

Now let us consider the case in general. Firstly, we note that there is always an initial valid IVE fluent.

Lemma 3.11.1.For any initial situationS0 and sensory fluentf we have thatIf = 〈⊥,>〉 is a valid interval.

Proof. The proof of the theorem is immediate from the fact that, by definition,〈⊥,>〉 bounds any possible value for
f . So in particular it bounds all the valuesf can take in all the initialK-related situations.

It is also the case that there will usually be an initial optimal interval.

Lemma 3.11.2. If the initial set ofK-related situations is either completely unspecified or specified with maximally
restrictive inequalities then we can find an initial optimal IVE fluent for each of the sensory fluents.

Proof. Case (i) The initial set ofK-related situations is completely unspecified. That is, we are initially completely
ignorant of a sensory fluentf ’s value. Then, the maximal interval is also clearly optimal. That is,〈⊥,>〉 is the
only interval that bounds all possible values forf in the initial K-related situations. Since it is the unique valid
interval it must, by definition, be an optimal interval.

Case (ii) We have a specification such as

(∀s′ K(s′, S0) ⇒ u 6 f(s′) 6 v) ∧
¬∃ u′, v′ [u < u′ ∧ v′ < v ∧ (∀s′ K(s′, S0) ⇒ u′ 6 f(s′) 6 v′)]

Then, considerIf (S0) = 〈u, v〉. As required, this is clearly the smallest valid interval.

In what follows we make the three following assumptions about all sensory fluentsf :

1. The value ofIf , in the initial situation, is optimal and valid. This assumption is justified by lemma 3.11.1 and
3.11.2.

2. The successor-state axiom forf is such thatf remains constant:

Poss (a, s) ⇒ [f(do(a, s)) = f(s)]. (3.13)

-  -



Chapter 3 Theoretical Basis

3. The successor-state axioms for each of the corresponding IVE fluentsIf are of the form:

Poss (a, s) ⇒ [If (do(a, s)) = y ⇔
(a = sensef ∧ y = y = f(s)) ∨ (a 6= sensef ∧ If (s) = y)]. (3.14)

We can now state our main correctness result.

Theorem 3.11.1.With the above assumptions, for all situationss, and sensory fluentsf , every IVE fluentIf is valid
and optimal.

Proof. We shall prove the result by induction ons. We note that the base case follows by assumption 1. Therefore, we
need only consider the case whens? = do(a, s).

By induction we may assume that
∀s′ K(s′, s) ⇒ f(s′) ∈ If (s),

and thatIf (s) is optimal. We seek to prove that

∀s′′ K(s′′, s?) ⇒ f(s′′) ∈ If (s?), (3.15)

and thatIf (s?) is optimal.

Case (i) Consider the case whena 6= sensef . Let us fix as′′ such thatK(s′′, s?). Note that sinceK is reflexive we can
be sure that such as′′ exists. Therefore, by the successor state axiom forK (equation 3.6) there is ans′ such that

s′′ = do(a, s′) ∧ K(s′, s).

By induction we can thus infer that
f(s′) ∈ If (s).

Now by the successor state axiom forf (equation 3.13) we have thatf(s′′) = f(s′), which gives us that

f(s′′) ∈ If (s).

Then by the successor state axiom forIf (equation 3.14)If (s?) = If (s), we have that

f(s′′) ∈ If (s?),

as required for validity. This also shows that to be a valid interval forIf (s?) the interval must also be a valid
interval forIf (s). Now by the assumption of optimality any interval narrower thanIf (s) would no longer be
valid. Therefore,If (s) is also the narrowest valid interval forIf (s?).

Case (ii) Similarly, whena = sensef then by the successor state axiom forK (equation 3.6), there is ans′ such that

s′′ = do(a, s′) ∧ K(s′, s) ∧ f(s′) = f(s).

Therefore,
f(s′) ∈ 〈f(s), f(s)〉.

Now by the successor state axiom forf (equation 3.13) we have thatf(s′′) = f(s′), which gives us that

f(s′′) ∈ 〈f(s), f(s)〉.

Then by the successor state axiom forIf (equation 3.14)If (s?) = 〈f(s), f(s)〉, we have that

f(s′′) ∈ If (s?).

as required for validity. To show optimality consider that the width of〈f(s), f(s)〉 is 0. Therefore, there can be
no narrower interval and so the interval must also be optimal.
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As a corollary we have that the definition ofKnows given in equation 3.3 is equivalent to the one given in equation
3.11.

Corollary 3.11.1. For any sensory fluentf we have that:

Knows (f = c, s) ⇔ Knows′ (f = c, s).

Proof. Let us assumeKnows (f = c, s). By equation 3.3 this is equivalent to:

∀s′ K(s′, s) ⇒ f(s′) = c.

Now by theorem 3.11.1,If is valid and optimal, thereforeIf (s) = 〈c, c〉, which by equation 3.11 is the definition of
Knows′ (f = c, s).

Now let us assumeKnows′ (f = c, s), then by equation 3.11 we have thatIf (s) = 〈c, c〉. Once again by applying
theorem 3.11.1 we must have that

∀s′ K(s′, s) ⇒ f(s′) ∈ 〈c, c〉.
Since〈c, c〉 has width0 we can re-write this as:

∀s′ K(s′, s) ⇒ f(s′) = c,

which by equation 3.3 is the definition ofKnows (f = c, s), as required.

In [98] a number of correctness results are proven forKnows . The above equivalence means that under the current
set of assumptions the correctness results carry over forKnows′ .

3.12 Operators for interval arithmetic

Back in section 3.8.3 one of our original motivations for introducing intervals was the promise of being able to con-
veniently calculate what we know about a term from our knowledge of its subcomponents. For example, suppose in a
situations we know the value of a fluentf(s), what do we know about(f(s))2?

The answer to this question leads us to the large and active research area of interval arithmetic. The fundamental
principle used is that interval versions of a given function should be guaranteed to bound all possible values of the
non-interval version. For example, let us consider a functionφ : R → R. The interval version of this function is
Iφ : IR → IR. The result of applyingIφ to some intervalx is another intervaly = Iφ(x). We say that they is a
valid interval if for every pointx ∈ x, we have thatφ(x) ∈ y. Note also that for any valid intervaly, if y ⊆ y′ then,
y′ is also a valid interval. If, for every intervalx, Iφ(x) gives a valid interval then we say thatIφ is asound interval
versionof φ.

As we might expect from our previous discussions defining a sound interval version of any function is trivial. In
particular, we just let the interval version return the maximal interval of the relevant number system. For example, the
function that, for any argument, returns〈−∞,∞〉 is a sound interval version of any functionφ : R → R.

Hence, we see that once again we also need to be concerned about returning intervals that are as narrow as possible.
Theoptimal interval versionof a functionφ is thus defined to be thesound interval versionthat, for every argument,
returns the smallest valid interval. Unfortunately, for most interesting functions, no such interval versions are known
to exist. There are three basic approaches that have been found to address this shortcoming:

Special Forms Consider the expressiont+(50− t). If we naı̈vely evaluate this expression for the interval〈0, 50〉 we
get back the interval〈0, 100〉. It is clear, however, that the expression simplifies to50 and the optimal interval is
thus〈50, 50〉. Therefore, researchers have looked at various standard forms for expressions in an attempt to give
better results when evaluating the expression using intervals. In general, however, not only is there no known
optimal form but there is also no known single form that is always guaranteed to give the best result. The closest
researchers have been able to do so far is the so called “centered forms” [1].
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Subdivision The standard tool in the interval arithmetic arsenal is subdivision. Suppose we have an intervalx and we
evaluateIφ(x) to give us an interval that is too wide. Then we subdividex intoxl andxr such thatx = xl∪xr.
We then evaluate each half separately in the hope thatIφ(xl)∪Iφ(xr) ⊂ Iφ(x). In practice this usually works
well although in theory the functions can be noncomputable in which case any hopes of refining our intervals
vanish.

Linear intervals The final approach we mention is a new approach that was recently invented by Jeffrey Tupper [115].
The idea is that instead of using constants to bound an interval we use linear functions. Thus for linear expres-
sions, such ast + (50 − t), we can define operators that are guaranteed to return optimal intervals. Of course,
we can then recreate similar problems by considering quadratic expressions but Tupper also shows how we can
generalize interval arithmetic all the way up to intervals that use general Turing machines as bounds!

3.13 Knowledge of terms

Back in section 3.10 we introduced the abbreviationIKnows . In equation 3.10 we definedIKnows for fluents and in what
follows we shall show how to defineIKnows for general terms. We begin by stating what it means for our definitions
to be valid.

Definition 3.13.1 (Validity for terms). For every termτ , we say that the corresponding interval value of the term
given byIKnows (τ, s) is a valid interval if τ ’s value in all of theK-related situations is contained within it:

∀s, s′ K(s′, s) ⇒ τ [s′] ∈ IKnows (τ, s).

Fortunately, the general notion of soundness for interval arithmetic carries over into our notion of validity for a
IKnows .

Theorem 3.13.1.SupposeIφ is a sound interval version of ann-ary functionφ : Xn → X. Furthermore, letx0, . . . ,
xn−1 ∈ IX be, respectively, valid intervals forIKnows (τ0, s), . . . , IKnows (τn−1, s). Then,Iφ(x0, . . . , xn−1) is a valid
interval forIKnows (φ(τ0, . . . , τn−1), s).

Proof. Suppose the theorem is false. ThenIφ(x0, . . . , xn−1) is not a valid interval forIKnows (φ(τ0, . . . , τn−1), s).
That is,

∀s′ K(s′, s) ⇒ φ(τ0[s′], . . . , τn−1[s′]) ∈ Iφ(x0, . . . , xn−1),

is false. That is, for someK-related situations′ we have that

φ(τ0[s′], . . . , τn−1[s′]) /∈ Iφ(x0, . . . , xn−1).

This, however, violates the assumption thatIφ is a sound interval version ofφ.

The important consequence of this theorem is that our definition ofIKnows for terms can stand upon the shoulders
of previous work in interval arithmetic. That is, we can defineIKnows recursively in terms of sound interval versions
of functions. Assuming the same assumptions as in theorem 3.13.1 we have that

IKnows (φ(τ0, . . . , τn−1), s) = Iφ(x0, . . . , xn−1).

Note that some of our functions may be written usinginfix notation, in which case we may refer to them asoperators.
The important aspect of this definition is that we do not have to redesign a plethora of operators for interval arithmetic
and prove each of them sound. In the previous section we noted the difficulties associated with defining optimal versions
of operators. We also noted that there are a number of ways to deal with the problem. Each of the methods we outlines
maintains validity and is thus appropriate for us to use. Which particular method we choose to narrow our intervals can
be thought of as an implementation issue for our approach.
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3.14 Usefulness

For a long list of useful operators for interval arithmetic the reader could do no worse than to consult [115]. By way of
example, however, we shall list some useful operators forIB. Interval versions of operators, and relations, are given
in bold. Elsewhere, we rely on context to imply the intended meaning.

Definition 3.14.1 (Operators forIB).

τ = 〈u, v〉 ⇔ ¬τ = 〈¬v,¬u〉
τ0 = 〈u0, v0〉 ∧ τ1 = 〈u1, v1〉 ⇒ τ0 ∧ τ1 ⊆ 〈u0 ∧ u1, v0 ∧ v1〉

τ0 ∧ τ1 = 〈u, v〉 ⇒ τ0 ⊆ 〈u, 1〉
τ0 = 〈u0, v0〉 ∧ τ1 = 〈u1, v1〉 ⇒ τ0 ∨ τ1 ⊆ 〈u0 ∨ u1, v0 ∨ v1〉

τ0 ∨ τ1 = 〈u, v〉 ⇒ τ0 ⊆ 〈0, v〉
[∃x τ(x)] = 〈u, v〉 ⇒ τ(c) ⊆ 〈0, v〉, for any constantc

For some constantc, τ(c) = 〈u, v〉 ⇒ [∃x τ(x)] ⊆ 〈u, 1〉
[∀x τ(x)] = 〈u, v〉 ⇒ τ(c) ⊆ 〈u, 1〉, for any constantc

For some constantc, τ(c) = 〈u, v〉 ⇒ [∀x τ(x)] ⊆ 〈0, v〉

These definitions enable us to evaluateIKnows for terms taking on values inB. Notice however that most of the
definitions are in terms of⊆. This is because we can, in general, only guarantee valid results, not optimal ones. For
example, if we assumeτ = 〈0, 1〉 then we get thatτ ∨¬τ ⊆ 〈0, 1〉. While this is valid, it is clearly not optimal. Since
there are only two numbers inB we can subdivide to perform an exhaustive search for the optimal value. That is, let
τ = τ0 ∪ τ1, whereτ0 = 〈0, 0〉, andτ1 = 〈1, 1〉. Now we get thatτ0 ∨¬τ0 = 〈1, 1〉, andτ1 ∨¬τ1 = 〈1, 1〉. With more
variables the exhaustive search approach has worst case exponential complexity. In general it may be observed that if
each variable occurs only once in an expression then evaluating it will yield an optimal result. Also if we start with
thin intervals then we will also get an optimal result. Finally, for a propositional formula in Blake canonical form [22]
evaluation with intervalsalwaysyields an optimal result [53]. Moreover, all propositional formulas can be converted
to this form. Thus we can evaluate propositional formulas in linear time and get optimal results. The catch is that
converting propositional formulas to Blake canonical form is NP-hard.

When we consider quantifiers the above rules would not form the basis of a particularly useful procedure for eval-
uating expressions. We recall that the simplest correct procedure would be the one that always just returns the interval
〈0, 1〉. For queries containing quantifiers the procedure that follows from the above rules is almost as useless, except
that it works adequately when tell it about a specific instance. It is important to bear in mind however that, in general,
we are dealing with problems that are not even computable. Consequently foranyfinite set of rules there will always
be problems for which we can do no better than return the maximal interval. One immediate consequence of this is that
designers of interval arithmetic packages never need worry about unemployment! Regardless, the rules given above
certainly suffice as a simple starting point.

Therefore, as we should expect, intervals do not provide us with a means to magically circumvent complexity prob-
lems. What they do provide, however, is the ability to track our progress in solving a problem. For the majority of real
world problems, where exact knowledge is not imperative, this will often allow us to stop early once we have a “narrow
enough” interval. At the very least we can give up early if convergence is too slow. This should be contrasted to other
methods of evaluating expressions where we can never be sure whether the method is completely stuck, or is just about
to return the solution.

Let us now consider some more examples in which our interval arithmetic approach can be shown to be useful and
valid. We begin with a simple example. Suppose we have two relational fluentsP , andQ, and that we knowP is true
or we knowQ is true:

Knows (P, s) ∨ Knows (Q, s).

Using theK-fluent it is not hard to see that this implies that we knowP or Q:

Knows (P ∨ Q, s).
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Proof. The proof involves expanding out the definition ofKnows :

Knows (P, s) ∨ Knows (Q, s) , (∀s′ K(s′, s) ⇒ P (s′)) ∨ (∀s′′ K(s′′, s) ⇒ P (s′′)),

and then proceeding by case analysis. First consider the case when:

∀s′ K(s′, s) ⇒ P (s′).

Then we can weaken the postcondition to give:

∀s′ K(s′, s) ⇒ P (s′) ∨ Q(s′).

The other case is symmetrical, and the result follows from the definition ofKnows given in equation 3.3.

It is also not hard to see that the implication doesnot hold the other way around. As a counter example, consider the
case when we have exactly twoK-related situations:sa andsb, such that:P (sa), ¬Q(sa), ¬P (sb) andQ(sb).

Now consider the same example using interval-fluents. Once again we can easily prove that:

Knows′ (P, s) ∨ Knows′ (Q, s) ⇒ Knows′ (P ∨ Q, s).

Proof. We begin by expanding out definitions:

IKnows (P, s) = 〈1, 1〉 ∨ IKnows (Q, s) = 〈1, 1〉,
and proceed by case analysis. When:

IKnows (P, s) = 〈1, 1〉,
from definitions 3.14.1 we have that:

IKnows (P ∨ Q, s) = 〈1, 1〉.
The other case is symmetrical, and the result follows from the definition ofKnows′ given in equation 3.11.

Conversely, if we start from the assumption:

Knows′ (P ∨ Q, s) , IKnows (P ∨ Q, s) = 〈1, 1〉.
Then, all the definitions 3.14.1 allow us to conclude is tautologies, namely thatIKnows (P, s) ⊆ 〈0, 1〉 andIKnows (Q, s)
⊆ 〈0, 1〉. That is we can say nothing about our knowledge ofP or our knowledge ofQ. So, as we should hope, the
implication doesnothold the other way around.

Let us now consider some more examples. Consider knowingP to be false:Knows (¬P, s) versus not knowingP :
¬Knows (P, s). Firstly, if we assume thatK is reflexive, then we have that:

Knows (¬P, s) ⇒ ¬Knows (P, s)

Proof. The proof is straightforward: We don’t knowP if in at least one of theK-related worldsP is false. So, ifP is
false in all theK-related worlds the result follows. We just have to be careful that there are anyK-related worlds at all.
This can be inferred from the fact thatK is reflexive, soK(s, s).

The implication clearly does not hold in the other direction.

Likewise, we have that:
Knows′ (¬P, s) ⇒ ¬Knows′ (P, s)

Proof.

Knows′ (¬P, s)
, IKnows (¬P, s) = 〈1, 1〉
⇒ IKnows (P, s) = 〈0, 0〉
⇒ IKnows (P, s) 6= 〈1, 1〉
⇒ ¬IKnows (P, s) = 〈1, 1〉
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And conversely

¬Knows′ (P, s)
, ¬IKnows (P, s) = 〈1, 1〉
⇒ IKnows (P, s) = 〈0, 0〉 ∨ IKnows (P, s) = 〈0, 1〉

case (i)

IKnows (P, s) = 〈0, 0〉
⇒ IKnows (¬P, s) = 〈1, 1〉

but for case (ii)

IKnows (P, s) = 〈0, 1〉
⇒ IKnows (¬P, s) = 〈0, 1〉

so as we should hope the implication does not hold the other way around.

Now, consider the example of∃x Knows (P (x), s), versusKnows (∃x P (x), s).
Firstly we have that

∃x Knows (P (x), s) ⇒ Knows (∃x P (x), s)

Proof. Knows (∃x P (x), s) holds if in eachK-related situations′ there is a constantcs′ such thatP (cs′ , s′) holds. Note,
the constantcs′ that makesP (x, s) true can be a different constant in eachs′. Our assumption, however, is that there
is some constantc such thatP (c, s′) holds in everyK-related situations′. Therefore, in eachK-related situations′, we
can simply setc = cs′ , and the result follows.

