
A Hoare-Style Proof System for Robot Programs

Yongmei Liu
Department of Computer Science

University of Toronto
Toronto, ON, Canada M5S 3G4

yliu@cs.toronto.edu

Abstract

Golog is a situation calculus-based logic programming
language for high-level robotic control. This paper ex-
plores Hoare’s axiomatic approach to program verifica-
tion in the Golog context. We present a novel Hoare-
style proof system for partial correctness of Golog pro-
grams. We prove total soundness of the proof system,
and relative completeness of a subsystem of it for pro-
cedureless Golog programs. Examples are given to il-
lustrate the use of the proof system.

Introduction
When it comes to building high-level robotic controllers,
planning-based approaches suffer from computational in-
tractability. A promising alternative is high-level program-
ming. Given a particular domain, a high-level program can
provide natural constraints on how to achieve a specific goal.
The domain constraints then allow for replacing the unre-
stricted search for a sequence of actions achieving a goal by
the more constrained task of finding a sequence of actions
that constitutes a legal execution of some high-level pro-
gram. The logic programming language Golog (Levesque et
al. 1997) is designed to support such an approach.

As its full name (alGOl in LOGic) implies, Golog attempts
to blend Algol programming style into logic. It provides a
way of defining complex actions and procedures in terms of a
set of primitive actions, by borrowing from Algol many well-
known programming constructs such as sequences, condi-
tionals, loops and recursive procedures. Primitive actions
are domain-dependentactions in the external world, and their
preconditions and effects, together with the initial state of the
world, are axiomatized in the situation calculus (McCarthy
& Hayes 1969). The formal semantics of Golog is defined
by introducing an abbreviationDo(δ, s, s′), where δ is a pro-
gram, s and s′ are situation terms. Intuitively, Do(δ, s, s′)
will expand into a (second-order) situation calculus formula
saying that it is possible to reach situation s′ from situation
s by executing a sequence of actions specified by δ.

Needless to say, correctness of robot programs is of
paramount importance. Hence we are concerned about veri-
fication of Golog programs. Due to the way the semantics of

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Golog is defined, properties of Golog programs can be ex-
pressed as second-order situation calculus formulas. Thus
theoretically, verification of Golog programs can be reduced
to proof of such formulas. However, this is infeasible in
practice: even though the semantic definition of Golog is
very succinct, the whole formula to express the semantics of
even a simple Golog program can be very complicated. In
general, providing a formal semantics for a high-level robot
programming language in a logic framework makes possi-
ble formal correctness proofs of robot programs, but does not
furnish us with any systematic method for doing so.

In this paper, we explore the well-established axiomatic
approach to program verification in the Golog context. This
approach was initiated by Hoare (1969), and it was applied to
Algol-like languages. In this approach, the relevant program
properties are expressed as formulas in some mathematical
logic. A proof system consisting of axioms and proof rules
is given, which allows formal proofs of program properties.
An important advantage of Hoare’s approach is that the proof
system is syntax-directed and hence makes proofs easier by
induction on the structure of programs. Hoare’s approach
has received a great deal of attention, and many Hoare-style
proof systems have been proposed for various programming
constructs (Apt 1981; 1984).

However, the application of Hoare Logic to Golog is not
routine due to the following differences between Golog and
Algol-like languages. First, atomic Algol programs are as-
signments; while atomic Golog programs are user-defined
primitive actions. Second, the semantics of Algol programs
is interpretive, i.e., it is defined based on an interpretation
for the first-order language in which the expressions in Al-
gol programs are formed; while the semantics of Golog pro-
grams is defined by macro-expansion into situation calculus
formulas.

In this paper, we present a novel Hoare-style proof system
for partial correctness of Golog programs. We prove total
soundness of the proof system, and relative completeness of
a subsystem of it for procedureless Golog programs. Exam-
ples are given to illustrate the use of the proof system.