The implication clearly does not hold in the other direction.

Now consider the same example using intervals. We also have that:

∃x Knows′ (P (x), s) ⇒ Knows′ (∃x P (x), s)

Proof.

∃x Knows′ (P (x), s)
, ∃x IKnows (P (x), s) = 〈1, 1〉

Then, for some constantc, we have that

IKnows (P (c), s) = 〈1, 1〉
⇒ IKnows (∃x P (x), s) ⊆ 〈1, 1〉
⇒ IKnows (∃x P (x), s) = 〈1, 1〉

In the other direction we have that:

Knows′ (∃x P (x), s)
, IKnows (∃x P (x), s) = 〈1, 1〉
⇒ IKnows (P (c), s) ⊆ 〈0, 1〉

Which is a tautology, from which we can (rightly) conclude nothing.

Finally, in section 3.8.3 we saw that we could make deductions based onmodus ponens. Fortunately, we can perform
similar reasoning with intervals.
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Theorem 3.14.1.Let τ0 and τ1 be terms for that take on values inB, such that〈u, v〉 is a valid interval value for
IKnows (τ0, s), andτ0[s] ⇒ τ1[s]. Then,IKnows (τ1, s) ⊆ 〈u, 1〉.

Proof. Since〈u, v〉 is a valid value forIKnows (τ0, s), by definition 3.13.1, we have that

IKnows (τ0, s) = 〈u, v〉 , ∀s′ K(s′, s) ⇒ τ0[s′] ∈ 〈u, v〉.

In particular,uτ0[s′]. Also, by the assumption thatτ0[s] ⇒ τ1[s] we have thatτ0[s′] 6 τ1[s′]. Hence,u 6
τ0[s′]τ1[s′] 6 1, to give us that

∀s′ K(s′, s) ⇒ τ1[s′] ∈ 〈u, 1〉.
Therefore, by definition 3.13.1,〈u, 1〉 is a valid interval forIKnows (τ1, s), as required.

3.15 Inaccurate Sensors

In [6], theK-fluent approach is extended to handle noisy sensors. It is worth noting that by redefiningKnows we can
also easily extend our approach to allow for inaccurate sensors. We may say that we know a fluent’s value to within
some∆, if the width of the interval is less than twice∆:

Knows (∆, f = z, s) , If (s) ⊆ 〈z − ∆, z + ∆〉. (3.16)

If we have a bound of±∆ on the greatest possible error for the sensor that recorded yesterday’s temperature then
we can state that the value sensed for the temperature is within±∆ of the actual value:

Poss (a, s) ⇒ [Itemp(do(a, s)) = 〈u, v〉 ⇔
(a = senseTemp ∧ u = max(0, temp(s) − ∆) ∧ v = temp(s) + ∆) ∨

(a 6= senseTemp ∧ Itemp(s) = 〈u, v〉)]. (3.17)

3.16 Sensing Changing Values

Until now, we only considered sensing fluents whose value remains constant. In [98] once a fluent becomes known
then it stays known. That is, if the value of a known fluent changes then the character will automatically know the
fluents new value. In many cases this is somewhat counterintuitive. For example, if one has checked the temperature
once then it is quite natural to assume that after a certain period of time the information may be out of date. That is, we
would expect to have to sense the temperature periodically.

Using the epistemicK-fluent to model information becoming out of date corresponds to adding possible worlds
back in. Unfortunately, theK-fluent keeps track of a character’s knowledge of all the sensory fluents all at once. It
can therefore be hard to specify exactly which worlds the character should be adding back into its consideration. In
contrast, with intervals there is nothing noteworthy about allowing the particular relevant interval to expand. We must
simply ensure that our axioms maintain the state constraint that the interval bounds the actual value of the fluent.

At the extreme we can extend our approach to handle fluents that are constantly changing in unpredictable ways.
We can model this with exogenous actions. We assume that the current temperature changes in a completely erratic
and unpredictable way, according to some exogenous actionsetTemp. Then, we can write a successor-state axiom for
temp that simply states that the temperature is whatever it was set to:

Poss (a, s) ⇒ temp(do(a, s)) = z ⇔
[(a = setTemp(z)) ∨ (a 6= setTemp ∧ temp(s) = z)].

We can, also, write a successor state axiom forItemp. In particular, if we again assume accurate sensors, we can state
that the temperature is known after sensing it, otherwise, it is completely unknown:

-  -



Extensions 3§17

Poss (a, s) ⇒ [Itemp(do(a, s)) = 〈u, v〉 ⇔
(a = senseTemp ∧ u = v = temp(s)) ∨ (a 6= senseTemp ∧ u = 0 ∧ v = ∞)]. (3.18)

Note that this definition works because, by definition,∀s temp(s) ∈ 〈0,∞〉. At first glance it may appear strange that
we have, for example,Itemp(do(setTemp(2), s)) = 〈0,∞〉. Upon reflection, however, the reader will hopefully recall
that our intention is to use the IVE fluents to model a character’s knowledge of its world. Therefore, until sensing, the
character rightly remains oblivious as to the effect of the exogenous actionsetTemp. For the fluent that keeps track of
the temperature in the virtual world we of course get thattemp(do(setTemp(2), s)) = 2.

If we have a bound on the maximum rate of temperature change, per unit time, to be∆temp, and we add the ability
to track the time to our axiomatization, then we can do a lot better. Suppose we have an actiontick that occurs once per
unit of time. Moreover, we limit exogenous actions to only occurring directly before a tick action. Then we can have
a successor-state axiom that states the temperature is known after sensing; or after a period of time it is known to have
changed by less than some maximum amount; otherwise it is unchanged:

Poss (a, s) ⇒ [Itemp(do(a, s)) = 〈u, v〉 ⇔
(a = senseTemp ∧ u = v = temp(s)) ∨

(a = tick ∧ ∃up, vp Itemp(s) = 〈up, vp〉 ∧
u = max(0, up − ∆temp) ∧ v = vp + ∆temp) ∨

(a 6= senseTemp ∧ a 6= tick ∧ Itemp(s) = 〈u, v〉]. (3.19)

Note that, this example relies on the underlying notion of discrete change within the situation calculus.

3.17 Extensions

For the case of knowledge of fluents, we have shown that our approach is comparable to previous approaches. The
advantages we are claiming for our approach is that it is simple to understand, easy and natural to extend, and trivial
to implement.

Beyond this, there are other areas of possible extensions to the situation calculus that we may benefit from con-
sidering. We have achieved all the results in this thesis without these extensions. Therefore, we do not consider these
extensions essential to producing animations. For each of the extensions, we shall explain why.

Continuous ProcessesIn [91], the situation calculus is extended to provide a representation of time and event occur-
rences. This is done by defining a time line corresponding to a sequence, beginning withS0, of situations. The
sequence of situations, calledactual situationsare totally ordered, and the actions which lead to different actual
situations are said to haveoccurred. For physics-based applications, such an extension would allow us to con-
sider giving our characters some knowledge about the underlying physics. However, for applications in which
continuous processes might be a useful abstraction we have concentrated on very high-level discrete behavior.
That is, it seems reasonable to discretize the world when performing high-level planning tasks. The resulting
actions can then embed the smooth actions that are required to make things look more realistic.

It is worth pointing out that we can use complex actions to simulate continuous actions. This finite differential
approach is standard practice in writing programs that perform mathematical computation. For example, suppose
we have a would-be continuous actioncontinuousMove, then we can define this as a procedure something like the
following:

proc continuousMove

while ¬Arrived do

moveALittleBit o
9

od

end
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Concurrency The notion of concurrent actions are introduced into the situation calculus in [66]. Concurrency is han-
dled by interleaving. For example, we say that the concurrent execution ofload andaim occurs between two states
if and only if bothload andaim occur, interleaved in some fashion, between the two states.

In all our animations containing multiple characters, each character is autonomous. Thus, we have emergent
concurrent behavior. The point is that we do not explicitlyspecifythe concurrent behavior anywhere. While it
would clearly be interesting and useful to add such an ability, emergent behavior is a powerful, albeit clumsy tool.
It is widely hailed as a feature in other works in behavior animation, and so we shall, with the above qualification,
adopt the same stance.

Mental States Above, we discussed knowledge-producing actions. There remain, however, a wealth of additional
difficult concepts to consider, such as goals and intentions [35, 100], hysteresis, memory [69] etc.

Once again, it is not the case that our characters do not have intentions, goals, etc. It is just that they are not
explicitly represented by the character in a manner that would allow them to reason about them. Given that pre-
vious work in the field has not made any attempt to explicitly represent any aspect of character behavior, we feel
that our work is an important step in the right direction. More complicated and open problems in knowledge
representation can certainly wait for our attention.

User Interaction It is worth pointing out that an understanding of the underlying mathematics is not required of a
user seeking to build a character with our approach. That is, it is possible to add some “syntactic sugar” to make
an interaction language that is much closer to English. This will be much easier to use for nonmathematically
minded users but will still have a clear mapping to the situation calculus.

It is a simple matter to change the lexical analyzer and parser to accommodate changes of syntax in the input
language. Of course, moving further along this path toward natural language interaction is a far more challenging
problem. It is also a problem that is a large and distinct research area. We prefer, therefore, to concentrate on the
underlying mechanism a character may use to represent knowledge of its virtual world. We leave user interface
design and natural language processing to those better qualified for its pursuit.
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Kinematic Applications

In this chapter we shall first introduce how the situation calculus can be used in computer animation. We choose kine-
matic animation as our initial application because it provides a cleaner canvas for our exposition. One of our main
aims in this chapter is to demonstrate how we can use nondeterminism to succinctly specify controllers. The exam-
ples we employ will be of increasing complexity and this will lead us in smoothly to chapter 5 where we will discuss
physics-based applications.

4.1 Methodology

It should not be surprising that the situation calculus can be used within the context of kinematic animation. There
are no obvious impediments to using the facts that are true of a given situation to directly drive an animation. That is,
by introducing fluents for any property that we wish to visualize, it is straightforward to produce an animation. For
example, we can introduce fluents for position, and orientation and then define successor state axioms to describe how
they change over time.

4.2 Example

Our first example is of some brightly colored airplanes flying in an interesting pattern. The first step in our formalization
is to define some fluents, the intended use of which is alluded to by their names.

speed(s) − the plane’s angular velocity around a unit circle
theta(s) − the plane’s angular displacement about a unit circle
posx(s) − the plane’s position
posy(s)
posz(s)
angle(s) − the plane’s angle of rotation about thez-axis

The only action in our ontology is:
update − updates all the fluents

The pre-condition axioms state that the actions are always possible, so we shall omit them. The successor state axioms
state that after each update action the angle is incremented by the current angular velocity, and that the angular velocity
stays constant.

Poss (a, s) ⇒ [theta(do(a, s)) = θnew ⇔ ∃θold, θnew, θ̇ theta(s) = θold ∧ speed(s) = θ̇ ∧
((a = update ∧ θnew = θold + θ̇) ∨ (θnew = θold))];

Poss (a, s) ⇒ [speed(do(a, s)) = speed(s)]
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The initial state is given as:

∃x, y speed(S0) = y ∧ random()= x ∧
((Even(x) ∧ y =

k0 + x mod k0

k1
) ∨ (Odd(x) ∧ y = −k0 + x mod k0

k1
))

theta(S0) = k2random()mod k3

In this simple example the remaining fluents are justdefinedfluents. That is, they are defined entirely in terms of the
previously mentioned fluents and are not mentioned in other definitions. Thus in any formula they can always be re-
placed, without fear of causing problems, by their definition. The definitions are designed to result in an interesting
flight pattern when(posx(s), posy(s), posz(s)) is used for the plane’s position andangle(s) gives the plane’s rotation
around thez-axis.

posx(s) , k4 sin(k5theta(s))
posy(s) , k6 sin(k7theta(s))
posz(s) , k8 + k9 cos(theta(s))
angle(s) , k10

|speed(s)|+speed(s)

k11|speed(s)| + k12(k13 sin(theta) − k14)

The following complex action can then be used to generate the required animation:

while (true) do

update o
9

end

We can easily extend the example to multiple planes by indexingall the fluents. So, for example,theta(i, s) is the angular
displacement of planei. Our formalization was based on the existing code written by Kilgard as a demonstration of
OpenGLr [125]. Figure 4.1 shows some frames from an animation. The values for the constantski used to generate
the animation were as follows:

k0 = 20, k1 = 1000, k2 = 1111
10000 ,

k3 = 257, k4 = 4, k5 = 2,
k6 = 3, k7 = 17

5 , k8 = −9,
k9 = 4, k10 = 180, k11 = 2,
k12 = 180

π , k13 = (arctan2 + π
2 ), k14 = π

2 .

4.3 Utilizing Non-determinism

In the above example every detail of the character’s behavior is completely specified. One of the key advantages to
our approach, however, is the ability to omit details from the behavioral specifications and have the computer fill in
the details. That is, the logical basis of our specifications allows us to give our characters reasoning abilities, to auto-
matically fill in some details that we may choose to omit. This makes it straightforward to build, reconfigure or extend
the behavior control system of the creatures. It is ideal for applications where animations need only be generated once
using powerful computers. When, as with computer games, we wish to build fast, reusable behavioral controllers our
approach lends itself to a incremental style of development. The developer can quickly, and easily generate prototypes
using high-level specifications. The creatures can use their background knowledge and reasoning abilities to automat-
ically fill in the low-level details. Then, if required, the specifications can be refined to be more efficient. This is done
by adding, in a form that is chosen to be similar to conventional programming constructs, control information to direct
the character’s search for appropriate behavior. The control information is like a “sketch plan” of how the agent should
behave. We shall often refer to the sketch plans as “advice”, by which we simply mean that our instructions constrain
the search area in which the character looks for suitable behavior.
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Figure 4.1: Some frames from a simple airplane animation.

4.4 Another example

For our second example we shall retain the previous geometric model but try to tackle a more complicated task than
flying around in a pretty pattern. We shall choose a classic maze solving problem as our vehicle of erudition.

Let us suppose we have a maze defined by a predicateFree(c), that holds when and only when the grid cellc is
“free”. That is it is within range and is not occupied by an obstacle:

Free(c) ⇔ InRange(c) ∧ ¬Occupied(c), where

InRange((x, y)) ⇔ 0 6 x < sizex ∧ 0 6 y < sizey

Occupied(c), sizex, andsizey each depend upon the maze in question. In addition, there two maze dependent constants
start andexit that specify the entry and exit points of a maze. Figure 4.2 shows a simple maze and the corresponding
definition.

start

exit

exit = (2, 2)

sizex = 3

Occupied = (1, 1)

sizey = 3

start = (0, 0)

Figure 4.2: A simple maze.

We also need to define some functions that describe a path within the maze. We say that the adjacent cell “north”
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of a given cell is the one directly above it, similarly for “south”, “east” and “west”.

adjacent((x, y), d) =




(x + 1, y) if d = north
(x − 1, y) if d = south
(x, y + 1) if d = east
(x, y − 1) if d = west

This completes the axiomatization of the background domain.

We now introduce a fluentposition that gives the position in the current situation. The list of cells visited so far is
given by the defined fluentvisited(s). It is defined recursively on the situation to be the list of all the positions in previous
situations.1

visited(S0) , []

visited(do(a, s)) ,
{

[position(s)|visited(s)] if ∃d a = move(d)
visited(s) otherwise

For example, in figure 4.3, whens = do(move(east), do(move(east), do(move(north), S0))), we have thatposition(s) =
(2, 1), and thatvisited(s) = [(2, 0), (1, 0), (0, 0)].

0

0 1

1

2

2

Figure 4.3: Visited cells.

Next we introduce a move actionmove(d), that corresponds to moving in directiond. It is possible to move to a
new cell provided it is free and has not been visited before.

Poss (move(d, s)) ⇔ ∃c c = adjacent(position(s), d) ∧ Free(c) ∧ c /∈ visited(s)

So for example, in figure 4.5, if we have previously been to the location marked with the filled dot, and in situations
the character is at the location marked with the unfilled dot, then it is only possible to movenorth, south or east:

∃d Poss (move(d), s) ⇔ d = north ∨ d = south ∨ d = east

It is important to note that, in general, it is possible to move to more than one cell. This fact will be exploited later
on in the specification of a path through the maze. In contrast, as in figure 4.4, it may be the case that is only possible
to move in one particular direction.

The successor state axiom forposition is given below. It states that, provided the action is possible, the position after
performing a move action is the cell adjacent to the previous position, in the direction of the move.

Poss (a, s) ⇒ [position(do(a, s)) = p′ ⇔ (∃d a = move(d) ∧ p′ = adjacent(position(s), d)) ∨
(¬∃d a = move(d) ∧ p′ = position(s))]

So for example, in figure 4.6, if we have previously been to the locations marked with the filled dots, and in situations
the character movesnorth to the unfilled dot, then we have thatposition(s) = (2, 0) and thatposition(do(move(north), s))
= (2, 1).

1We use standard Prolog notation for lists.
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move(south)

move(north)

move(east)

Figure 4.4: Choice of possibilities for a next cell to move to.

move(south)

Figure 4.5: Just one possibility for a next cell to move to.

0

0 1

1

2

2

Figure 4.6: Updating maze fluents.
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The initial state is given in terms of the maze definition.

position(S0) = start

This completes the definition of the primitive actions. Next we define the complex actions that allow us to specify a
path through the maze. The idea is that a path consists of a sequence of choices about which way to turn that result in
the position becoming equal to the exit point of the maze.

while position 6= exit do

(π d) move(d)
od

Note that the use of regular programming constructs may initially cause confusion to the reader of the above code.
It is important to bear in mind that the(π d) construct should be read as “pick thecorrectdirectiond”. Perusing the
definitions given in appendix D may serve to alleviate any sense of bewilderment. To make things even clearer we shall,
however, consider the expansion of the complex actions in terms of their definitions. We shall consider the simple maze
described previously in figure 4.2.

In the initial situation we have that:

position(S0) 6= exit

Thus the guard of the “while” loop holds and we can try to expandDo ((π d) move(d), S0, s). Expanding this out into
the full definition gives:

(Poss (move(north), S0) ∧ s = do(move(north), S0)) ∨
(Poss (move(south), S0) ∧ s = do(move(south), S0)) ∨
(Poss (move(east), S0) ∧ s = do(move(east), S0)) ∨
(Poss (move(west), S0) ∧ s = do(move(west), S0))

However, from the action preconditions forPoss and the definition of the maze we can see that:

Poss (move(north)) ∧ ¬Poss (move(south)) ∧ Poss (move(east)) ∧ ¬Poss (move(west))

This leaves us with

s = do(move(north), S0) ∨ s = do(move(east), S0).

That is there are two possible resulting situations. That is why we refer to this style of program as nondeterministic.

In contrast, in situations = do(move(north), S0) there is only one possible resulting situation. We have that
Do ((π d) move(d), s, s′) expands out intos′ = do(move(north), s).

If we expand out the macroDo (while position 6= exit do(π d) move(d) od, S0, sf ) from start to finish we get that:

sf = do(move(east),
do(move(east),

do(move(north),
do(move(north), S0)))) ∨

sf = do(move(north),
do(move(north),

do(move(east),
do(move(east), S0)))).

So our “program” does indeed specify all paths through the maze.
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4.4.1 Implementation

By running the above program through our compiler, and rewriting the precondition and effect axioms in Prolog we
can have the computer automatically search through the set of possible situations to find paths through a maze. Using
depth-first search on the length possible future situations we can generate a path through the maze shown in figure 4.7
in a few seconds.

Figure 4.7: A path through a maze.

It is worth noting that the “program” given by the complex action 4.1 is a specification of a path through a maze.
Thespecificationof a path does not include backtracking. However, this does not mean that whensearchingfor a path
we cannot backtrack. In fact this is exactly how the Prolog interpreter searches for a path. It tries to go forward for as
long as it can, when it gets stuck it backtracks to the last point it had a choice and tries the other route. Of course, if the
interpreter does eventually find a path, then by definition, it will not contain cycles.

Although our maze solving program is very succinct it is not necessarily very efficient. We can easily start to reduce
some of the nondeterminism by specifying a “best-first” search strategy. In this approach we will not leave it up to the
computer to decide how to search the possible paths but constrain it to investigate paths first that head toward the exit.
This requires extra lines of code but will result in faster execution.

For example, suppose we add an actiongoodMove(d), such that it is possible to move to celld if it is possible to
“move” there andd is closer to the goal than we are now:

Poss (goodMove(d), s) ⇔ Poss (move(d), s) ∧ Closer(exit, d, position(s)).

Now we can rewrite our high-level controller as one that prefers to move toward the exit position whenever possible:

while position 6= exit do

if ∃d Poss (goodMove(d)) then

(π d) goodMove(d)
else

(π d) move(d)
fi

od

At the extreme there is nothing to prevent us from coding in a simple deterministic strategy such as the “left-hand”
rule. See [84] for some further alternatives for maze solving. The important point is not that our approach rules out
any of the algorithms one might consider when writing the same program in C. Rather it opens up new possibilities for
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very high-level specifications of behavior. Admittedly these might not be very efficient, but for rapid prototyping, or
for one-off animations, they may suffice. Moreover, if they do suffice then we may have saved ourselves a great deal
of programming effort.

4.4.2 Intelligent Flocks

The simplest way to add multiple characters to the same scene is to use defined fluents. That is we treat a group of
characters as a single entity. For example, we might specify that the center of the group should be at a specified location.
We can achieve such an effect by defining axioms that correspond to the action of moving the group center. The effect
of the primitive actions on the individual group members is given by defined fluents in terms of the center of the group.
Thus the group as a whole can behave in specified ways and perform complicated reasoning tasks.

To control multiple characters in the scene as cooperating individuals is much more complex. In chapter 5 we will
see examples of multiple autonomous agents with in the scene. The behavior that results from the interaction between
them isemergent. That is to say it arises from the interaction of their respective behavior rules, and the environment.
There is no attempt to explicitly state the behavior we expect from the group as a whole when the individuals are behav-
ing autonomously. In the interim one might imagine a behavior culling scheme in which characters cease to be treated
as individuals once they achieve a certain proximity. This could be achieved quite simply with a fluentInGroup that was
true when the character was part of a group. The characters behavior could then be predicated on whether or not it was
part of a group.

It seems unlikely to us, however, that scenes with over twenty characters would often require highly sophisticated
behavior from each individual character. We could imagine using some level of detail measure to cull unnecessary
character behaviors. For example, for a few foreground characters we could use our logical reasoning approach to
control their behavior. The remaining “background” characters could utilize a more reactive approach. Other criteria
for culling behaviors could also include notions of crowd membership. Individual characters within a crowd would
become more reactive and we could treat the whole crowd or “flock” as a single intelligent entity.

4.5 Camera Control

We now turn our attention to a real-world kinematic motion specification problem. In particular we focus on the problem
of camera placement within a scene. The inspiration for this application comes from two recent papers on the subject
[56, 30]. These two papers use a simple scripting language to implement hierarchical finite state machines for camera
control. Their work was, in turn, inspired by standard texts on cinematography, notably [4].

To understand what follows the reader will require some rudimentary knowledge of cinematography. The exposi-
tion given in [56] will suffice for our purposes:

Although a film can be considered to be nothing more than a linear sequence of frames, it is helpful to
consider it as having a structure. At the highest level, a film is a sequence of scenes, each of which captures
a specific situation or action. Each scene, in turn, is composed of one or more shots. A single shot covers
the small portion of a movie between when a camera is turned on and when it is turned off. Typically, a
film is comprised of a large number of individual shots, with each shot lasting from a second or two to tens
of seconds.

Directors specify camera placements relative to the Line, an imaginary vector connecting two interacting
actors, or directed along the line of an actor’s motion, or oriented in the direction the actor is facing (Figure
4.8). Shooting actor X from camera position b is called a parallel camera placement. Shooting X from
position c yields an internal reverse placement; typically, in this setup, X occupies only the left two-thirds
of the screen. Shooting from position d results in an apex shot that shows both actors. Finally, shooting
from g is called an external reverse placement; the left two-thirds of the screen shows actor X in focus
while the right one-third shows the back side of actor Y’s head.
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Figure 4.8: Camera placement is specified relative to “the Line” (Adapted from figure 1 of [He96]).

4.5.1 Axioms

In what follows we assume that the motion of all other objects in the scene has been computed. Our task is to decide,
for each frame, the vantage point from which it is to be rendered.

The precomputed scene is formalized as a lookup functionconfiguration : OBJECT× N → Rn, which for each object
obj, and each frameframeNo returns a listconfiguration(obj, frameNo) of then numbers that can completely specify the
position, orientation, and shape of the objectobj at frameframeNo.

We have a fluentframe : SITUATION → N that keeps track of the current frame number. Initially the frame number is
zero: frame(S0) = 0. The successor state axiom forframe just states that atick action is always possible and its effect is
to cause the frame number to be incremented by one:

frame(do(a, s)) = k ⇔ (a = tick ∧ k = frame(s) + 1) ∨ k = frame(s).

The defined fluentscene : OBJECT× SITUATION → Rn specifies then numbers that can completely specify the position,
orientation, and shape of the object in the current situation:

scene(obj, s) , configuration(obj, frame(s)).

The most common camera placements used in cinematography will be modeled in our formalization as primitive
actions. In [56] these actions are referred to as “camera modules”.

In what follows we adopt the standard OpenGLr conventions for camera specification [125]. That is, we specify
the camera with two fluents:lookFrom : SITUATION → R3, andlookAt : SITUATION → R3. Technically we must also specify
anup vector. For most applications, however, we will wantup to be constant, pointing along they-axis. Therefore, we
shall assume thatup = (0, 1, 0). In addition, we also need to specify the viewing frustum. The standard OpenGLr way
of doing this is with a field of view angle, an aspect ratio, a near clipping plane and a far clipping plane. Once again
we make the simplifying assumption that they remain fixed.

Despite our simplifications we still have a great deal of flexibility in our specifications. We will now give examples
of effect axioms for some of the primitive actions in our ontology. This will result in a useful application. Moreover it
should be clear how we could, if we so desired, extend the approach to formalize other aspects of our domain.

The simplest camera placement action is thenull action which leaves the camera in its previous configuration. Since
it has no effect at all there is nothing to write for the effect axiom.
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The raised action provides a placement relative to the previous camera position, whatever it happened to be. The
new camera is further back and higher than the old camera, but has the same orientation as the old camera:

lookFrom(s) = e ∧ lookAt(s) = c ⇒ lookFrom(do(raised, s)) = e + k1(ê − c),

wherek1 is some constant.

Thefixed(eye, center) action is used to explicitly specify a particular camera configuration. We can, for example,
use it to provide an overview shot of the scene:

lookFrom(do(fixed(e, c), s)) = e;
lookAt(do(fixed(e, c), s)) = c.

A more complicated action isexternal(A, B). It places the camera so that characterA is seen over the shoulder of
characterB. One effect of this action, therefore, is that the camera is looking at the character A:

scene(A(upperbody, centroid), s) = p ⇒ lookAt(do(external(A, B), s)) = p.

The other effect is that the camera is located above characterB’s shoulder. This might be accomplished with an effect
axiom such as:

scene(B(shoulder, centroid), s) = p ∧ scene(A(upperbody, centroid), s) = c ⇒
lookFrom(do(external(A, B), s)) = p + k2up + k3(p̂ − c)

wherek2 andk3 are some suitable constants.

There are many other possible camera placement actions. Some of them are listed in [56], others may be found in
[4]. Many involve performing complicated geometric calculations to obtain the correct position, orientation and field
of view of the camera in order to satisfy constraints on the placement and screen coverage of the protagonists in the
final image. Such constraints include cinematographic rules relating to “cutting heights” [56] and occlusion problems.
To satisfy them it is possible that we may even have to resort to moving the original scene around!

4.5.2 Complex actions

Before we proceed we must introduce some additional concepts from cinematography. Once again we quote from [56]:

Perhaps the most significant discovery of cinematographers is that there are stereotypical formulas for cap-
turing specific actions as sequences of shots. For example, in a dialogue among three actors, a film maker
might begin with an establishing shot of all three people, before moving to an external reverse shots of
two of the actors as they converse, interspersing occasional reaction shots of the third actor. Film books
(Arijon [4]) provide an informal compilation of formulas, along with a discussion of the situations when
a film maker might prefer one formula over another.

In [56] the authors discuss one particular formula for filming two characters talking to one another. The idea is to
flip between “external” shots of each character, focusing on the character doing the talking. The shots are interspersed
with reaction shots of the other character to break up the monotony of lengthy shots of the speaker. In the paper the
formula is encoded as a finite state machine. We will show how elegantly we can capture the formula using complex
actions (see section 3.6). Firstly we must introduce some new fluents.

The fluentTalking(A, B) is true if a characterA is talking to another characterB. The effect axioms forTalking simply
state that the fluent becomes true when characterA starts talking to characterB, and it becomes false when they stop:

Talking(A, B, do(startTalk(A, B)), s),
¬Talking(A, B, do(stopTalk(A, B)), s).

We shall treatstartTalk, andstopTalk as exogenous actions. In terms of an implementation these exogenous actions
can easily be generated automatically. That is, since our characters are situated in a virtual world any talking must
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have originally been instigated by the application that we used to generate theconfiguration function. We can simply
modify the macro expansion of the complex actions to look up whetherA or B are talking at the frame number given
by frame(s). If either of them are talking then the corresponding talk action is generated. An example of how the macro
expansion can be modified is given in section 5.4.2.

Next we introduce a fluentsilenceCount to keep count of how long it has been since a character spoke with the fol-
lowing effect axioms:

silenceCount(do(stopTalk(A, B), s)) = ka,

silenceCount(do(setCount, s)) = ka,

¬∃A, B Talking(A, B, s) ⇒ silenceCount(do(tick, s)) = silenceCount(s) − 1.

Note thatka is a constant (ka = 10 in [56]), such that afterka ticks of no-one speaking the counter will be negative.
A similar fluentfilmCount keeps track of how long the camera has been pointing at the same character:

Talking(A, B, s) ⇒ filmCount(do(setCount, s)) = kb,

¬Talking(A, B, s) ⇒ filmCount(do(setCount, s)) = kc,

Talking(A, B, s) ⇒ filmCount(do(external(A, B), s)) = kb,

¬Talking(A, B, s) ⇒ filmCount(do(external(A, B), s)) = kc,

filmCount(do(tick, s)) = filmCount(s) − 1.

kb andkc are constants (kb = 30 andkc = 15 in [56]) that state how long we can stay with the same shot before the
counter becomes negative. Note that the constant for the case of looking at a non-speaking character is lower. We will
keep track of which constant we are using with the fluenttooLong:

Talking(A, B, s) ⇒ tooLong(do(external(A, B), s)) = kb,

¬Talking(A, B, s) ⇒ tooLong(do(external(A, B), s)) = kc.

For convenience and ease of understanding we now define two new fluents in terms of our counter fluents:

Boring(s) , filmCount(s) < 0,

TooFast(s) , tooLong(s) − ks 6 filmCount(s).

They capture the notion of when a shot has become boring because it has gone on too long, and when a shot has not
gone on long enough. We need the notion of a minimum time for each shot to avoid instability that would result in
flitting between one shot and another too quickly.

Finally, we introduce a fluentFilming to keep track of who the camera is pointing at, we have that:

Filming(A, do(external(A, B), s)),
¬Filming(A, do(external(B, A), s)).

Until now we have not mentioned any preconditions for our actions. The reader may assume that, unless stated
otherwise, all actions are always possible. In contrast, the precondition axiom for theexternal camera action states that
we only want to be able to point the camera at characterA if we are already filmingA, and it has not got boring yet; or
we not filmingA, andA is talking, and we have stayed with the current shot long enough:

Poss (external(A, B), s) ⇔ (¬Boring(s) ∧ Filming(A, s)) ∨
(Talking(A, B, s) ∧ ¬Filming(A, s) ∧ ¬TooFast(s)).

We are now in a position to define the controller that will move the camera to look at the character doing the talking,
with occasional respites to focus on the other character’s reactions:

setCount o
9

while 0 < silenceCount do

processTalk o
9

(π A, B) external(A, B) o
9

tick

od
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As in the path through a maze program 4.1, this specification makes heavy use of the ability to nondeterministically
choose arguments. The reader might like to contrast this definition with the encoding given in [56] to achieve the same
result:

DEFINE_IDIOM_IN_ACTION(2Talk)
WHEN ( talking(A, B) )

DO ( GOTO (1); )
WHEN ( talking(B, A) )

DO ( GOTO (2); )
END_IDIOM_IN_ACTION

DEFINE_STATE_ACTIONS(COMMON)
WHEN (T < 10)

DO ( STAY; )
WHEN (!talking(A, B) && !talking(B, A))

DO ( RETURN; )
END_STATE_ACTIONS

DEFINE_STATE_ACTIONS(1)
WHEN ( talking(B, A) )

DO ( GOTO (2); )
WHEN ( T > 30 )

DO ( GOTO (4); )
END_STATE_ACTIONS

DEFINE_STATE_ACTIONS(2)
WHEN ( talking(A, B) )

DO ( GOTO (1); )
WHEN ( T > 30 )

DO ( GOTO (3); )
END_STATE_ACTIONS

DEFINE_STATE_ACTIONS(3)
WHEN ( talking(A, B) )

DO ( GOTO (1); )
WHEN ( talking(B, A) && T > 15 )

DO ( GOTO (2); )
END_STATE_ACTIONS

DEFINE_STATE_ACTIONS(4)
WHEN ( talking(B, A) )

DO ( GOTO (2); )
WHEN ( talking(A, B) && T > 15 )

DO ( GOTO (1); )
END_STATE_ACTIONS.

We have given a flavor of how well suited the situation calculus is to the task of camera control. It is worth point-
ing out that other actions which require notions of continuous actions, such as panning, can also be handled without
sacrificing our discrete model of the world. We can imagine an action that pans a camera a small amount in a certain
direction. Then a “continuous” panning action can be defined as a complex action that successively moves the camera
in that direction while some condition remains satisfied.
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Physics-based Applications

In this chapter we consider the problem of how to adapt our approach to a much more complex environment. In par-
ticular we consider an underwater physics-based world. The main difficulty that presents itself is the unpredictability
of the world. That is, we do not wish to axiomatize all the underlying equations used in the physical simulation, nor do
we wish to axiomatize the decision making processes of all the characters within the world. Our reticence stems not
from lethargy but from concerns of realism and practicality. That is, it is unrealistic and infeasible to allow our char-
acters to be able to exactly predict all events in their world. Moreover, we would incur an unacceptable performance
penalty. Our solution is to have our characters represent their desires and intermittently update their world knowledge
with sensors.

Our approach is demonstrated with an implementation that we refer to as acharacter design workbench, CDW.
The reader is referred back to chapter 1, where figure 1.3 gives an overview of CDW. It consists of a low-level reac-
tive behavior system and a high-level reasoning system, referred to as thereactive systemand thereasoning system,
respectively.

5.1 Reactive System

At the foundation of CDW is a low-level reactive behavior system that implements “primitive behaviors” common to
all characters. It also autonomously executes and arbitrates among these behaviors. Such behaviors include, but are
not necessarily limited to, reactive ones such as “avoiding collisions”, and basic locomotive capabilities such as “go to
a particular location”. Finally, this underlying system is able to return any requested sensory data that it has access to.

It is important to realize that we could implement the primitive behaviors in the high-level reasoning system. Sep-
arating them out, however, means that they become less flexible and can not be automated through logical reasoning.
There are however a number of benefits that arise from the separation:

• A major strength of the high-level reasoning system lies in the ease with which behaviors specified by it can
be reconfigured. Primitive behaviors are typically character-independent, once they are operational the need to
change them is minimal.

• Primitive behaviors are intended to be components of high-level behaviors. They should thus be as efficient as
possible as they will be executed frequently.

• An independent reactive layer can act as a fail-safe, should the reasoning system temporarily fall through. The
reactive layer can thus be used to avoid the character doing anything “stupid” in the event that it can’t decide on
anything “intelligent”. If the reactive layer is too sophisticated and tries to actively pursue it’s own high-level
goals there will be problems with persistence and stability. Behaviors such as “continue in the same direction,
avoiding collisions” is an example of a suitable default reactive system behavior.