Failure to prove that a program satisfies a desired property
may lead us to detect 1) errors in the program, or 2) incon-
sistency or incompleteness in the domain theory. So program
verification can still be useful when the domain theory is it-
self inconsistent or incomplete.



Background
The Situation Calculus
The situation calculus as presented in (Reiter 2001) is a
many-sorted second-order language for representing dy-
namic worlds. There are three disjoint sorts: action for ac-
tions, situation for situations, and object for everything
else. A situation calculus languageL has the following com-
ponents: a constant S0 denoting the initial situation; a bi-
nary function do(a, s) denoting the successor situation to s
resulting from performing action a; a binary predicate s v
s′ meaning that situation s is a subhistory of situation s′; a
binary predicate Poss(a, s) meaning that action a is possi-
ble in situation s; a countable set of action functions, e.g.,
move(x, y); and a countable set of relational fluents, i.e.,
predicates taking a situation term as their last argument, e.g.,
ontable(x, s). For simplicity of presentation, we ignore
functional fluents in this paper.

We use L− to denote the language obtained from L by re-
moving the sort situation and removing the situation argu-
ment from every relational fluent. We call an L−-formula
a pseudo-fluent formula (abbreviated “pff”). Let φ be a pff,
and s be a situation term. We use φ[s] to denote the formula
obtained from φ by restoring s as the situation arguments to
all fluents mentioned by φ.

Frequently, we are interested only in executable situations,
namely, action histories in which it is possible to perform the
actions one after the other. This is formalized as follows:
executable(s)

def
= (∀a, s∗).do(a, s∗) v s ⊃ Poss(a, s∗).

Any domain of application is axiomatized by a basic ac-
tion theory D with the following components:

1. The foundational axioms for situations.

2. Action precondition axioms, one for each action func-
tion A, with syntactic form Poss(A(~x), s) ≡ ΠA(~x)[s],
where ΠA(~x) is a pff.

3. Successor state axioms, one for each fluentF , with syntac-
tic form F (~x, do(a, s)) ≡ ΦF (~x, a)[s], where ΦF (~x, a) is
a pff. These embody a solution to the frame problem.

4. Unique names axioms for the primitive actions.

5. An initial database, namely a set of axioms describing S0.

Golog
The formal semantics of Golog is specified by an abbrevia-
tion Do(δ, s, s′), which is inductively defined as follows:

1. Primitive actions: For any action term α,

Do(α, s, s′)
def
= Poss(α, s) ∧ s′ = do(α, s).

2. Test actions: For any pff φ,

Do(φ?, s, s′)
def
= φ[s] ∧ s = s′.

3. Sequence:

Do(δ1; δ2, s, s
′)

def
= (∃s′′).Do(δ1, s, s

′′)∧Do(δ2, s
′′, s′).

4. Nondeterministic choice of two actions:
Do(δ1 | δ2, s, s

′)
def
= Do(δ1, s, s

′) ∨Do(δ2, s, s
′).

5. Nondeterministic choice of action arguments:

Do((π x)δ(x), s, s′)
def
= (∃x)Do(δ(x), s, s′).

6. Nondeterministic iteration:
Do(δ∗, s, s′)

def
= (∀P ).{(∀s1)P (s1, s1)∧

(∀s1, s2, s3)[P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3)]}
⊃ P (s, s′).

7. Procedure calls: For any (n + 2)-ary procedure variable
(i.e., predicate variable whose last two arguments are the
only ones of sort situation) P ,

Do(P (t1, . . . , tn), s, s′)
def
= P (t1, . . . , tn, s, s

′).

8. Blocks with local procedure declarations: Let Env
be an environment, i.e., a set of procedure declarations
proc P1(~v1) δ1 endProc; . . . ; proc Pn(~vn) δn endProc,
where P1, . . . , Pn are procedure variables. Then

Do({Env; δ}, s, s′)
def
=

(∀~P ).[
∧n

i=1(∀~vi, s1, s2).Do(δi, s1, s2) ⊃ Pi(~vi, s1, s2)]
⊃ Do(δ, s, s′).

This says: when P1, . . . , Pn are the smallest binary re-
lations on situations that are closed under executing their
procedure bodies δ1, . . . , δn, then any transition (s, s′)
obtained by executing the main program δ is a transition
for executing {Env; δ}.

Conditionals and loops are defined as abbreviations:

if φ then δ1 else δ2 fi
def
= [φ?; δ1] | [¬φ?; δ2],

while φ do δ od
def
= [φ?; δ]∗;¬φ?.

Hoare Logic
The basic formulas of Hoare Logic are constructs of the
form {p}S {q} (called Hoare triples), where S is a program,
and p, q are first-order formulas. The intuitive meaning of
{p} S {q} is: if p holds before the execution ofS and the ex-
ecution of S terminates, then q holds afterwards. For exam-
ple, the following are axioms and proof rules of a basic Hoare
Logic for programs from a simple Algol-like language.

1. Assignment Axiom

{p(x/t)} x := t {p},

where p(x/t) denotes the result of replacing all free occur-
rences of x in p by t.

2. Composition Rule

{p} S1 {r}, {r} S2 {q}

{p} S1;S2 {q}
.

3. if-then-else Rule

{p ∧ e} S1 {q}, {p ∧ ¬e} S2 {q}

{p} if e then S1 else S2 fi {q}
.

4. while Rule

{p ∧ e} S {p}

{p} while e do S od {p ∧ ¬e}
.

5. Consequence Rule

p ⊃ p1, {p1} S {q1}, q1 ⊃ q

{p} S {q}
.



However, Hoare Logic is not complete; see (Apt 1981) for
a discussion of the incompleteness results. Cook (1978) cir-
cumvented these incompleteness problems by defining the
notion of relative completeness. The basic idea was to sup-
ply Hoare’s system with an oracle which had the ability to an-
swer questions concerning the truths of first-order formulas.
In this way, he separated reasoning about programs from rea-
soning about the underlying domain, in his case, arithmetic.

The Proof System HG

In this section, we present a novel Hoare-style proof system
HG for partial correctness of Golog programs.

Syntax and Semantics
A well-formed formula ofHG (HG-wff) is either an invari-
ant formula or a Hoare triple, which are defined as follows.

Definition 1 An invariant formula is a construct of the form
�Q, where Q is a pff; a Hoare triple is a construct of the
form {Q} δ {R}, where Q and R are pffs, and δ is a Golog
program.

In traditional work on Hoare Logic, the semantics of
Hoare triples is defined with respect to an interpretation. In
the Golog context, since the semantics of programs is defined
by macro-expansion into situation calculus formulas, Hoare
triples can be conveniently defined as abbreviations for situ-
ation calculus formulas.

Let φ be a formula. We use (∀).φ to denote the first-order
closure of φ, i.e., the result of prefixing to φ universal quan-
tifiers for all free individual variables in φ.

Definition 2 1. �Q
def
= (∀).executable(s) ⊃ Q[s];

2. {Q} δ {R}
def
= (∀).executable(s) ∧Q[s] ∧Do(δ, s, s′)

⊃ R[s′].

Intuitively, �Q means that Q is true in all executable situa-
tions; {Q} δ {R} means that if s is an executable situation
satisfying Q and the execution of δ in s leads to a situation
s′, then s′ satisfies R.

Axioms and Proof Rules
Let D be a basic action theory. The proof system HG(D) is
defined as follows. Abbreviations given in parentheses are
used to refer to the axioms or rules.

Oracle Axioms
Invariant Oracle Axiom (Inv)

�Q, where D |= �Q.

Here we adopt Cook’s idea in formulating the notion of rel-
ative completeness, and supply our proof system with an or-
acle which can answer questions concerning whether an in-
variant formula is entailed by a basic action theory. In this
way, we can concentrate on reasoning about programs.