• As far as we know real animals do not use reasoning for low-level behaviors. However, what happens in Nature
need not constrain how we should approach related problems in computer animation. Nevertheless, Nature does
give us confidence that reactive low-level behaviors are one possible solution.
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• Finally, from a pragmatic point of view, prior behavioral animation research [114, 23] describe working systems
that would suit our purposes.

5.2 Reasoning System

A character’s knowledge of its world is referred to as thebackground domain knowledge. It is a set of user supplied
axioms that collectively constitute acausal theoryand that provides the character with an understandingof when actions
are possible and how they affect the world. Reasoning with respect to the underlying causal theory is carried out by
the reasoning engine, which is implemented as a theorem prover.

The desired, character-dependentbehaviors are defined by sketch plans that represent advice to the character on how
to behave. These sketch plans enable the inclusion of advice to the character on how to achieve its goals. In addition
they can incorporate sensing, thus allowing a character’s behavior to be contingent on the current state of the world
as it perceives it. The character can follow the sketch plan by using its background domain knowledge and reasoning
to infer the missing details. Due to the complex nature of the interactions of the character with its dynamic world, the
initial sketch plan may not produce the desired visual results.

As one would expect, at any time a simulation can be temporarily suspended, and the user can ask the character
about the state of its world, and what it “thinks” would be the effect of performing various actions. Our system has
the advantage that the character can use its reasoning engine to answer extremely precise questions. This goes beyond
the simple state queries of regular debuggers. The information from our queries, and the visual feedback from the
animations, can then be used to modify the sketch plan. This way of directing a character is analogous to the practice
of giving a real actor “notes” after a theatrical performance [49]. This has proved extremely useful, to us at least, as
a way of “debugging” high-level behaviors while maintaining the character’s complete autonomy. In particular, the
character always remembers its new desired behavior and so there is no need to keep correcting the same mistakes.

In the remainder of the chapter, we shall give further details on the reasoning system, the reactive system and how
they interact to automatically produce interesting character animations.

5.3 Background Domain Knowledge

The background domain knowledge defines the way a character thinks about its world. Instruction and interaction can
be made easier by using representations that correspond to the animator’s way of thinking about the character’s world.
The domain knowledge states when actions are possible, and what the effect of actions are on the world.

The success of our approach rests heavily on our use of thesituation calculusfor representing a character’s knowl-
edge. From the user’s point of view, the underlying theory can be completely hidden, but for a complete understanding
of our approach, the mathematical details are important. The interested reader is referred back to chapter 3 for the
details. To reinforce our ideas, we shall employ a simple example of a predator and a prey.

We can represent the prey’s position as a fluentPreyPos, wherePreyPos(p, s) means that the prey is in regionp in
situations. The predator’s position,PredPos, and the prey’s desired position,PreyGoalPos, are similarly defined. A prop-
erty that does not change can just be represented as a relation with no situation argument. For example,Occluded(p, q, b)
states that regionp is hidden from regionq by obstacleb, andOccupied(p, b) states that regionp is occupied byb.

The reader should not be misled at this point into thinking that we have limited our approach to only two characters.
Our example is designed to explain the basic approach. In the implementation we use more scalable naming conven-
tions. That is, we do not have separate fluents forPredPos andPreyPos; we just have a fluentPosition(i, p, s) that gives
characteri’s position. Then we have other predicates to specify the type of a characteri, such as:Type(jaws, predator),
andType(duffy, prey). We should also point out that the truth of predicates such asOccupied(p, b) can be quickly cal-
culated at run-time; it need not (and should not) be stored in an unwieldy precomputed database.
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5.4 Phenomenology

A key challenge that faces at this point is what do we do next? Intuitively, we should like to start writing down axioms
to describe how various actions affect the prey’s position, say. The physics-based nature of our current application
means that such a simple minded approach is doomed to failure. Consider the action of “turning left”. As we shall
see in section 5.8, the state of the world after executing this action is an extremely complicated function of muscle
activation functions, water force reaction, obstacle location, etc. These are precisely the sort of details that we prefer to
(and should) leave out of the high-level behavior controller. If a person wants to reason about wanting to go to a shop,
the planning activity takes place at a fairly high-level. It is not normal to precisely fix a path, taking into account wind
speed, blood sugar levels, etc. The key observation here is that we want to deal with a character’sintentions. What
actually occurs is highly unpredictable and our best hope would be to fix a course of action and then update it in light
of any knew information our senses might provide us about the world.

There has been much work on logics of intention and belief. Unfortunately, the details of how all this relates to the
situation calculus are still being worked out (see [100] for some preliminary work). In the meantime we propose the
following pragmatism: We will only view certain fluents as representing a character’s intentions at the meta-level. That
is, there will be no way, within our language, of determining that a fluent pertains to the world, or to the character’s
mental state. Put more bluntly, we simply consider a character’s brain to be part of the world. The price we pay for this
simplification is that we lose the ability to talk about goals and intentionswithin our language.

As an example, let us introduce a fluentTryHide(s), that is true if the prey is trying to hide. We view the fact that the
prey is trying to hide as a fact about the world, rather than an esoteric statement about the prey’s mental state. This is
not as peculiar as it might first appear. In the real world a person’s inner thoughts might be viewed as somewhat opaque.
In our virtual world any such distinction is clearly arbitrary. There is nothing inherently different about peering into
our character’s heads to see what their current intentions are to looking up the current rate of flow of the virtual water.
Both really are just facts about the virtual world.

Having said all this, problems remain. In particular the question arises about what to do with fluents that pertain to
the character’s view of its world. For example, the fluentpredPos could legitimately refer to the predator’s position, or
the position the prey “thinks” the predator is in. We choose the former, the latter concept is represented as an interval-
valued fluent (see section 3.10) and the correspondence between the two maintained by sensing. We shall return to this
issue in section 5.4.1.

For now let us introduce an actionsetGoal(g) that sets the prey’s goal position to regiong. We can specify an action
precondition axiom that gives necessary and sufficient conditions for when the actionsetGoal(g) is possible (note that
as always unbound variables are implicitly assumed to be universally quantified):

Poss (setGoal(g), s) ⇔ ¬∃c Occupied(g, c),

i.e., setGoal(g) is possible if, and only if, regiong is not occupied. Let us now describe the effect of the action on the
fluentTryHide(s) by stating action effect axioms. In particular, we have a positive effect axiom:

Poss (setGoal(g), s) ∧ PredPos(q, s) ∧ ∃b Occluded(g, q, b) ⇒ TryHide(do(setGoal(g), s)),

which states that provided it is possible, the prey is trying to hide if it is going to a region that is hidden from the predator.

We also have corresponding a negative effect axiom:

Poss (setGoal(g), s) ∧ PredPos(q, s) ∧ ¬∃b Occluded(g, q, b) ⇒ ¬TryHide(do(setGoal(g), s)),

which states that the prey is not trying to hide if it is going to a non-hidden region.

As we saw in chapter 3 we can now (by simple syntactic manipulation) replace the effect axioms with successor
state axioms that express necessary and sufficient conditions for a fluent to change its value. For example, the successor
state axiom for the fluentTryHide(s) states that the prey is trying to hide if, and only if, the goal position just changed
to a hidden region, or it was trying to hide in the previous situation and things did not change to make the goal position
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visible:

Poss (a, s) ⇒
[

TryHide[do(a, s)) ⇔
{a = setGoal(g) ∧ PredPos(q, s) ∧ ∃b Occluded(g, q, b)} ∨
[TryHide(s) ∧ {¬∃g (a = setGoal(g) ∧ PredPos(q, s) ∧ ¬∃b Occluded(g, q, b))}]

]
As we saw in section 3.6 the actions we have defined so far are termed primitive actions. This term comes from

the cognitive robotics literature. It is somewhat misleading in this context, as some primitive actions, such as “go to
positiong”, may entail complicated obstacle avoidance behavior in the reactive system.

5.4.1 Incorporating Perception

Back in chapter 1, section 1.4 we discussed the need for perception. We used an example of a falling stack of bricks to
explain how sensing was important in order to avoid complicated, inefficient and unnaturalbehavior. With this chapter’s
emphasis on physics-based applications one further observation is worthwhile. That is, even if we do not want to exactly
pre-compute everything, some pre-computation may be a good idea. To return to the brick example, it would be quite
foolish for our character to simply stand directly underneath the falling bricks with an air of blas´e sang-froid. Clearly,
the character should retire to a safe distance, whence it might await the outcome unafeared. Attempting to perform
approximate calculations based on physical laws is often referred to asqualitative physics. In [60] an example is given
on how to discuss physical processes within the situation calculus. While we relegate the adoption of such ideas to
future work, this is a good juncture to point out their efficacy.

Rolling forward

Consider the maze example introduced in chapter 4, section 4.4. In the example the character, in effect, had a map of
the maze that it used to plan its path before ever setting foot in the maze. The character plans its path by searching the
map and backtracking when it gets stuck. It only executes the plan once it has finished finding a path. Now suppose we
have some monsters wandering through the maze in a manner that is unknown to the character. The character can still
plan a path but must also keep a look out for monsters. The important point is that the monsters are not marked on the
map and so the character can only check for monsters once it is inside the maze. Therefore, the scenario we envisage
is that a character executes some actions then looks around to observe any of the unpredictable effects. For example,
the character might go to a point in the maze and then look to see if it can see any monsters approaching. Thus sensing
necessarily entails executing the actions the character has decided upon up until that point. That is, the character can
not look for monsters until it has executed the actions that place it inside the maze.

Another important point is that when a character is planning an action it can change its mind without influencing
its world. This is no longer, necessarily, the case once an action has been executed. For example, a character may see
that a path leads to a dead end and may return from whence it came, but, in the meantime it may have been spotted by
a monster that now begins to pursue it.

Executing a sequence of actions is known as “rolling forward”. To see how it works suppose a character is con-
sidering some sequence of actionsa0, . . . , an. After executing such a sequence of actions the character will be in a
situationdo(an, · · · , do(a1, S0) · · · ). The successor state axioms allow the character to determine the value of vari-
ous fluents in the situations′. Depending on the value of these fluents the character may want to choose an alternative
sequence of actions. At some point the sequence may become unwieldy, or an action (such as sensing) may be re-
quired that forces the character to commit to the current sequence. We capture the notion that, after executing them,
the actions are no longer subject to change by specifying a new initial situation. Then we can discard the old initial
situation and proceed with respect to the new situation. So for each fluentf , we have thatf(S

new
0 )) = y if and only if

f(do(an, · · · , do(a1, S
old
0 )) = y.

Sensing

We now return to the issue of sensing. The approach we take is as detailed in section 3.10. That is, we simply employ
IVE fluents. To see how this works in our current example, imagine that we define a fluentTime(t, s) that gives the
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timet is situations. The time is updated bytick actions that, for now, we assume to be a fixed distance apart (ten frames
in our current implementation). At everytick the reasoning system commits to the actions it has decided upon in the
previous time period. This involves sending the “primitive” actions to the underlying reactive system and “rolling”
forward the state.

The underlying reactive behavior system then executes the primitive actions and returns some sensory information.
The new sensory information is used to update all the IVE fluents for which we obtained information about their new
values. The remaining IVE fluents’ intervals are expanded to include any possible value that they could have at the
current time.

As an example consider a fluentIbrightnessLevel(s), and an actionsenseHowBright, then we have two effect axioms:

BrightnessSensorResponding(s) ⇒ IbrightnessLevel(do(senseHowBright, s)) =
〈brightnessLevel(s), brightnessLevel(s)〉

¬BrightnessSensorResponding(s) ⇒ IbrightnessLevel(do(senseHowBright, s)) = 〈0,∞〉.

So, if the brightness sensor is not responding, we don’t know what the brightness level is. If we know the maximum
rate of change of the brightness sensor, then we can make a tighter interval with some simple computation based on the
time increment.

5.4.2 Exogenous actions

For each IVE fluentIf , there will be a corresponding fluentf . These fluents values are updated by exogenous actions
(see section 3.7). For example, consider the fluentpredPos. There is an exogenous actionmovePred(x), such that af-
ter executing the action the predators new position will bex. The exogenous actions are generated by modifying the
definition for complex actions. For example, the rule for primitive actions (given in appendix D) is:

Do (α, s, s′) , Poss (α, s) ∧ s′ = do(α, s) α is a primitive action

This is modified to be:

Do (α, s, s′) , Poss (α, s) ∧ s′ = do(α, s) α is a primitive action andα 6= tick

Do (tick, s, s′) , Poss (tick, s) ∧ s′ = do(movePred(x), do(tick, s))

Similarly we can add an arbitrary number of exogenous actions after various primitive actions. Thus we can avoid
having to formalize all aspects of the domain.

5.5 Advice through “Sketch Plans”

We can give advice to a character by building upcomplex actionsfrom the available primitive ones. Complex actions
were first described back in chapter 3, section 3.6. Let us assume some new primitive actions and fluents whose intended
meaning is given, informally, by their names. Then the character that tries to hide from predators if it can, and otherwise
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tries to run away, can be defined by the “program”:

proc evade

while PredatorApproaching do

sense o
9

update o
9

if ∃r Occupied(r) ∧ Nearby(r) then

(πr)(Occupied(r) ∧ Nearby(r))? o
9 hideBehind(r)

else

(πr)(AwayPredDir(r))? o
9 setGoal(r)

od

end

Notice that the above specification may admit more than one candidate as an obstacle to hide behind. We can simply
leave it up to the character’s reasoning system to select a suitable one at run time. Hence, the character’s reasoning
engine can be used, in a focussed way, to fill in details that are otherwise tedious to specify. More importantly, as the
director of virtual characters, the animator can control the amount of work that should be left to the character. This is a
major strength of our approach: we can experiment with various behavioral control strategies with great ease by placing
heavy reliance on our character’s reasoning abilities. This reduces the amount of work required from the animator and
is hence extremely useful for rapidly developing new characters. When high execution speed is required, for example
in computer games, we may be able to make our controllers more efficient by gradually reducing the non-determinism.
Furthermore, the control structures in our language closely resemble those of a conventional programming language.
Apart from making our language easy to use, this allows fast and easy translation to a conventional imperative language
for a production version of our controller that will, say, run on a slower machine.

5.6 Implementation

The reasoning engine of CDW was written using the Quintus Prolog Development System in a combination of C and
Prolog. For additional speed, the macro expansion of the high-level control commands is written in C (see appendix E).
The truth of the fluents in the resulting situations is determined by the Prolog part. The background domain knowledge
and the high-level control specification are read into the reasoning engine. The macros are then expanded to generate
queries that are answered by the underlying Prolog theorem prover.

Developing controllers using CDW combines the ease of logic programming with the potential efficiency of im-
perative programming. It is like having a regular imperative programming language with a built in theorem prover to
shoulder some of the work. In the initial stages of development, this is extremely useful in quickly getting working
prototypes.

To make these ideas more concrete, we shall give some examples taken directly from the source files of our con-
trollers. Consider the code we wrote to help prey avoid being eaten. Our first attempt was to simply divide the
scene into a regular two-dimensional grid. We could then enumerate all our regions very simply with the predicate
fl_region(R) . We defined a fluentfl_evaluator(E,I,S) , which, for each situationS, and characterI , main-
tained a functionE used for evaluating the regions. Finding suitable hiding positions amounted to nothing more than
performingan actionact_evalRegions(I) . This action updated a fluentfl_bestGoalPosns(I,GS,S) , that
maintained a list of the best goal positionsGS. The actionact_pickGoal then set the character’s current intention
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to any of the current best goal positions. The control program was thus:

proc(control_agent(I),
act_sense(I) :
act_checkAlive(I) :
(

act_updateMemory(I) :
act_setEvaluator(I,obstacles) :
act_evalRegions(I) :
act_pickGoal(I)

) |
no_op

).

The controller relies on the precondition ofact_updateMemory(I) including the fact that characterI is still
alive. If the precondition is false the controller will not waste its time deciding what to do. The controller got us up and
running, but with many characters or three-dimensions there would be too many regions to look at for the approach to
be scalable. As one would expect from a logic programming language, we were quickly able to reconfigure and extend
our controller by defining a function to randomly sample the space around a point in concentric circles. The radius of
the region was given as a fluentfl_searchRegion(I,EXT,S) .

proc(control_searchForGoalPosn(I),
act_setEvaluator(I,searchRegions) :
act_setAcceptable(I,searchRegions) :
(

act_expandSearchRegion(I) :
act_evalRegions(I)

)*
).

Note how we specify to expand the search region zero or more times. We cannot expand indefinitely because the
precondition foract_expandSearchRegion(I) includes an upper bound.

We then incorporated this controller into the previous one.

proc(control_agent(I),
act_sense(I) :
act_checkAlive(I) :
(

act_updateMemory(I) :
(

control_testCurrPosn(I) |
control_testCurrGoalPosn(I) |
control_searchForGoalPosn(I) |
control_testObstacles(I) |
act_panic(I)

) :
act_pickGoal(I)

) |
no_op

).

This controller again relies on the fact of the character being alive being among the preconditions of
act_updateMemory(I) . It also uses the preconditions foract_pickGoal(I) . In particular, we have as a pre-
condition toact_pickGoal that a good enough goal must have been found. What constitutes “good enough” is main-
tained by the fluentfl_acceptable(A,S) . This meant the search could stop as soon as we found a good enough
position. Therefore, the controller tries out the current position and stops immediately if it is good enough. Otherwise it
backtracks and tries the other options. Note that one of the options iscontrol_searchForGoalPosn(I) . If we

-  -



Chapter 5 Physics-based Applications

look back at the definition ofcontrol_searchForGoalPosn we see how we gradually expand the search region.
The preconditions toact_pickGoal ensure that we will always stop as soon as possible. Aside from expanding the
search region to its maximum, the controller can also consider the obstacles it had seen on its travels. This is on the
assumption that there will be hiding places near obstacles. Finally, if all else fails it can panic. Panicking causes the
acceptability criterion, as given byfl_acceptable(A,S) , to be ignored and the best position found so far wil be
chosen. Once again we see how the nondeterminism in our specifications simplifies writing down controllers.

With the new controller, we were able to control multiple characters in three-dimensions. A more complete list-
ing of the code is given in appendix F. Although there is still much room for improvement we have demonstrated a
methodology for developing efficient controllers. With five characters we can, on average, manage about five frames
per second, on a SGI Indigo Impact workstation, using wireframe rendering, and running Character Design Workbench.