Axioms
1. Effect and Frame Axiom (EF)

{ΦF (~x,A(~y))} A(~y) {F (~x)},

{¬ΦF (~x,A(~y))} A(~y) {¬F (~x)},

where A is an action function, F is a relational fluent
with successor state axiom F (~x, do(a, s)) ≡ ΦF (~x, a)[s].
Note that ΦF (~x,A(~y)) can be simplified using unique
names axioms for actions.

2. Fluent-Free Axiom (FF)

{Q} δ {Q},

where no fluent occurs in Q.

3. Test Action Axiom (TA)

{φ ⊃ R} φ? {R}.

Proof Rules

1. Primitive Action Rule (PAR)

{Q ∧ ΠA(~x)} A(~x) {R}

{Q} A(~x) {R}
,

whereA is an action function with action precondition ax-
iom Poss(A(~x), s) ≡ ΠA(~x)[s].

2. Sequence Rule (Seq)

{Q} δ1 {S}, {S} δ2 {R}

{Q} δ1; δ2 {R}
.

3. Nondeterministic Action Rule (NA)

{Q} δ1 {R}, {Q} δ2 {R}

{Q} δ1 | δ2 {R}
.

4. Nondeterministic Action Argument Rule (NAA)

{Q} δ(x) {R}

{Q} (π x) δ(x) {R}
,

where x does not occur free in Q or R.

5. Nondeterministic Iteration Rule (NI)

{Q} δ {Q}

{Q} δ∗ {Q}
.

6. Consequence Rule (Cons)

�(Q ⊃ Q1), {Q1} δ {R1}, �(R1 ⊃ R)

{Q} δ {R}
.

7. Conjunction Rule (Conj)

{Q1} δ {R1}, {Q2} δ {R2}

{Q1 ∧Q2} δ {R1 ∧ R2}
.

8. Disjunction Rule (Disj)

{Q1} δ {R1}, {Q2} δ {R2}

{Q1 ∨Q2} δ {R1 ∨ R2}
.

9. Quantification Rule (Quan)

{Q(x)} δ {R(x)}

{∀xQ(x)} δ {∀xR(x)}
,

{Q(x)} δ {R(x)}

{∃xQ(x)} δ {∃xR(x)}
,

where x does not occur free in δ.



10. Recursion Rule (Rec)

{{Qi} Pi(~vi) {Ri}}
n
i=1 ` {{Qi} δi {Ri}}

n
i=1

{{Qi} {Env; Pi(~vi)} {Ri}}n
i=1

,

where {φi }
n
i=1 denotes the set {φi | i = 1, . . . , n}.

Intuitively, this rule says that we can infer
{Qi} {Env; Pi(~vi)} {Ri}, i = 1, . . . , n from the
fact that {{Qi} δi {Ri}}

n
i=1 can be proved (using the

other proof rules and axioms) from the hypotheses
{{Qi} Pi(~vi) {Ri}}

n
i=1.

11. Invocation Rule (IK)

{Q} δi
Pj(~t )

{Env; Pj (~t )}
{R}

{Q} {Env; Pi(~vi)} {R}
,

where δi
Pj (~t )

{Env; Pj(~t )}
denotes the result of replacing each

procedure call Pj(~t ) in δi by its contextualized version
{Env; Pj(~t )}. Intuitively, to execute {Env; Pi(~vi)} is

to execute δi
Pj(~t )

{Env; Pj (~t )}
. 1

12. Substitution Rule (Subs)

{Q(~x)} {Env;Pi(~x)} {R(~x)}

{Q(~x/~t )} {Env;Pi(~x/~t )} {R(~x/~t )}
,

{Q(~x)} P (~x) {R(~x)}

{Q(~x/~t )} P (~x/~t) {R(~x/~t )}
,

where P is an action function or a procedure variable, and
Q(~x/~t ) denotes the result of simultaneously substituting
terms from ~t for the corresponding variables from ~x in Q.

The following are derived rules:

1. If Rule
{Q ∧ φ} δ1 {R}, {Q ∧ ¬φ} δ2 {R}

{Q} if φ then δ1 else δ2 fi {R}
.

2. While Rule
{Q ∧ φ} δ {Q}

{Q} while φ do δ od {Q ∧ ¬φ}
.

Provability
Due to the recursion rule, the system HG(D) is not a stan-
dard proof system. Let BH(D) denote HG(D) without the
recursion rule. We first define provability in BH(D), and
then use it to define provability in HG(D). In the sequel,
we use Φ and Ψ to denote finite sets of HG-wffs.

Definition 3 A formal proof of Ψ from Φ in BH(D) is a fi-
nite sequence S of HG-wffs, each of which is either an ax-
iom of BH(D), an element of Φ, or is obtained from pre-
vious formulas of S by a proof rule of BH(D). We write
Φ `BH(D) Ψ, if there is a proof of Ψ from Φ in BH(D).

1Note that this rule supports the compositional proof of proper-
ties of procedures. For example, suppose that P1 only calls itself,
and P2 only calls P1. We can first use the recursion rule to prove the
property of P1, and then use this property and the invocation rule to
prove the property of P2. Without the invocation rule, we can only
prove properties of all procedures simultaneously.

Definition 4 That Ψ is provable in HG(D), written
`HG(D) Ψ, is inductively defined as follows:

1. `HG(D) ∅;

2. If `HG(D) Φ, and Φ `BH(D) Ψ, then `HG(D) Ψ;

3. If `HG(D) Φ, and Φ ∪ {{Qi} Pi(~vi) {Ri}}
n
i=1

`BH(D) {{Qi} δi {Ri}}
n
i=1, then

`HG(D) {{Qi} {Env; Pi(~vi)} {Ri}}
n
i=1.

Example: A Blocks World
In this section, we demonstrate the use of our proof system
by proving properties of robot programs in a simple domain:
a blocks world. Despite its simplicity, this domain illustrates
some important issues in verification of robot programs.

Action Precondition Axioms
Poss(move(x, y), s) ≡ clear(x, s) ∧ clear(y, s) ∧ x 6= y,
Poss(moveToTable(x), s) ≡

clear(x, s) ∧ ¬ontable(x, s).

Successor State Axioms
on(x, y, do(a, s)) ≡ a = move(x, y)∨

on(x, y, s) ∧ a 6= moveToTable(x)∧
¬(∃z)a = move(x, z),

above(x, y, do(a, s)) ≡
(∃z){a = move(x, z) ∧ [z = y ∨ above(z, y, s)]}∨
above(x, y, s) ∧ a 6= moveToTable(x)∧

¬(∃z)a = move(x, z),
clear(x, do(a, s)) ≡

(∃y){[(∃z)a = move(y, z) ∨ a = moveToTable(y)]∧
on(y, x, s)}∨

clear(x, s) ∧ ¬(∃y)a = move(y, x),
ontable(x, do(a, s)) ≡ a = moveToTable(x)∨

ontable(x, s) ∧ ¬(∃y)a = move(x, y).

Initial Database
φ[S0], where φ ∈ Abw, which is the set of the following pffs:
on(x, y) ≡ above(x, y)∧¬(∃z)(above(x, z)∧above(z, y)),
clear(x) ≡ ¬(∃y)on(y, x),
ontable(x) ≡ ¬(∃y)on(x, y),
¬above(x, x),
above(x, y) ∧ above(y, z) ⊃ above(x, z),
above(x, y) ∧ above(x, z) ⊃

y = z ∨ above(y, z) ∨ above(z, y),
above(y, x) ∧ above(z, x) ⊃

y = z ∨ above(y, z) ∨ above(z, y),
ontable(x) ∨ (∃y)(above(x, y) ∧ ontable(y)),
clear(x) ∨ (∃y)(above(y, x) ∧ clear(y)),
above(x, y) ⊃ (∃z)on(x, z) ∧ (∃w)on(w, y).