5.7 Correctness

It is an old adage of computer science that, while important, testing a program can only ever prove the presence of bugs,
never their absence. Therefore, one potentially significant aspect of using the situation calculus is the ability to prove
properties of our specifications. One could envisage proving the presence or absence of certain (un)desirable traits in
the specification of a character’s behavior. Moreover, this can be done early on in the software life-cycle, potentially
eliminating bugs that would otherwise be costly to rectify later on.

For example, in section 5.9 we discuss an animation entitled “Pet Protection”. For this animation the hero of the
piece had a controller based on a specification fragment as follows:

if ¬InDanger(x) ∧ InDanger(y) ∧ isPet(x, y) then

rescue(x, y)
else

runAway(x)
fi

Now suppose we have a couple of characterspet, andhero such thatpet ishero’s pet,IsPet(hero, pet). Now suppose, in
some situations, we have that the pet is in dangerInDanger(pet, s), but that the hero is also in danger,InDanger(hero, s).
Then, it is possible to prove that in such a situation the hero will not go to the rescue but will run away. The proof just
involves some simple rules of logic and expanding out the specification according to the rules given in appendix D.

Do (if ¬InDanger(x) ∧ InDanger(y) ∧ IsPet(x, y) then

rescue(x, y) elserunAway(x) fi, s, s′)

,
Do [((¬InDanger(x) ∧ InDanger(y) ∧ IsPet(x, y))? o

9 rescue(x, y)) |
(¬(¬InDanger(x) ∧ InDanger(y) ∧ IsPet(x, y))? o

9 runAway(x)), s, s′]

,
Do ((¬InDanger(x) ∧ InDanger(y) ∧ IsPet(x, y))? o

9 rescue(x, y), s, s′) ∨
Do (¬(¬InDanger(x) ∧ InDanger(y) ∧ IsPet(x, y))? o

9 runAway(x), s, s′)

,
∃s∗ [Do ((¬InDanger(x) ∧ InDanger(y) ∧ IsPet(x, y))?, s, s∗) ∧ Do (rescue(x, y), s∗, s′)] ∨
∃s∗ [Do (¬(¬InDanger(x) ∧ InDanger(y) ∧ IsPet(x, y))?, s, s∗) ∧ Do (runAway(x), s∗, s′)]

,
∃s∗ [¬InDanger(x, s) ∧ InDanger(y, s) ∧ IsPet(x, y) ∧ s∗ = s ∧ Do (rescue(x, y), s∗, s′)] ∨
∃s∗ [¬(¬InDanger(x, s) ∧ InDanger(y, s) ∧ IsPet(x, y)) ∧ s∗ = s ∧ Do (runAway(x), s∗, s′)]
⇒
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∃s∗ [¬InDanger(x, s) ∧ InDanger(y, s) ∧ IsPet(x, y) ∧ s∗ = s ∧ Do (rescue(x, y), s∗, s′)] ∨
∃s∗ [InDanger(x, s) ∨ ¬InDanger(y, s) ∨ ¬IsPet(x, y) ∧ s∗ = s ∧ Do (runAway(x), s∗, s′)]
⇒
[¬InDanger(x, s) ∧ InDanger(y, s) ∧ IsPet(x, y) ∧ Do (rescue(x, y), s, s′)] ∨
[InDanger(x, s) ∨ ¬InDanger(y, s) ∨ ¬IsPet(x, y) ∧ Do (runAway(x), s, s′)]
⇒
[¬InDanger(hero, s) ∧ InDanger(pet, s) ∧ IsPet(hero, pet) ∧ Do (rescue(hero, pet), s, s′)] ∨
[InDanger(hero, s) ∨ ¬InDanger(pet, s) ∨ ¬IsPet(hero, pet) ∧ Do (runAway(hero), s, s′)]
⇒ (by assumption thatInDanger(hero, s))

Do (runAway(hero), s, s′)

,
s′ = do(runAway(hero), s)

In general such proofs are best conducted by a computer program as they mainly involve lots of substituting defi-
nitions. Indeed this is exactly the process the interpreter goes through when calculating the appropriate behavior.

Of course, the extent of what we can prove is somewhat limited in our current setting. We have already discussed at
some length the undesirability of axiomatizing all the laws of physics that pertain to our undersea simulation. Without
such an axiomatization, however, we can not prove, for example, that a predator will capture a prey from a given an
initial configuration. The most we could hope for is a proof that it will alwaystry to capture a prey in a given situation.
This opens up avenues for future research to try and improve on this. In particular we might consider using qualitative
physics and automated proof assistants to enable us prove stronger results.

5.7.1 Visibility Testing

One important aspect of our pursuit and evasion example was the ability of the prey to locate hidden regions. The task
is nontrivial and a bad solution could result in unacceptably slow execution times. The first observation to make is that,
if we think of the predators as light sources, the problem of determining regions that are hidden from them is closely
related to the rendering problem of fast shadow computation. In our case, the problem is exacerbated by the fact that
our “light sources” are moving around.

One possibility is to use OpenGLr and take advantage of specialized graphics hardware to provide a fast solution
to the problem. The solution we take however, is based on octrees [40]. That is, we can bound the whole scene by a
cube. The cube can then be recursively subdivided into eight regions to form a tree like structure. In theory, whenever
we wish to determine the regions hidden from a predator, we check to see which cell the predator is in and then see
which cells are obscured by obstacles from that cell. The idea is that by starting at the top of the octree and working
down we can quickly discard large regions of space as completely visible or completely hidden.

For example, in figure 5.1, there are no obstacles that interpenetrate the region in between cell A and B. Thus the
pair A,B can be marked as completely visible from one another and, for the purposes of comparisons with each other,
need not be subdivided further.

In figure 5.2, the obstacle completely occludes cell A and B. Thus the pair A,B can be marked as completely oc-
cluded from one another and, for the purposes of comparisons with each other, need not be subdivided further.

In figure 5.3, the obstacle partially occludes cell A and B. Thus the pair A,B must be subdivided further to determine
complete visibility information. If the smallest allowable subdivision level has been reached then we decide visibility
by polling for visibility at each of the vertices. So in the figure the pair A,B would be marked as visible.

In practice, subdividing the whole space down to the required fidelity and computing visibility information for all
pairs of cells is too expensive. The solution is to make the following observations:

• Characters, especially those in water, will have a limited visual range. They will also have a limited field of view.
Therefore there is no need to compute visibility information for cells beyond a distance, or angle.
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in between
region

cell A

cell B

Figure 5.1: Cell A and B are “completely visible” from one another
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Figure 5.2: Cell A and B are “completely occluded” from one another
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Figure 5.3: Cell A and B are “partially occluded” from one another

• Characters can be given some simple heuristics for finding hidden locations. For example, they can be told that
they should only look for cover near obstacles. That is, even if a character is momentarily hidden from a predator
when it is open water, such a location is still far from ideal. It is much safer to seek refuge near obstacles. Thus,
visibility information need only be computed within the vicinity of obstacles.

• Approximatevisibility information can still be calculated by projecting character locations onto the boundaries of
intervening regions for which information is available. By combining these tests with additional simple bounding
boxline intersection tests, the reliability of the approximate visibility tests can be enhanced.

• Characters may well only visit small portions of the scene within an animation. It would be wise to provide a
coarse evaluation for all obstacles in the scene. To avoid doing lots of unnecessary work, however, we need only
compute high fidelity visibility information for regions the characters visit. The calculations can then be cached
in a globally accessible database for future reference by any character.

• It is not catastrophic if the odd mistake is made. It enhances realism and the behavior algorithms should be robust
enough to avoid disaster if information is unavailable for short periods of time.

Figure 5.4 shows a two-dimensional version of the space partitioning approach we take to visibility testing. Note
that we use bounding boxes for the obstacles. This results in “mistakes”, as some of the cells which are visible are
marked as hidden. A solution to this would be to compute tighter bounding boxes. In general, this would entail com-
puting a hierarchical octree of bounding boxes for each obstacle. In practice the flaw has little effect since being hidden
is only one of the criterion that the prey use to select suitable goal positions. That is, the erroneously marked cells are
on the periphery of the hidden region and as such the other criteria (such as distance from the predators, distance from
the predators’ predicted positions, size of the hidden region, whether there are hidden regions surrounding the selected
region, Etc.) precludes them from being selected as ideal goal positions in most circumstances. When the prey are in
open water far from any hidden regions they may be selected for short periods of time until more suitable cells come
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into range. Again, this is harmless because it does not affect the general observed evasion strategy. Finally, making
mistakes for borderline cases is extremely realistic.

region

bounding
box

hidden

obstacle

perimeter

observer cell

Figure 5.4: Visibility testing near an obstacle.

5.8 Reactive System Implementation

We shall give an overview of the underlying reactive system. The system consists of a number of subsystems. It derives
from the work described in [113], to which the reader is referred for further details. The notable enhancements we have
made are the ability to import arbitrary geometric models, and a more general collision avoidance mechanism. We shall
discuss both of these enhancements. For the sake of completeness, we also include some brief descriptions of the parts
that remain unchanged (see [113] for the details).

5.8.1 Appearance

The rendering sub-system system allows us to capture the form and appearance of a merperson. We use texture mapped,
three-dimensional geometric display models with which to “envelope” the dynamics model described in section 5.8.2.

3D Geometric Models

Geometric models for our system can be constructed using the Alias|WavefrontTM Studio modeler [2] and automatically
imported. Aside from the background scenery, we have created a merman that consists of 2 unique NURBS surfaces:
the body (including the tail); and 16 unique polygonal surfaces: the head, upper arms, lower arms, hands, thumbs and
ears, as shown in figure 5.5. Together they form an articulated figure arranged in a hierarchical tree structure rooted at
the merperson’s local coordinate system.

The geometric model provides the appearance of the merperson. In order to make it move, an underlying dynamic
model is created. The dynamic model (see section 5.8.2) can be viewed as the “flesh” that moves and deforms over
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Figure 5.5: The geometric model.

time to produce the locomotion of the merperson. Only the body and tail of the dynamic model actually deform as the
merperson swims, the head and limbs move but do not deform. The geometric surfaces are coupled to the underlying
dynamic model so that they will move and deform accordingly. This is achieved by associating their control points
with the faces of the dynamic model. This is discussed, but not fully implemented in [113].

local coordinate

dynamic model

faces

system
face

vectors
offset control point

mesh

surface
y

z

x

Figure 5.6: Coupling the geometric and dynamic model.

For each face in the dynamic model there is a local coordinate system. Each point in the control point mesh (the
dotted lines) is then assigned to the nearest local coordinate system and, in the rest state, an offset vector is calculated
(two example offset vectors are shown in the figure). The offset vector is then used to update the control point positions
as the underlying dynamic model moves. In practice it is necessary to subdivide the faces of the dynamic model into a 4
by 4 grid of patches, each having its own local coordinate system. In this way artifacts that occur with texture mapping,
when the offset vectors inter-penetrate, are minimized.

Texture Mapping

The next step is to map images onto the geometric display models (texture mapping). We painstakingly created the
textures using Adober Photoshopr using scanned in photographs as our source. The most important step in the texture
mapping process is to derive texture coordinates. The texture coordinates map the digital images of different parts of
a merperson onto the corresponding 3D surface. To obtain the texture coordinates we wrote software to stretch the
irregular shaped images out into rectangular images.

Once the texture coordinates are determined, the rest of the texture mapping procedure can be carried out via a sim-
ple function call in any commercially available 3D graphics software package that supports texture mapping. Currently
we use OpenGLr, which gives interactive animation rates in wire-frame and shaded modes and, for fully textured ren-
dering, gives about 5fps, on an SGI Indigo2 High Impact. See the color plates at the end of the thesis for some images
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of a final texture-mapped merperson.

Figure 5.7: Texture mapped face.

Texture mapping the merperson’s face is especially difficult and we are grateful to have been able to use the laser
range finder data used in [64] as our source. After some work “fixing up” the model and image the merman was ac-
ceptably aesthetically pleasing. Figure 5.7 shows a closeup of the merman’s face. Note that it consists of 8 unique
polygonal surfaces. Considerable manual effort was required to ensure the smooth blending of the texture maps for
each adjoining surface. Currently we have not attempted any facial animation but our system is ideally suited to its
incorporation.

5.8.2 Locomotion

The locomotion sub-system consists of a biomechanical model that captures the physical and anatomical structure of
the character’s body, including its muscle actuators, and simulates its deformation and physical dynamics. An interface
to the underlying model is provided by a set of abstractmotor controllers. The motor controllers are parameterized
procedures, each of which is dedicated to carrying out a specific motor function, such as “swim forward”, “turn left”
or “ascend”. They translate natural control parameters such as the forward speed, angle of the turn or angle of ascent
into detailed muscle or arm actions. Four frames from an animation of a merperson swimming are shown in figure 5.8.

The locomotion control problem for physics-based characters is a challenging one. In its full guise the problem
involves the locomotion of hierarchical unstable articulated figures subjected to impulsive forces. A lot of progress
has been made with producing physically realistic motion for articulated figures. In addition there has been impressive
progress with solving the locomotion control problem for creatures that can be modeled as deformable bodies [80, 114,
51]. We choose the latter work for our implementation but the former could also have served.

Deformable models

Currently only the body and tail of the merperson deform. The deformable part is shown in Figure 5.9. It consists of
twenty three point mass nodes and ninety one connecting spring and damper units. Each spring and damper unit can
deform along one axis. Together they give the body its structure whilst still allowing it to bend. To prevent twisting
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Figure 5.8: A merperson swimming.

and shearing each face has two diagonal units. The bold lines depicted in figure 5.9 that span the length of the body
are active muscles. In total their are twelve of them and they allow the merperson to deform under its own control.
They are arranged in pairs, with two such pairs on each side of the three actuated body segments. The two upper body
actuated segments are used for turning whilst the two lower ones are used for swimming.

2 Swimming Segments
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Figure 5.9: The dynamic model.

We shall now employ the nomenclature of chapter 2 to explain how the laws of physics are applied to the mass-
spring-damper model. The state vector consists of forty six vector quantities which represent the position and velocity
of each of the nodes. All the nodes are governed by the same equations so we shall proceed with a study of a single node
i. The mass of nodei is denoted bymi and remains constant. The state vector for one node is the positionxi(t) ∈ R3

and the velocitẏxi(t) ∈ R3. Our aim is to formulate the state equations that will allow us to calculate the acceleration
ẍi(t) ∈ R3.

The spring-damper units that connect the nodes are the same as the one depicted back in chapter 2, figure 2.3. We
denote the unit that connects nodei to nodej assij , whereks

ij is the associated spring stiffness, andkd
ij the damping

factor. The rest length is denoted bypij . For the active muscles the rest length is a function of time. The activation
functions we use were worked out by hand, however, an automatic technique for finding these functions is available in
[51].
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The vector connecting nodei to nodej is denoted byrij , where:

rij(t) = xj(t) − xi(t).

Thus,rij(t) = ||rij(t)|| denotes the length ofsij at timet.

Similarly, the relative velocity of nodei with respect to nodej is denoted bẏrij , where:

ṙij(t) = ẋj(t) − ẋi(t).

Thus,ṙij(t) = (ṙij · rij)/rij denotes the normalized relative speed of nodei with respect to nodej.

The extension,eij , of sij the current length minus the rest length:

eij(t) = rij(t) − pij(t).

The elastic force,fij exerted bysij on nodei can then be calculated using Hooke’s law:

fij(t) =
ks

ijeij(t)
rij

rij +
kd

ij ṙij(t)
rij

rij

Note that there is an equal and opposite force−fij(t) exerted on nodej.

The set of nodes adjacent to nodei is denotedNi. The net internal force exerted on nodei due to the spring-damper
units can then be obtained by summing up the forces exerted by all the spring-damper units connected to nodes inNi:

fs
i =

∑
j∈Ni

fij(t).

The other source of force on nodei is the water forcefw
i . The water is assumed to be irrotational, incompressible

and slightly viscous. We triangulate the faces of the dynamic model. Then, for the sake of efficiency, we approximate
the hydrodynamic force on each triangle as

f = min[0, −µwA||v||(n · v)n], (5.1)

whereµw is the viscosity of the water,A is the area of the triangle,n is its normal, andv is its velocity relative to the
water. The external forcesfw

i at each of the three nodes of the triangle are incremented byf/3. Therefore, the total
force on a nodei is:

fi = fw
i − fs

i .

We are now in a position to give the state equations. They take the form of a set of coupled second-order ordinary
differential equations, formulated according to Newton’s laws of motion:

miẍi(t) = fi(t); i = 0, . . . , 22, (5.2)

To simulate the dynamics of the merperson, the differential equations of motion must be integrated over time. This
is made difficult because the system is intrinsically stiff. Indeed there are many common scenarios that may cause
the equations to become unstable. For example, executing a right turn to avoid an unexpected collision, say, whilst
engaged in a left turn will cause problems. Therefore, to counteract these difficulties, we use a simple, numerically
stable, semi-implicit Euler method (see [113] for details).

5.8.3 Articulated Figures

In order to provide increased functionality and realism the merperson has two articulated arms. A researcher may thus
begin in the undersea world of non-impulsive forces and then, for a more challenging problem, have the merperson
haul itself out of the water, to crawl about on its hands! To date, however, we have concentrated on the movement
of the merperson’s body instead of the detailed movement of the arms. That is, to simplify the dynamic model and
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its numerical solution, we do not simulate the elasticity and dynamics of the arms. However, we do approximate the
dynamic forces that the arms exert on the body of the merperson to control locomotion.

The articulated arms work by applying reaction forces to nodes in the midsection of the merperson’s body, i.e. nodes
Ni, 1 ≤ i ≤ 12 (see Fig. 5.9). During swimming the arms are simply used in an analogous way to the airfoils of an
airplane. Pitch and yaw control stems from changing their orientationsπ/4 ≤ γ ≤ π relative to the body. Assuming
that an arm has an areaA, surface normaln and the merperson has a velocityv relative to the water, the arm force is

Ff = −A||v||(n · v)n = −A(||v||2 cos γ)n (5.3)

(cf. Eq. 5.1) and is distributed equally to the6 midsection nodes on the side of the arm. When the arm is angled upward
a lift force is imparted on the body and the merperson ascends, and when it is angled down, a downward force is exerted
and the merperson descends. When the arm angles differ, the merperson yaws and rolls.