Cook and Liu (2002) show thatAbw is complete in the fol-
lowing sense: if we model a state of blocks world by a finite
collection of finite chains, then every sentence that is true in
all such models is a consequence of Abw .

Let Dbw denote the basic action theory of this blocks
world. We can prove that for each φ ∈ Abw , Dbw |= �φ.

While Loop
Consider the following Golog program β, which nondeter-
ministically moves a block onto another block, so long as



there are at least two blocks on the table:

while (∃x, y)[ontable(x) ∧ ontable(y) ∧ x 6= y] do

(π u, v)move(u, v) od

We want to prove that whenever this program terminates,
there is a unique block on the table, provided there was some
block on the table to begin with:

{(∃x)ontable(x)} β {(∃!y)ontable(y)}.

A proof consists of a sequence of lines. To justify a new
line, we annotate it by an axiom or a proof rule, together with
the lines that are used as rule premises.

In the following proof, to reduce length of formulas, we
use φ(x, y) to denote ontable(x) ∧ ontable(y) ∧ x 6= y.

1. {ontable(x) ∧ u 6= x}
move(u, v) {ontable(x)} EF

2. {φ(x, y) ∧ u 6= x}
move(u, v) {ontable(x)} Cons(1)

3. {ontable(y) ∧ u 6= y}
move(u, v) {ontable(y)} EF

4. {φ(x, y) ∧ u = x}
move(u, v) {ontable(y)} Cons(3)

5. {φ(x, y)} move(u, v)
{ontable(x) ∨ ontable(y)} Disj(2,4)

6. {φ(x, y)} (π u, v)move(u, v)
{ontable(x) ∨ ontable(y)} NAA(5)

7. {(∃x, y)φ(x, y)} (π u, v)move(u, v)
{(∃x, y)[ontable(x) ∨ ontable(y)]} Quan(6)

8. {(∃x)ontable(x) ∧ (∃x, y)φ(x, y)}
(π u, v)move(u, v) {(∃x)ontable(x)} Cons(7)

9. {(∃x)ontable(x)} β {(∃!y)ontable(y)} While(8)

Recursive Procedure
Consider the following Golog procedure which puts all the
blocks in the tower with top block b onto the table:

proc flattenTower(b)

ontable(b)? |

(π c)[on(b, c)?; moveToTable(b); flattenTower(c)]

endProc.

We want to prove its partial correctness:

{x = b ∨ above(b, x)}

{Env; flattenTower(b)} {ontable(x)}.

We will prove a stronger statement:

{ontable(x) ∨ x = b ∨ above(b, x)}

{Env; flattenTower(b)} {ontable(x)}.

In what follows, we use ψ(b, x) to denote
ontable(x) ∨ x = b ∨ above(b, x), and γ(b, c) to de-
note on(b, c)?; moveToTable(b); flattenTower(c).

By the recursion rule, it suffices to prove that

{ψ(b, x)} flattenTower(b) {ontable(x)} `BP (Dbw)

{ψ(b, x)} ontable(b)? | (π c)γ(b, c) {ontable(x)}.

We use blank lines to break the proof into paragraphs:

1. {ψ(b, x)} flattenTower(b)
{ontable(x)} Hypothesis

2. {ψ(c, x)} flattenTower(c)
{ontable(x)} Subs(1)

3. {ontable(x)} flattenTower(c)
{ontable(x)} Cons(2)

4. {x = c ∨ above(c, x)}
flattenTower(c) {ontable(x)} Cons(2)

5. {ψ(b, x)} ontable(b)?
{ψ(b, x) ∧ ontable(b)} TA

6. �{ψ(b, x) ∧ ontable(b) ⊃
ontable(x)} Inv

7. {ψ(b, x)} ontable(b)? {ontable(x)} Cons(5,6)

8. {ontable(x)} on(b, c)? {ontable(x)} TA
9. {ontable(x)} moveToTable(b)

{ontable(x)} EF
10. {ontable(x)} γ(b, c) {ontable(x)} Seq(8,9,3)

11. {x = b} on(b, c)? {x = b} FF
12. {x = b} moveToTable(b) {x = b} FF
13. {true} moveToTable(b)

{ontable(b)} EF
14. {x = b} moveToTable(b)

{x = b ∧ ontable(b)} Conj(12,13)
15. {x = b} moveToTable(b)

{ontable(x)} Cons(14)
16. {x = b} γ(b, c) {ontable(x)} Seq(11,15,3)

17. {above(b, x)} on(b, c)?
{above(b, x) ∧ on(b, c)} TA

18. �{above(b, x) ∧ on(b, c) ⊃
x = c ∨ above(c, x) ∧ b 6= c} Inv

19. {above(b, x)} on(b, c)?
{x = c ∨ above(c, x) ∧ b 6= c} Cons(17,18)

20. {x = c} moveToTable(b) {x = c} FF
21. {above(c, x) ∧ b 6= c}

moveToTable(b) {above(c, x)} EF
22. {x = c ∨ above(c, x) ∧ b 6= c}

moveToTable(b)
{x = c ∨ above(c, x)} Disj(20,21)

23. {above(b, x)} γ(b, c) {ontable(x)} Seq(19,22,4)

24. {ψ(b, x)} γ(b, c) {ontable(x)} Disj(10,16,23)
25. {ψ(b, x)} (π c)γ(b, c) {ontable(x)} NAA(24)
26. {ψ(b, x)} ontable(b)? | (π c)γ(b, c)

{ontable(x)} NA(7,25)

Soundness and Completeness Results
In traditional work on Hoare Logic, the soundness and com-
pleteness results explore the relationship between I |= φ and
H(I) ` φ, where I is an interpretation, φ is a Hoare triple,
andH(I) is a Hoare-style proof system with some set of for-
mulas true in I taken as additional axioms. In our work, the
soundness and completeness results will explore the relation-
ship between D |= φ and G(D) ` φ, where D is a basic
action theory, φ is a Hoare triple, and G(D) is a Hoare-style
proof system with some set of formulas entailed by D taken
as additional axioms.



Theorem 5 Total Soundness of HG. For every basic ac-
tion theory D, if `HG(D) Ψ, then D |= Ψ.

The following are two important lemmas for the theorem.
The fixpoint lemma handles the invocation rule, and the in-
duction principle deals with the recursion rule.

Lemma 6 Fixpoint Lemma. Let i = 1, . . . , n.
The following is a valid sentence:

(∀).Do({Env; Pi(~vi)}, s, s
′) ≡ Do(δi

Pj (~t )

{Env; Pj(~t )}
, s, s′).

Lemma 7 Induction Principle for Recursive Procedures.
Let Q1, . . . , Qn, R1, . . . , Rn be pffs. The following is a
valid second-order sentence:

(∀~P )[
∧n

i=1{Qi} Pi(~vi) {Ri} ⊃
∧n

i=1{Qi} δi {Ri}] ⊃
∧n

i=1{Qi} {Env;Pi(~vi)} {Ri}.

The notion of completeness applicable to HG is that of
relative completeness. This is because HG has oracle ax-
ioms, which are not necessarily recursive. The relative com-
pleteness ofHG remains open. Here we prove relative com-
pleteness of a subsystem ofHG. LetWG be the set of Golog
programs without procedures. Let HW be the restriction of
HG to WG, i.e., programs appearing in Hoare triples are
procedureless, and the recursion, invocation and substitution
rules concerning procedures are removed. We will prove rel-
ative completeness ofHW . We first define the notion of ex-
pressiveness, which is adapted from that in (Cook 1978).