5.8.4 Locomotion Learning

In [51] a learning technique is described that automatically synthesizes realistic locomotion for physics-based models
of animals. This technique specifically addresses animals with highly flexible and muscular bodies, such as fish, rays,
snakes, and merpeople. In particular, they have established an optimization-based, multi-level learning process that
can sit on top of the locomotion subsystem. We initially tried using this system to learn controllers for our creature
but it gave unsatisfactory results. In particular, for reasons that we were unable to determine, the merman could not
even swim in a straight line! Consequently we resorted to muscle activation functions that were worked out by hand.
Regardless, it would be straightforward to incorporate locomotion learning into the underlying reactive system.

5.8.5 Perception

The perception sub-system equips a merperson with a set of “on-board” virtual sensors to provide sensory information
about the dynamic environment. It also includes a perceptual attention mechanism which allows the merperson to train
its sensors at the world in a task-specific way.

5.8.6 Behavior

The behavior sub-system of the character mediates between the perception sub-system and the motor sub-system. It
consists of a behavior arbitrator1 and a set of behavior routines that implements a repertoire of basic behaviors including
“avoiding collisions”, “eating”, “target following” and “wandering”. These primitive behaviors serve a dual purpose.
Firstly, they instantiate the “primitive” actions generated by the reasoning system. Secondly, as a whole, they constitute
the “default” behavior the character exhibits in the absence of commands ( “primitive” actions) from the reasoning
system. The fundamental function of the behavior arbitrator is to coordinate the primitive behaviors to generate the
default character behavior. Arbitration is done by associating differing priorities with different primitive behaviors. The
commands from the reasoning system correspond directly to primitive behaviors and consequently fit elegantly into the
behavior arbitration scheme. That is, commands will be executed provided that no more urgent behavior is adjudged
to be necessary. For example, a character will head toward a specified location, provided it does not have to avoid a
collision. The behavior arbitrator also controls the focuser which returns required sensory data to the reasoning system
(see [114] for additional details). At every simulation time step, the behavior arbitrator activates low-level behavior
routines that input the filtered sensory information and compute the appropriate motor control parameters to carry the
character one step closer to fulfilling the current intention.

In the future we would like to use our behavior specification language to implement the behavior sub-system. We
note that the ConGolog language described in [43] would be well-suited to this task.

Some “primitive” actions just update the character’s model of its world; the remainder (including all sensing ac-
tions) are designated by the user as actions to be communicated to the reactive system. In our current high-level con-
trollers, the reasoning system may select sensing actions, and, for each character, one non-sensing communicable prim-

1In [114] the behavior arbitrator was referred to as an “intention generator”, this term may be confusing as its functionality is largely subsumed
by the reasoning system.
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itive action every ten frames. The reactive system waits up to a specified time limit (currently five seconds) for a non-
sensing “primitive” action to be generated. If no such action is forthcoming, it will continue to execute with the low-
level default behavior. Any sensing actions generated in the time limit will be processed regardless.

Collision Avoidance

The reactive system already enabled our characters to avoid collisions with cylinders. To improve the generality of the
system we choose to implement a potential field approach to collision avoidance.

We based our approach on the equations given in [63]. The idea is that for each point inq ∈ R3 we have a force
vectorF (q) ∈ R3 that points the correct direction to travel in order to move toward a goal position whilst avoiding
any obstacles. The force vector is defined in terms of a potential functionU : R3 → R, such that:

F (q) = −OU(q),

whereOU(q) denotes the gradient ofU atq.

In general,U = U−(q)+U+(q), whereU−(q) is therepulsive potentialassociated with the obstacles, andU+(q) is
theattractive potentialassociated with the goal point. This, in turn, gives us thatF = F−+F +, whereF− = −OU−
andF + = −OU+.

To define the repulsive potential, we first defineρ(q) to be the minimum distance from the pointq to the obstacle.
We also define a thresholdρ0, such that beyond this distance the obstacle has no influence. The repulsive potential we
use is now defined, for some constantη, as:

U−(q) =
{ 1

2η( 1
ρ(q) − 1

ρ0
) if ρ(q) 6 ρ0,

0 otherwise.

The function is chosen to be differentiable for convex objects.2 It gives us that the repulsive force is

F−(q) =

{
ηOρ(q)
ρ2(q) ( 1

ρ(q) − 1
ρ0

) if ρ(q) 6 ρ0,
0 otherwise.

Note that the gradientOρ(q) is the unit vector that points from the closest point on the obstacle towardq.

In the case of multiple obstacles we obtain the total repulsive force at a point by summing the repulsive forces from
all the obstacles. In our implementationwe also clamp the maximum repulsive force. Also, when we calculate repulsive
forces we use a bounding box for the obstacles that is deliberately made slightly bigger than necessary. In particular, the
box is grown by an amount proportional to the character’s size. This increases realism by allowing smaller creatures
to get in closer to an obstacle than a large creature. Moreover, since the sharks are larger, this can be exploited in
the specification of the evasion behavior for the merpeople. Figure 5.8.6 shows a graphical depiction of the repulsive
potential around an obstacle.

The attractive potential has a much simpler equation. First we defineρg(q) to be the distance from the pointq to
the current goal positionq. Then, for some constantξ, we have that the attractive potential is

U+(q) = ξρg(q).

This gives us that the attractive force is:

F +(q) = −ξ(q − g)
ρg(q)

.

Note that we must be careful not to divide by0 at the goal position. Figure 5.8.6 shows a graphical depiction of the
attractive potential around a goal position.

Figure 5.8.6 shows a graphical depiction of the superposition of the repulsive and attractive potential fields.

2We can always decompose concave objects into a set of convex objects.
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Figure 5.10: The repulsive potential.
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Figure 5.11: The attractive potential.
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Figure 5.12: The repulsive and attractive potential fields.

It is the case that the goal position can change as a consequence of a new course of action being decided upon by
the reasoning engine. The reactive layer limits the effect that a new goal position may have by imposing a maximum
turn angle per time step. In this way the character changes course gracefully, and any momentary oscillation is evened
out. For its part the higher level reasoning engine preempts many of the traditional problems with local minima by
choosing goals that have a clear path leading to them. The reasoning engine is also able to spot when the merperson is
not making progress towards its goal. It can then set a new goal, or, depending on the situation, adjust the parameters to
the potential field. This is done by making these parameters fluents which can be changed by certain actions. We believe
this synergy of a high-level qualitative system monitoring a low-level numerical procedure is a powerful combination.
In general, the potential field is mainly used to add a level of robustness. Any collisions that were unforeseen by the
reasoning engine do not result in disaster for the character’s well-being.

5.9 Animation Results

Most of our animations to date center around merpeople characters and sharks. The sharks try to eat the merpeople and
the merpeople try to use the superior reasoning abilities we give them to avoid such a fate. For the most part, the sharks
are instructed to chase merpeople they see. If they can’t see any, they go to where they last saw one. If all else fails
they start to search systematically.

5.9.1 Nowhere to Hide

The first animations we produced were to verify that the shark could easily catch a merperson swimming in open water.
The shark is larger and swims faster, so it has no trouble catching its prey.

In particular, there are no obstacles/rocks that are large enough for the merman to hide behind. Therefore, as shown
in figure 5.13, the merman simply tries to swim, as far, and as fast, as he can, away from the ferocious shark.

When he senses that the predator became dangerously close all he can do is go into panic mode, taking random
turns. . . Unfortunately, the shark is larger and swims faster, it has no difficulty devouring its prey (see figure 5.14).
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Figure 5.13: Nowhere to Hide (part I)

Figure 5.14: Nowhere to Hide (part II)
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5.9.2 The Great Escape

In this animation, we use the same initial configuration as the previous one but introduce some large rocks into the
merman’s world. The merman takes advantage of undersea rocks to try and avoid being eaten. It can hide behind them
and hug them closely so that the shark has difficulty seeing or reaching it. To cope with fast moving environments,
the merpeople base their decisions on where to go on the positions that it predicts the predators will be in when it gets
to its goal. So long as it was safe to do so, the merman will try to visit other obstacles. Finally, we enabled it to use
information about relative character sizes to look for small gaps to go through whenever it had the chance.

Figure 5.15: The Great Escape (part I)

Figure 5.15 shows some frames from the initial sequence. An intense chase ensues with the shark closely tailing
its prey as it circles a big rock. If he thinks it is safe enough he will try to visit other obstacles in the scene, otherwise
he will rest in his current hiding place for as long as he can. The initial attempts to try and visit other obstacles are
thwarted as the shark swings back quickly and became too threatening again. Finally, the merman makes a break for
the huge long rock towards the back of the scene and the shark pursues.

In figure 5.16 the shark starts gaining on the merman as the pair travel along the side of rock... Suddenly, the merman
sees a small crack in the rock!

In figure 5.17 the merman swims through the crack. The shark tries to follow but luckily for the merman, the crack
is too narrow for it to pass through without risking injury. The merman seizes the opportunity and the shark is foiled.

In general, the shark chases the merman if it can see him, otherwise it goes to check where it last saw him. We can
see the shark following this behavior pattern as in the animation it returns to the crack in the rock.

Finally, in figure 5.18 the shark gives up and begins to search for the merman. By the time the shark reaches the
other side of the rock, however, the merman is nowhere to be found.

5.9.3 Pet Protection

This simple animation shows that characters can have distinct “mersonalities” and can co-operate with each other. We
have specified that some characters are brave and others are more timid. The timid ones cry for help (telepathically for
now) when they are in danger and the brave ones will go to the rescue, provided it is not too dangerous for them. Once
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Figure 5.16: The Great Escape (part II)

Figure 5.17: The Great Escape (part III)
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Figure 5.18: The Great Escape (part IV)

the brave ones have attracted the sharks attention, they try to get away themselves.

Figure 5.19: Pet Protection (part I)

The small lighter colored creature in figure 5.20 is the merman’s pet. It is timid and must be protected by the braver,
and larger merperson. In the opening sequence the pet is being chased by a shark and calls out (telepathically for now)
for help. The merman goes to its rescue. So long as the prey are in a certain range, the shark prefers larger meals. Hence
it gave up on the small pet and started chasing the merman.

Figure 5.20 shows what happens now that the merman has got the shark’s attention. The merman tries to escape
and quickly hides behind a rock. The shark immediately discontinues the pursuit and wanders off back to where it last
saw the merman’s pet. Once again the merman charges to rescue and the shark again starts to pursue.

However this time he is too foolhardy and, as we can see in figure 5.21, is only saved from a grisly end by a lucky
near miss that the shark has with an obstacle. Now the merman runs away from the shark and towards the last known
position of his pet. The two of them then swim together and, as in the previous animation, evade capture.
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Figure 5.20: Pet Protection (part II)

Figure 5.21: Pet Protection (part III)
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5.9.4 General M̂elée

To show that our approach can scale, we have generated animations with larger numbers of characters. Each character
has its own “brain”, so there is no theoretical problem with adding as many as we want.

Figure 5.22: General Mˆelée (part I)

In figure 5.22 there are six merpeople and four sharks. The merpeople weigh the threat from each visible predator
and at accordingly. This time they are all fending for themselves - although they are aware of all the other characters
within visual range. The merpeople nearest the sharks start running first as they are the first to see them.

The action continues in figure 5.23 with the merpeople take advantage of their smaller size by hugging obstacles
closely so that the sharks have difficulty reaching them. The birds-eye view also makes it hard to discern merpeople
maneuveringover or under sharks from sharks just being merciful. Still one can see how for the most part the merpeople
manage to stay clear of the sharks.

From a practical point of view, things start to get slow when we have over twenty reasoning characters in the scene.
Improving the efficiency of our reasoning engine may help. We also want to consider using faster, limited models of
reasoning. That is, we may obtain useful characters by removing tha ability to reason about disjunctions, say.
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Figure 5.23: General Mˆelée (part II)
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Chapter 6

Conclusion

In this, our final chapter, we shall summarize the previous chapters, and point out the opportunities we perceive for
extending our work.

6.1 Summary

The reader will recall that, after the introduction, the thesis began with a broad overview of computer animation. The
chapter set the scene for what was to follow and gave the reader the required background to appreciate what was to
follow.

Chapter 3 outlined the underlying theoretical basis for our approach. The most notable contribution was the intro-
duction of interval-valued fluents. One of their key benefits was that they allowed us to elegantly talk about knowledge
of continuous quantities.

We moved on to discuss applications of our approach to computer animation. We drew a distinction between the
problems of controlling the behavior of a character situated in a physics based world, and a non-physics based world.
In particular we first discussed the simpler case of a non-physics based world. We referred to these applications as
kinematic. Although not generally the case, in our example the character in its kinematic world did not have to face
any problems associated with their actions being unpredictable. We first discussed some simple examples that served
as a concrete realization of how we meant to apply our theory to behavior specification. After which, we moved on to
a real-world application of our theory to camera placement. We were able to demonstrate how well suited our notation
was to such an endeavor.

The next step was to consider the case in which the character was situated in a hard to predict physics-based world.
Sensing was the key to the successful application of our approach. We choose an undersea world as our scenario. A
merman was the vehicle used to embody our ideas. The merpeople were able to use the behavior specifications we gave
them to perform various tasks. We focussed on pursuit and evasion behaviors and generated some intriguing animations
of merpeople and sharks chasing and avoiding one another. We explained that our system had numerous advantages in
terms of rapid prototyping and maintainability.

6.2 Future Work

In order to make it easier for the reader to understand when best to use our approach it is important to discuss some
of the current limitations. Many of these shortcomings are far from fundamental and thus provide a springboard for a
discussion on possible future work.

• As it stands our approach is too slow to be used for interactive applications. We believe that in many interactive
applications suitable allocation of CPU resources could allow computer characters to reason as a background
process. The reasoning process would be given higher priority during natural pauses in the action. Some of
the key factors to make this work are already in place. Firstly, our leverage of the synergy between a reasoning
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system and a reactive system would be important in developing the “anytime algorithms” (see [129]) that are
crucial for real-time applications. In addition, our use of intervals to represent partial knowledge of aspects of
the world allows a character’s knowledge to degrade gracefully over time.

• There is something to be said for being able to tell a character something before expecting it to learn it. However,
learning is an important aspect of behavior that we have all but ignored. There are a number of ways we could
redress the situation. Firstly, let us point out that there is little hope, in the short term at least, of learning high-
level controllers. Such an endeavor would amount to the unrealistic goal of automatic programming. We can,
however, imagine a character that can learn action precondition and effect axioms. It could do this by a process
of experimenting with various actions that it is able to perform. Perhaps an even more exciting idea is to imagine
a character that can observe the actions it decides upon by reasoning. Then, depending on what sensory values
were used to make the decision, and how much planning was involved, the character could try and learn to mimic
the working of the reasoning system. This would result in a function that, hopefully, maps sensory inputs, and
internal state into appropriate actions. This function could be used in place of the reasoning system whenever
time was limited. One could even imagine a learning phase during which a character wanders around its world
trying things out, followed by a phase when it puts its newfound knowledge into action.

• One may think of our system as a providing a means to build arbitrary architectures for planning and control.
To date, we have however only built simple action selection mechanisms. In contrast there are some highly so-
phisticated planning architectures such as SOAR [85], and RAP [20]. These systems make no pretense at being
general purpose knowledge representation tools like ours. They are however extremely effective planners. To
compete with them in this area we would ideally need to add additional features to our underlying representation
language. In particular, back in chapter 5, section 5.8.6 we mentioned ConGolog [43]. ConGolog has many im-
portant features, such as parallelism and interrupts, that we would need to elegantly handle multiple goals and
real-time constraints.

• A key problem with logical approaches to control is that once an inconsistency arises the whole system comes
crashing to a halt. Currently the only recourse is to try and be careful and anticipate all eventualities. If instead it
were possible to somehow introduce a localized notion of consistency then this would be of enormous practical
benefit in terms of stability and robustness.

• Logic has many advantages as a precise means of communication. It would, however, be a worthwhile, and
simple, enhancement to allow for an interaction language more akin to natural language. This would provide
a (possibly pared down) version more suited to use by non-technical people. We might even consider a visual
programming approach to specifying complex actions.

• In terms of implementation our choice of Prolog as a theorem prover is somewhat questionable. Prolog has some
important differences with logic and thus dilutes our claims of mathematical rigor in specifying behaviors. Other
theorem provers exist but many are heavily tailored toward interactively discovering proofs as opposed to appli-
cation development. There are, however, some other candidates that we should evaluate [105].

• On the theoretical front we would like to try a more radical overhaul of the situation calculus. We have thus far
introduced interval-valued fluents. We would like to try and move to a completely continuous model. That is,
we would like a continuous notion of change, with continuous actions, continuous knowledge, continuous goals,
etc. It is our belief that through the use of intervals we may effect such a scheme. One of the most significant
technical impediments we envisage would be how to deal with overlapping actions and events. A key advantage,
however, should be a practical theory that allows for graceful degradation as we reduce the amount of reasoning
time available.

Even if we stop short of such a grandiose achievement, we do not as yet take advantage of the full scope of the
current available agent theory from which our approach derives [50]. Some of this theory is now fairly stable and
perhaps amenable to incorporation into our work. Regardless of any unforeseen problems, our implementation
domain provides an excellent opportunity for testing and, if necessary, refinement.

• The scope for applications of our work is obviously large. Our camera example obviously has plenty of room for
expansion. We would also like to look at applications to lighting and sound production within virtual worlds.
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Other issues arise with regard to camera placement. It is common practice in computer animation to create a
simulation and then to choose suitable camera placements. In film production the process is not so conveniently
partitioned. It is commonplace to re-shoot a scene, with the actors in different positions (or even entirely removed
from the scene!), and pretend that it is the same scene shot from a different angle. The reason for this approach
are practical and aesthetic. In computer animation we do have the option of re-shooting the same piece of action
from multiple viewpoints. That is, there are no practical reasons to re-enact a scene, but, it may well be the case
that for aesthetic reasons the action needs to be changed depending on the viewpoint. For example, one might
imagine a “face the camera if possible” behavior. This is an issue which has not been addressed within computer
animation research.

Other applications are also possible. Our work represents an excellent basis for continued research into high-
level behavior control of autonomous animated characters. That is, our system can be used with any behavioral
animation system for which the low-level control has been worked out. We would, therefore, like to apply our
approach to the animation of some other creatures. The first obvious extension we wish to add to our system
is to build a mermaid companion for our merman. Another particularly compelling example would be to incor-
porate our work into the process of computer game development. That is our approach could be used for rapid
prototyping of new characters.