Definition 8 Let D be a basic action theory in language L
and ∆ be a set of Golog programs. We say that L is expres-
sive relative to D and ∆ if for any program δ ∈ ∆ and any
pff R, there exists a pff Q such that

D |= (∀).Q[s] ≡ (∀s′).Do(δ, s, s′) ⊃ R[s′];

we call Q the weakest liberal precondition of δ wrt R.

We first give an example of non-expressiveness by show-
ing that the language of blocks world is not expressive rela-
tive to Dbw and WG. It is easy to write a program δ ∈WG
which makes a tower of even height with at most one block
not in the tower. Then the weakest liberal precondition of
δ wrt (∃!x)ontable(x) would assert that there are an even
number of blocks, which we know is not expressible in the
language of blocks world.

Theorem 9 Relative Completeness of HW . For any ba-
sic action theory D in L such that L is expressive relative
to D and WG, for any Hoare triple {Q} δ {R} such that
δ ∈ WG, if D |= {Q} δ {R}, then `HW (D) {Q} δ {R}.

Here we conjecture a sufficient condition for expressive-
ness relative to WG. For any basic action theory D in lan-
guage L, define L+ as the extension of L which contains a
sort nat for natural numbers, the language of Peano arith-
metic, and two function symbols (their intended interpreta-
tions are codings of objects and situations into natural num-
bers); define D+ = D ∪ P ∪ C, where P is the second-
order axiomatization of Peano arithmetic, and C asserts that
the objects and situations are countable. We callD+ an arith-
metical basic action theory. A nice property of models of

D+ is that by using Gödel’s β-function we can encode finite
sequences of elements from the domain by a pair of natural
numbers. We say that D+ is finite-change if there are only
finitely many fluents, and in each model of D+, each prim-
itive action can only change the value of fluents at finitely
many points. We conjecture that if D+ is finite-change, then
L+ is expressive relative to D+ and WG.

Conclusions
Golog is a novel logic programming language for high-level
robotic control. To establish a systematic approach for prov-
ing correctness of robot controllers written in Golog, we have
explored Hoare’s axiomatic approach to program verifica-
tion in the Golog context. This is not a routine task due to the
differences between Golog and Algol-like languages. Our
technical contributions include the definition of the seman-
tics of Hoare triples, and the formulation of the notions of
soundness, completeness and expressiveness in the Golog
context.

In summary, we have presented a novel Hoare-style proof
system for partial correctness of Golog programs. We have
proved total soundness of the proof system, and relative com-
pleteness of a subsystem of it for procedureless Golog pro-
grams. Using this proof system, we can obtain structured
and compositional proofs for properties of Golog programs.
An important future research topic is to investigate the com-
pleteness issue for procedures.

Acknowledgments
I thank Hector Levesque and Ray Reiter for many helpful
discussions about this paper. I am grateful to Stephen Cook
for his valuable help with this work. Thanks also to the
anonymous referees for useful comments.

References
Apt, K. 1981. Ten years of Hoare’s logic: a survey–Part I.
ACM Trans. Program. Lang. Syst. 3(4):431–483.
Apt, K. 1984. Ten years of Hoare’s logic: a survey–Part II:
nondeterminism. Theoret. Comput. Sci. 28:83–109.
Cook, S., and Liu, Y. 2002. A complete axiomatization
for blocks world. In Seventh International Symposium on
Artificial Intelligence and Mathematics.
Cook, S. 1978. Soundness and completeness of an ax-
iom system for program verification. SIAM J. of Computing
7(1):70–90.
Hoare, C. 1969. An axiomatic basis for computer program-
ming. Comm. ACM 12(10):576–580, 583.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. Golog: A logic programming language
for dynamic domains. J. of Logic Programming 31:59–84.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.