• The incorporation of more support for multiple characters would also be a lofty and worthy goal. We should like
to implement some sophisticated level of detail scheme. We envisage that behavior could become simplified with
distance from the camera, and flock membership.

• One aspect of the use of the situation calculus that we could exploit further is the ability to prove properties of our
specifications. It seems that the computer industry remains resilient to acknowledging the advantages of proving
properties of programs versus testing them. Regardless, it is an idea whose time will no doubt come. Our work
will be uniquely poised to capitalize on any such a paradigm shift.

• Finally, we believe the widespread protection of computer characters as intellectual property will one day become
a reality. The problems associated with legal wrangling over copyright infringement could be easily dispelled by
recourse to a formalism such as ours. The advantage to this is, of course, that we would have the opportunity to
prove or disprove the alleged similarities.

6.3 Conclusion

In advanced computer animation research, we study virtual autonomous agents situated in dynamic virtual worlds. In
the past, researchers in computer animation have used techniques from control theory and numerical optimization to al-
low them to address the low-level locomotion control problem. We have applied a theory of action that allows animated
autonomous characters to perceive, reason and act in dynamic virtual worlds. We have proposed and implemented a
remarkably useful framework for high-level control that combines the advantages of a reactive and a reasoning system.
It allows us to conveniently specify the high-level behavior we want our animated characters to exhibit. We have used
this system to create sophisticated behavioral animations with unprecedented ease.

In summary, we have developed a behavioral animation framework that supports convenient high-level interaction
and direction of autonomous virtual agents by:

1. Enabling an agent to represent and think about its worlds in a way that is intuitive to the animator;

2. Allowing a user to define the agents representation of its world in terms of actions and their effects;

3. Combining the advantages of a high-level reasoning system with a lower level reactive behavior system;

4. Enabling a reasoning agent to sense, so that it can be situated in a physics-based dynamic world;

5. Enabling an agent to receive advice on how to behave in the form of a sketch plan, the details of which the agent
can automatically infer;

6. Being able to direct an agent without sacrificing its autonomy at run-time.
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Chapter 6 Conclusion

Much of the early work in computer animation consisted of producing efficient implementations of perfectly good
scientific theories, or failing that, approximations to existing theories that still produce realistic looking results. It was
not long before difficult unsolved problems, such as the control problem for physics based animations, presented them-
selves. For many aspects of the world, most notably cognitive models (including control), scientific theory is much less
complete and computer animation should play an integral role, both as a test bed and a driving force, in developing new
ideas.
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Appendix A

Scenes

A sceneshall be taken to be the state of some world at some particular time. To talk about the geometrical component
of a scene the following, standard, definitions are introduced:

Points. A point is an atomic location in space. The space as a whole is a set of points.

Lengths. Length is a differential measure space. Note that this definition also gives rise to areas (length squared) and
volume (length cubed).

Directions. A direction is a point on the unit sphere centered at the origin.

Coordinate Systems.A right-handed coordinate system inn-space is a tripleC = (O, l,D), whereO is a point called
the origin,l is a unit length, andD is the frame of axis directions (or coordinate frame), ann-tuple of mutually
perpendicular directions, ordered with the “right-hand” orientation.

Fixing a coordinate system gives a standard way of naming points, lengths and directions:

Let C = (o, l, (d0, . . . ,dn−1)) be a coordinate system inn-space. The measure of lengthm in C is the real
numberm/l. The productld is the vector with lengthl and directiond. The coordinates of a vectorv is the
uniquen-tuplec0, . . . cn−1 such thatv = c0ld0 + · · · + cn−1ldn−1. The coordinates of a pointa in C is equal
to the coordinates of the vectora − o.

Mappings. A mapping is a function from the space to itself.

Regions. A region is a set of points.

Although there has been some interest in two-dimensional computer animation, most of the work considered in
this paper deals with, or is applicable to, three-dimensional computer animation. In particular the following three-
dimensional world coordinate system is definedC0 = (O, 1, (i, j,k)), whereO = (0, 0, 0), i = (1, 0, 0), j = (0, 1, 0)
andk = (0, 0, 1).
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Appendix B

Homogeneous Transformations

Let q = (q1, q2, q3) be a point inR3, C be a coordinate system forR3 then the homogeneous coordinates ofq with
respect toC are defined as:

[q]C = (σq1, σq2, σq3, σ)T

For convenience, in animation and robotics, it is usual to takeσ = 1. Thus, four-dimensional homogeneous co-
ordinates can be obtained from three-dimensional physical coordinates by simply augmenting the vector with a unit
fourth component. Similarly, three-dimensional physical coordinates are recovered from four-dimensional homoge-
neous coordinates by merely dropping the unit forth component. Where the intended coordinate system and use of
homogeneous coordinates is not ambiguousq will be written instead of[q]C .

A homogeneous transformation of points inR3 can be represented by a4 × 4 matrixT of the form:

T =
(

R p
ηT σ

)

WhereR is a compound3×3 shear and rotation matrix,p is a translation vector,η is a perspective vector andσ is
a scalar scale factor. By settingη = 0, σ = 1 and restrictingR to be purely a rotation matrix it is possible to represent
a rigid body motion.
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Appendix C

Control Theory

A more comprehensive introduction to control theory may be found in any good control theory book, such as [36].
Most of our definitions are taken from [33].

A processis a series of changes in the state of some world. A process may also be referred to as aplant, or the
environment. A controllerchanges the state of the world to influence what additional changes will occur and when.

The mathematical model of the interaction between the environment and the controller is an example of adynamical
system. The set of all times is denotedT and may be continuous or discrete but for any computer animation problem
will always be bounded. The set of all possible states of the environment is known as thestate spaceX of the dynamical
system. The space of all possibletrajectories(or time lines) is defined as the set of all functions from time to states:
HX = {x : T → X}. A point in state spacex(t) is known as astate vector, it completely describes the state of
the environment at any given timet ∈ T. The set ofoutputsY denotes the set of all the things the controller can
perceive of its environment. The space of all output trajectories is defined as the set of all functions from time to outputs:
HY = {y : T → Y}. A point in output space is denoted by the vectory(t). The set ofinputsV denotes the set of all
possibleactionsthat the controller can perform. The space of all input trajectories is defined as the set of all functions
from time to inputs:HV = {v : T → V}. A point in input space is denoted by the vectorv(t).

The state trajectories are generally restricted to obey certain laws, as embodied in thesystem state equations1: ẋ =
k(x(t),v(t)).

The output functiony(t) restricts the set of output trajectories by relating them to states:y(t) = g(x(t)). Different
types of output function can arise:

Open-loop. In an open-loop controller the output function is just the identity function:y(t) = t. An open-loop con-
troller must therefore be recalculated for each new initial situation.

Closed-loop. In a closed-loop controller the output function returns information about the current state. This informa-
tion is known asfeedback. Feedback makes the controller applicable to a range of initial situations.

Among the different types of feedback are:

State Feedback.State feedback implies that the functiong is just the identity function so thaty(t) = x(t). It thus
makes complete information about the state of the system available to the controller;

Sensor Feedback.Sensor feedback implies that the functiong is not just the identity function. It may or may not be
possible to reconstruct a complete state description from the information provided.

The set of input trajectories are restricted by the resources available (or in computer animation, that would realis-
tically be available) to build a controller. The set of all possible controllers is the set of all functions, known ascontrol

1Here the system state equation is a system of differential equations, however it might just as well be a difference equation, a set of axioms or a
stochastic process.
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functions(or control laws), from output trajectories to inputs:P = {p : HY → V}. Often only the last state is
considered relevant, in which case:P = {p : Y → V}.

Specifying what a controller should do can be done in various ways:

Hand-crafting. Hand-craftinga controller consists of directly defining a control function.

Optimal control. In the optimal controlapproach a scalar functiono : HX → R, called aperformance index(or
objective function), is used to induce atotal orderon the space of state space trajectories. Here the problem is to
find anoptimal controllerp ∈ P such that (without loss of generality)o obtains a minimum value. It is implicitly
assumed that the controller can be generated using optimization.

Objective based control. An objective based controller is one in which what the controller should do is specified, in
terms of preferred states, as anobjective. For example agoalG ⊂ HX is a set of possible state trajectories, so
here the objective is to find ap ∈ P such that the behavior of the dynamical system is restricted toG. The point
is that no means is given to achieve the goal.

It is also common to draw distinctions based on the types of systems being controlled. For example, a system de-
scribed by a set of equations such as the following, is an instance of a linear system:

ẋ = Ax + Bv
y = Cx + Dv

whereA,B,C andD are all real-valued constant matrices. Linear systems are relatively easy to control and an ex-
tensive body of literature exists on the subject. In particular there are many efficient techniques for finding an optimal
controller for a linear system.

Other classifications based on the type of system being controlled include:

Smooth Systems.A system is smooth if its state variables areC1 continuous with respect to time. This is an important
sub-category because it means that the derivates are available to optimization routines employed in the calcula-
tion of some optimal control strategy.

Statically Stable Systems.In computer animation people often refer to statically stable systems. By this they mean
one in which momentum is not required for stability. Thus a motion in a statically stable system may be stopped
at any point without the system collapsing.

A large amount of control theory is concerned with proving stability and performance under all possible conditions.
This has thus far not been considered relevant to animation and is therefore not discussed further.
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Appendix D

Complex Actions

Complex actions are abbreviations, or macros, for terms in the situation calculus. The notion is straightforward and
similar to work done in proving properties of computer programs [46]. Our definitions are taken from those given in
[68].

Complex actions are represented by the macroDo (α, s, s′), such thats′ is a state that results from doing the complex
actionα in states. Do is defined recursively as follows:

Do (α, s, s′) , Poss (α, s) ∧ s′ = do(α, s) α is a primitive action

Do ((α o
9 β), s, s′) , ∃s∗ (Do (α, s, s∗) ∧ Do (β, s∗, s′)), sequence;

Do (φ?, s, s′) , φ[s] ∧ s = s′, test actions,

(whereφ[s] is φ with situation arguments inserted,

eg. if φ = PreyPos(p) thenφ[s] = PreyPos(p, s));
if p then α elseβ , (p? o

9 α)|(¬p? o
9 β), conditionals;

Do (α?, s, s′) , ∀P {[∀s1 P (s1, s1)] ∧
∀s1, s2, s3 [P (s1, s2) ∧ Do (α, s2, s3) ⇒ P (s1, s3)]}
⇒ P (s, s′), nondeterministic iteration;

while p do α od , (p? o
9 α)?|(¬p?), while loops;

Do ((α|β), s, s′) , Do (α, s, s′) ∨ Do (β, s, s′), nondeterministic action choice;

Do ((πx)α(x), s, s′) , ∃x Do (α(x), s, s′), nondeterministic choice of arguments;

Do (P (x1, . . . xn), s, s′) , P (x1[s], . . . xn[s], s, s′)
Do ((proc P (x1, . . . , xn)α end) β, s, s′)

, ∀P [∀x1, . . . , xn, s1, s2 Do (α, s1, s2) ⇒
Do (P (x1, . . . , xn), s1, s2)] ⇒ Do (β, s, s′),

situation calculus version of standard

Scott-Strackey [108] least fixed-point definition of

(recursive) procedure execution.
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Appendix E

Implementation

In [68], an implementation of the situation calculus is described. The implementation is known as Golog and provides
a novel high-level programming language for controlling autonomous agents. In essence, the user supplies successor
state axioms, precondition axioms and complex actions. The axioms are written directly in Prolog. This makes sense
because the connection with logic programming means that there should be Prolog constructs that are closely related to
the logical constructs used in the situation calculus. The complex actions are written in Golog and there is an interpreter
to perform the macro expansion described in appendix D. The interpreter is written in Prolog. This seems to make less
sense.

To be precise about where our objections lie let us clearly state that, for the same reasons as given above, it seems
entirely reasonable to have the complex actions expand out into Prolog terms. What is not clear is why the macro
expansion itself should be defined in Prolog. In particular, the macro expansion is an extra-logical notion so a tie-in
with logic programming has dubious value. It would seem that the only tangible outcome of performing the macro
expansion in Prolog, at run-time is to make the execution time unnecessarily slow.

Therefore, we have written what amounts to a Golog compiler. The compiler takes as input valid Golog programs
and produces, as output, equivalent Prolog programs. Thus, at run-time, there is no need to interpret the Golog code
on the fly. That is, the conversion to Prolog is done as a pre-processing step.

Our current compiler is a prototype version written in Java using the Java Compiler Compiler (JavaCC) [78]. Aside
from the potential efficiency advantages, our compiler allows much better looking programs to be written. It does not
require the use of cryptic and unseemly brackets. We can have arbitrary blank spaces, blank lines, tabs and it supports
single and multi line comments. Note also that we are not forced to use “: ” as the statement separator, but can use the
more usual “; ”. In Prolog “; ” is reserved to mean “or” and thus causes confusion. In future we would like to take
advantage of Java’s ability to handle Unicode characters [116]. This would result in programs that are syntactically
identical to the theoretical language.

Golog stand for “alGOL in LOGic”. The syntax of our complex actions differs slightly from that used in Golog.
In particular, we wanted to make the approach accessible to as wide an audience as possible. We therefore prefer to
make our language resemble C more closely than Algol. To avoid confusion we shall therefore refer to our language
as CLog.

Below we shall describe how our compiler works. We will do this by going through the different CLog constructs
and writing down the correspondingProlog code that our compiler produces. The compiler is also available as an applet
on the web [59] so that the interested reader may try out the examples for themselves.

We shall take advantage of the following background domain knowledge. To ensure that this Prolog code is
loaded in the code output from CLog the user simply needs to place it in a file calledsimple.pl , say and use the
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CLog statementimport simple; .

global_var(max,3).

notequal(X,Y) :-
\+ X = Y.

poss(act_inc,S) :-
fl_counter(X,S),
global_var(max,Max),
X < Max.

poss(act_set(_),_).

fl_counter(Count,do(A,S)) :-
(

A = act_inc,
fl_counter(OldCount,S),
Count is OldCount + 1

) ;
(

A = act_set(X),
Count is X

) ;
(

notequal(A,act_inc),
notequal(A,act_set(_)),
fl_counter(Count,S)

).

fl_counter(0,s0).

This successor state axiom states that the actionact_inc() increments the counter by one, and is possible pro-
vided the counter is less than some maximum value (3 in this case). The actionact_set(X) is always possible and
sets the counter toX. Initially the counter is 0.

E.1 Overall structure

CLog works by considering each statement in the CLog program in turn. The top level clause is calledclog(S) . This
is the name of the clause the user needs to call to run the CLog program after is has been compiled. The result of a call
to grun(S) will be to bind the variableS to the resulting sequence of primitive actions.

Let us consider a simple example to explain how things work. The simplest program is the empty program, and the
compiled version of the empty program is another empty program. The next simplest valid CLog program is:

;

For both the empty program, and the above program, the resulting Prolog program is:

clog(S) :-
clog_0(s0,S).

clog_0(S,S).

Thus, the result of a call toclog(S) will be thatS is bound toS = s0 , as required.
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Now consider the program that consists of a single primitive action:

import simple;

act_inc();

The resulting Prolog program is :

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_0(S,SNew) :-
poss(act_inc,S),
clog_1(do(act_inc,S),SNew).

clog_1(S,S).

Therefore, provided theact_inc action is possible ins0 the result of a call toclog(S) will be thatS is bound to
S = do(act_inc,s0) , as required. Thus the Prolog queryclog(S), fl_counter(X,S) , results inX = 1,
as required. If we setglobal_var(max,0). , then the action is not possible, and the program will fail.

Notice that for actions with no arguments CLog strips off the() . This is because Prolog generates an error on
reading such a construct. Ideally we would prefer to leave them in.

As required for the nondeterministic constructs in CLog, failure of a correspondingclause will result in backtracking
to try and find other solutions. The clauses generated by the compiler are all namedclog_n , wheren is a number that
gets incremented as we consider more and more statements in the CLog program. JavaCC has a companion tool called
JJTree that acts as a preprocessor for JavaCC. JJTree generates code to construct parse tree nodes for each nonterminal
in the language. We exploit the tree structure to ensure that we number all the clauses correctly. How the numbering
scheme works will become clearer when we consider more examples. For a long program we can generate hundreds
of clauses. It is the job of the compiler to keep track of the clause numbers and to assign them correctly.

To make it easier to understand we shall consider short programs that contain only one construct at a time. Of course
with suitable re-numbering of the clauses we can imagine that they are fragments of a larger program. So far we have
considered primitive actions. We shall now proceed to consider other cases.

E.2 Sequences

Consider the CLog program

import simple;

act_set(0);
act_inc();
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The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_0(S,SNew) :-
poss(act_set(0),S),
clog_1(do(act_set(0),S),SNew).

clog_1(S,SNew) :-
poss(act_inc,S),
clog_2(do(act_inc,S),SNew).

clog_2(S,S).

The result of the Prolog queryclog(S) is S = do(act_inc,do(act_set(0),s0)) , as required.

Equally as important is the fact that the following program results in a Prolog program for which the queryclog(S)
correctly replies “no”.

import simple;

act_inc();
act_inc();
act_inc();
act_inc();

E.3 Tests

Consider the CLog program

import simple;

fluent fl_counter;

test(fl_counter(X) && X < 1);

The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_0(S,SNew) :-
fl_counter(X,S),
X<1,
clog_1(S,SNew).

clog_1(S,S).

Notice that we need to declarefl_counter as a fluent so that CLog knows to insert the appropriate situation argu-
ment whenever it is mentioned in a program.
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E.4 Conditionals

Consider the CLog program

import simple;

fluent fl_counter;

if (fl_counter(X) && X < 1)
act_inc();

The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_1(S,SNew) :-
poss(act_inc,S),
clog_2(do(act_inc,S),SNew).

clog_0(S,SNew) :-
fl_counter(X,S),
X<1,
clog_1(S,SNew).

clog_0(S,SNew) :-
\+ (fl_counter(X,S),
X<1),
clog_2(S,SNew).

clog_2(S,S).

The result of the Prolog queryclog(S) is S = do(act_inc,s0) , as required. Now consider the same
CLog program with an else part.

import simple;

fluent fl_counter;

if (fl_counter(X) && X < 1)
act_inc();

else
act_set(0);

The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_1(S,SNew) :-
poss(act_inc,S),
clog_2(do(act_inc,S),SNew).

clog_3(S,SNew) :-
poss(act_set(0),S),
clog_4(do(act_set(0),S),SNew).
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clog_0(S,SNew) :-
fl_counter(X,S),
X<1,
clog_1(S,SNew).

clog_0(S,SNew) :-
\+ (fl_counter(X,S),
X<1),
clog_3(S,SNew).

clog_2(S,SNew) :-
clog_4(S,SNew).

clog_4(S,S).

The result of the Prolog queryclog(S) is S = do(act_inc,s0) , as required. Of course, we can also have a
block of statements wherever we could have a single statement. For example, consider the CLog program

import simple;

fluent fl_counter;

if (fl_counter(X) && X < 1) {
act_set(0);
act_inc();

}

The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_1(S,SNew) :-
poss(act_set(0),S),
clog_2(do(act_set(0),S),SNew).

clog_2(S,SNew) :-
poss(act_inc,S),
clog_3(do(act_inc,S),SNew).

clog_0(S,SNew) :-
fl_counter(X,S),
X<1,
clog_1(S,SNew).

clog_0(S,SNew) :-
\+ (fl_counter(X,S),
X<1),
clog_3(S,SNew).

clog_3(S,S).

The result of the Prolog queryclog(S) is S = do(act_inc,do(act_set(0),s0)) , as required.
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E.5 Nondeterministic iteration

Consider the CLog program

import simple;

star
act_inc();

The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_1(S,SNew) :-
poss(act_inc,S),
clog_2(do(act_inc,S),SNew).

clog_0(S,SNew) :-
clog_3(S,SNew).

clog_0(S,SNew) :-
clog_1(S,SNew).

clog_2(S,SNew) :-
clog_0(S,SNew).

clog_3(S,S).

The result of the Prolog queryclog(S) is S = s0 , or S = do(act_inc,s0) , or
S = do(act_inc,do(act_inc,s0)) , or S = do(act_inc,do(act_inc,do(act_inc,s0))) , as
required.

The next program will be of interest for the while construct that we consider next.

import simple;

fluent fl_counter;

star
{
test(fl_counter(X) && X < 2)
act_inc();
}

test(!(fl_counter(X) && X < 2));

The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_1(S,SNew) :-
fl_counter(X,S),
X<2,
clog_2(S,SNew).
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clog_2(S,SNew) :-
poss(act_inc,S),
clog_3(do(act_inc,S),SNew).

clog_0(S,SNew) :-
clog_4(S,SNew).

clog_0(S,SNew) :-
clog_1(S,SNew).

clog_3(S,SNew) :-
clog_0(S,SNew).

clog_4(S,SNew) :-
\+ ((fl_counter(X,S),
X<2)),
clog_5(S,SNew).

clog_5(S,S).

The result of the Prolog queryclog(S) is S = do(act_inc,do(act_inc,s0)) , as required.

E.6 While loops

Consider the CLog program

import simple;

fluent fl_counter;

while ((fl_counter(X) && X < 2))
act_inc();

Notice that from the definitions given in appendix D this is the same program as the previous one involvingstar
andtest . The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_1(S,SNew) :-
poss(act_inc,S),
clog_2(do(act_inc,S),SNew).

clog_0(S,SNew) :-
(fl_counter(X,S),
X<2),
clog_1(S,SNew).

clog_0(S,SNew) :-
\+ ((fl_counter(X,S),
X<2)),
clog_3(S,SNew).
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clog_2(S,SNew) :-
clog_0(S,SNew).

clog_3(S,S).

Note the code generated is different to the previous example. In particular it is optimized for the while loop. As
expected, it does however produce the same sequence of primitive actions. In particular, the result of the Prolog query
clog(S) is S = do(act_inc,do(act_inc,s0)) , as before.

E.7 Nondeterministic choice of action

Consider the CLog program

import simple;

choose
act_inc();

or
act_set(2);

The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_1(S,SNew) :-
poss(act_inc,S),
clog_2(do(act_inc,S),SNew).

clog_3(S,SNew) :-
poss(act_set(2),S),
clog_4(do(act_set(2),S),SNew).

clog_2(S,SNew) :-
clog_4(S,SNew).

clog_0(S,SNew) :-
clog_1(S,SNew);
clog_3(S,SNew).

clog_4(S,S).

In this case the result of the Prolog queryclog(S) is S = do(act_inc,s0) or S = do(act_set(2),s0) ,
as required.

E.8 Nondeterministic choice of arguments

Consider the CLog program

import simple;

pick (X)
act_set(X);

test(X == 1 || X == 2);
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The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_1(X,S,SNew) :-
poss(act_set(X),S),
clog_2(X,do(act_set(X),S),SNew).

clog_2(X,S,SNew) :-
(X=1;
X=2),
clog_3(X,S,SNew).

clog_0(S,SNew) :-
var(X),
clog_1(X,S,SNew).

clog_3(X,S,SNew) :-
clog_4(S,SNew).

clog_4(S,S).

Note how the compiler adds the extra variable to the arguments of all the clauses within the scope of thepick op-
eration. The other is that this example will not work with numbers. The result of the Prolog queryclog(S) is
S = do(act_set(1),s0) or S = do(act_set(2),s0) .

E.9 Procedures

Consider the CLog program

import simple;

void proc_addTwo(X)
{

act_inc();
act_inc();

}

proc_addTwo(2);

Notice that we use the C syntax for defining procedures. The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_proc_addTwo_0(X,S,SNew) :-
poss(act_inc,S),
clog_proc_addTwo_1(X,do(act_inc,S),SNew).

clog_proc_addTwo_1(X,S,SNew) :-
poss(act_inc,S),
clog_proc_addTwo_2(X,do(act_inc,S),SNew).
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clog_proc_addTwo_2(X,S,S).

clog_proc_addTwo(X,S,SNew) :-
clog_proc_addTwo_0(X,S,SNew).

clog_0(S,SNew) :-
clog_proc_addTwo(2,S,SProc),
clog_1(SProc,SNew).

clog_1(S,S).

Procedures are difficult to deal with because we must pass the correct arguments to all the sub-clauses and make sure
we return to the correct point in the program. We handle the first problem by providing all sub-clauses in the scope of
the procedure with all the arguments. The second problem is handled by prefixing the clause names with the procedure
name and treating the body of the procedure like a new program.

In this case the result of the Prolog queryclog(S) is S = do(act_inc,s0) or
S = do(act_inc,do(act_inc,s0)) , as required.

We can even handle recursive procedures. Consider the CLog program

import simple;

void proc_add(N)
{

if (N > 0) {
act_inc();
pick (M) {

test(M is N - 1);
proc_add(M);

}
}

}

proc_add(2);

Notice that we useis because of the way Prolog handles numbers. In the absence of type information it would be
preferable to always use= in CLog and have the compiler insert the correct Prolog depending on whether we are using
numbers or not. In the absence of type information, however, this is difficult to achieve.

The resulting Prolog program is

:- ensure_loaded(simple).

clog(S) :-
clog_0(s0,S).

clog_proc_add_1(N,S,SNew) :-
poss(act_inc,S),
clog_proc_add_2(N,do(act_inc,S),SNew).

clog_proc_add_3(N,M,S,SNew) :-
M is N-1,
clog_proc_add_4(N,M,S,SNew).

clog_proc_add_4(N,M,S,SNew) :-
clog_proc_add(M,S,SProc),
clog_proc_add_5(N,M,SProc,SNew).
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clog_proc_add_2(N,S,SNew) :-
var(M),
clog_proc_add_3(N,M,S,SNew).

clog_proc_add_5(N,M,S,SNew) :-
clog_proc_add_6(N,S,SNew).

clog_proc_add_0(N,S,SNew) :-
N>0,
clog_proc_add_1(N,S,SNew).

clog_proc_add_0(N,S,SNew) :-
\+ (N>0),
clog_proc_add_6(N,S,SNew).

clog_proc_add_6(N,S,S).

clog_proc_add(N,S,SNew) :-
clog_proc_add_0(N,S,SNew).

clog_0(S,SNew) :-
clog_proc_add(2,S,SProc),
clog_1(SProc,SNew).

clog_1(S,S).

In this case the result of the Prolog queryclog(S) is S = do(act_inc,do(act_inc,s0)) , as required.

E.10 Miscellaneous features

In order to mimic C syntax more closely the following is a valid program:

void main()
{

act_inc();
}

If desired, the user can drop thevoid . For many the resemblance to C may be of dubious worth. Fortunately, the
lexical structure of our language can easily be modified to suit individual tastes.

Finally, we have constructs that make it easier to specify action precondition axioms, successor state axioms, and the
initial state.

For example, the following program can be used in place of theimport simple that we have been relying on up
until now:

initially fl_counter(0);

fluent fl_counter(Y)
{

occurrence act_inc() results in Y is X + 1 when fl_counter(X);
occurrence act_set(X) results in Y is X;

}

action act_inc() possible when fl_counter(X) && X < 3;
action act_set(X);
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The resulting Prolog program is

fl_counter(0,s0).

fl_counter(Y,do(A,S)) :-
(

A = act_inc,
fl_counter(X,S),
Y is X+1

);
(

A = act_set(X),
Y is X

);
(

\+ (A = act_inc),
\+ (A = act_set(X)),
fl_counter(Y,S)

).

poss(act_inc,S) :-
fl_counter(X,S),
X<3.

poss(act_set(X),_).

Some features worth pointing out are the way of implicitly specifying defaults. In particular, notice how the
act_set(X) action can be specified naturally, without the need for redundant qualifiers such aswhen true . We
have also taken advantage of such features when specify the initial situation. The full blown version would be:

initially fl_counter(X) where X = 0;

Finally, notice that when we do not give axioms for a fluent then CLog assumes we will supply the Prolog ourselves
and import it. We took advantage of this in all the previous examples in which all we stated aboutfl_counter was
that it was a fluent. The user must be careful however, consider the CLog code:

fluent fl_counter(X)
{
}

In this case CLog legitimately assumes that we require it to generate the successor state axiom for us, to give:

fl_counter(X,do(A,S)) :-
(

fl_counter(X,S)
).
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Appendix F

Code for Physics-based Example

The main controller is given in chapter 5. In this appendix we shall give some more of the code to fill in the details.

F.1 Procedures

In this section we give the code for the procedures that were referred to in the main controller. The purpose of our con-
troller was to increase efficiency by avoiding considering large numbers of regions. that is the less regions we consider
the faster the controller will be.

The first procedure tests the current position to see if it is adequate. If it is then the character can just stay where it
is and needn’t search for a new goal position.

proc(control_testCurrPosn(I),
act_resetSearchRegion(I) :
act_setEvaluator(I,currPosn) :
act_setAcceptable(I,currPosn) :
act_evalRegions(I)

).

Next we test to see if the current goal position is adequate. This takes advantage of the dynamic worlds natural
temporal coherence. That is it will often be the case that the previous best goal position remains so for a while.

proc(control_testCurrGoalPosn(I),
act_setEvaluator(I,goalPosn) :
act_setAcceptable(I,goalPosn) :
act_evalGoalRegion(I)

).

If the current position and the present goal position are inadequate then the character must search for a new goal
position. This is done in concentric spheres around the character’s current position. If at any point we find a suitable
region then we stop early. At each iteration more and more regions are evaluated. The code was given back in chapter
5.

If we no suitable region exists nearby the characters will consider the swimming toward obstacles that it knows
about. In effect we have given the characters the heuristic knowledge that good hiding places should be located near
obstacles.

proc(control_testObstacles(I),
act_setEvaluator(I,obstacles) :
act_setAcceptable(I,obstacles) :
act_evalObstacles(I)

).
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F.2 Pre-condition axioms

Most of the actions are defined to be always possible. There are, however, some important exceptions. Notably, some
pre-condition axioms are referred to in some conditionals and termination conditions of some loops. For example, it is
possible to pick a goal if the character has found a goal position that is at least as good as a certain threshold value.

poss(act_pickGoal(Index),S) :-
fl_bestGoalPosns(Index,Worth,_,S),
fl_acceptable(Index,Accept,S),
Accept =< Worth.

In addition it is possible to expand the volume in which we search for suitable regions provided we have not ex-
ceeded some global maximum. We experimented with various values. The number of regions considered increases
exponentially as we use higher values. Of course, the more regions a character considers the more likely it is to find a
good one. We foundgoal_constant(maxExtent,4). to be a reasonable compromise in most cases.

poss(act_expandSearchRegion(Index),S) :-
fl_searchRegion(Index,Extent,S),
goal_constant(maxExtent,MaxExtent),
Extent < MaxExtent.

Finally there is no point spending time on dead characters!

poss(act_updateMemory(Index),S) :-
fl_alive(Index,true,S).

F.3 Successor-state axioms

Theevaluator fluent records for each characterI the current function that is used to evaluate the regions. It varies
depending upon the status of the goal searching. For example, the criterion for evaluating obstacles wil be different to
that for evaluating regions of space.

fl_evaluator(Index,Evaluator,do(A,S)) :-
(

A = act_setEvaluator(Index,Status),
fl_evaluator(Index,OldEvaluator,S),
fl_memory(Index,Memory,S),
calc_setEvaluator(Index,Memory,Status,OldEvaluator,Evaluator)

) ;
(

notequal(A,act_setEvaluator(Index,_)),
notequal(A,act_panic(Index)),
fl_evaluator(Index,Evaluator,S)

).

Similarly, the acceptance criterion will vary depending upon the stage in the search procedure. For example, we
might want to make the character more lenient when evaluating a previous goal position as compared to searching for
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a new one. In particular, note that any goal will do once the character starts to panic.

fl_acceptable(Index,Accept,do(A,S)) :-
(

A = act_setAcceptable(Index,Status),
fl_acceptable(Index,OldAccept,S),
fl_memory(Index,Memory,S),
calc_acceptable(Index,Memory,Status,OldAccept,Accept)

) ;
(

A = act_panic(Index),
Accept = 0.0

) ;
(

notequal(A,act_setAcceptable(Index,_)),
notequal(A,act_panic(Index)),
fl_acceptable(Index,Accept,S)

).

Thefl_memory fluent remembers the previously sensed values for the characters.

fl_memory(Index,Memory,do(A,S)) :-
(

A = act_updateMemory(Index),
fl_sensors(Index,Sensors,S),
fl_memory(Index,OldMemory,S),
calc_updateMemory(OldMemory,Sensors,Memory)

) ;
(

notequal(A,act_updateMemory(Index)),
fl_memory(Index,Memory,S)

).

Thefl_sensors fluent stores the current sensor values. Note that the values are intervals. Currently the sensors
are updated whenever the characters decide what to do next. During this time the virtual world is temporally suspended.
The world is “restarted” after theact_tock action. The clear sensors flags resets the intervals to maximal ones thus
maintaining their correctness at all times. In future we would like to try and make the intervals closer to optimal even
during the periods where no sensing occurs.

fl_sensors(Index,Sensors,do(A,S)) :-
(

A = act_sense(Index),
calc_updateSensors(Index,Sensors)

) ;
(

A = act_tock,
calc_clearSensors(Sensors)

) ;
(

notequal(A,act_sense(Index)),
notequal(A,act_tock),
fl_sensors(Index,Sensors,S)

).
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One of the most morbid functions of the sensors is to check whether the character has been eaten recently!

fl_alive(Index,Alive,do(A,S)) :-
(

A = act_checkAlive(Index),
fl_sensors(Index,Sensors,S),
calc_alive(Sensors,Alive)

) ;
(

notequal(A,act_checkAlive(Index)),
fl_alive(Index,Alive,S)

).

The following fluent keeps track of the extent of the volume that should be searched for suitable goal positions. It
is fairly self-explanatory.

fl_searchRegion(Index,Extent,do(A,S)) :-
(

A = act_resetSearchRegion(Index),
Extent is 0

) ;
(

A = act_expandSearchRegion(Index),
fl_searchRegion(Index,OldExtent,S),
Extent is OldExtent + 1

) ;
(

notequal(A,act_resetSearchRegion(Index)),
notequal(A,act_expandSearchRegion(Index)),
fl_searchRegion(Index,Extent,S)

).

The following fluent keeps track of the best goal positions that have been found so far. Some points to note are that
upon panicking the best position found so far will be used. Also, the calculation of the best goal positions in the current
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search step varies depending on what the character is searching.

fl_bestGoalPosns(Index,Worth,GoalPosns,do(A,S)) :-
(

A = act_evalRegions(Index),
fl_bestGoalPosns(Index,OldWorth,OldGoalPosns,S),
fl_searchRegion(Index,Extent,S),
fl_evaluator(Index,Evaluator,S),
fl_memory(Index,Memory,S),
calc_evalRegions(Evaluator,Index,Memory,Extent,OldWorth,Worth,

OldGoalPosns,GoalPosns)
) ;

(
A = act_evalObstacles(Index),
fl_bestGoalPosns(Index,OldWorth,OldGoalPosns,S),
fl_evaluator(Index,Evaluator,S),
fl_memory(Index,Memory,S),
calc_evalObstacles(Evaluator,Index,Memory,OldWorth,Worth,

OldGoalPosns,GoalPosns)
) ;
(

A = act_evalGoalRegion(Index),
fl_bestGoalPosns(Index,OldWorth,OldGoalPosns,S),
fl_evaluator(Index,Evaluator,S),
fl_memory(Index,Memory,S),
fl_intention(Index,Int,S),
calc_evalGoalPosn(Evaluator,Index,Memory,Int,OldWorth,Worth,

OldGoalPosns,GoalPosns)
) ;
(

A = act_tock,
Worth = 0.0,
GoalPosns = []

) ;
(

notequal(A,act_evalRegions(Index)),
notequal(A,act_evalObstacles(Index)),
notequal(A,act_evalGoalRegion(Index)),
notequal(A,act_tock),
fl_bestGoalPosns(Index,Worth,GoalPosns,S)

).

Finally, the character’s current intention is maintained. The intention is ultimately communicated to the lower level
reactive behavior system. Therefore, it can be anything that the lower level reactive system knows how to perform.
Here the only intention being used is to go to a goal position.

fl_intention(Index,Int,do(A,S)) :-
(

A = act_pickGoal(Index),
fl_intention(Index,OldInt,S),
fl_bestGoalPosns(Index,Worth,GoalPosns,S),
calc_pickGoal(Index,Worth,GoalPosns,OldInt,Int)

) ;
(

notequal(A,act_pickGoal(Index)),
fl_intention(Index,Int,S)

).
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