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Abstract

Imitation is actively being studied as an effec-
tive means of learning in multi-agent environ-
ments. It allows an agent to learn how to act
well (perhaps optimaly) by passively observ-
ing the actions of cooperative teachers or other
more experienced agents its environment. We
propose a straightforward imitation mechanism
caled model extraction that can be integrated
easily into standard model-based reinforcement
learning algorithms. Roughly, by observing a
mentor with similar capabilities, an agent can ex-
tract information about itsown capabilitiesin un-
visited parts of state space. The extracted infor-
mation can accelerate learning dramatically. We
illustratethe benefits of model extraction by inte-
grating it with prioritized sweeping, and demon-
strating improved performance and convergence
through observation of single and multiple men-
tors. Though we make some stringent assump-
tions regarding observability, possible interac-
tions and common abilities, we briefly comment
on extensions of the model that relax these.

1 Introduction

The application of reinforcement learning (RL) to multi-
agent systems offers unique opportunities and challenges.
When agents are viewed as independently tryingto achieve
their own ends, interesting i ssuesin theinteraction of agent
policies [12] must be resolved (e.g., by appeal to equilib-
rium concepts). However, the possibility that agents may
coordinate their policies for mutual gain [22] or distribute
their search for optimal policies (and communicate partia
resultsto oneanother) [ 13] offersintriguing possibilitiesfor
accelerating RL and enhancing agent performance.

Another way inwhich individua agent performance can be
improved is by having a novice agent learn reasonabl e be-
havior from an expert mentor. This type of learning can

be brought about through explicit teaching or demonstra-
tion [1, 11, 25], by sharing of privileged information [13]
or through a more elaborate psychologica theory of imita-
tion [2]. In imitation, the agent’s own exploration is used
to ground its observations of other agent’s behaviorsin its
own capabilities and resolve any ambiguities in observa
tions arising from partial observability and noise. A com-
mon thread in all of this work is the use of a mentor to
guidethe expl oration of the observer. Guidanceistypically
achieved through some form of explicit communication be-
tween mentor and observer. A less direct form of teaching
involves an observer extracting information from a mentor
without the mentor making an explicit attempt to demon-
strate a specific behavior of interest [15].

In this paper we develop a model of implicit imitation
through observation of a mentor. Roughly, an agent ob-
serves the state transitionsinduced by the mentor’ s actions.
Assumingthat it has actionssimilar to the (unknown) action
taken by the mentor, the agent can use this information to
updateitsvaluefunction. In addition, amentor can provide
hints to the observer about the parts of the state space on
which it may be worth focusing attention. The observer’s
attention to an area might take the form of additional ex-
ploration of the area or additional computation brought to
bear on the agent’s prior beliefs about the area. We derive
a new technique, model extraction, that is independent of
any specific RL algorithm, though it is best suited for use
with model-based methods. Weillustrate its effectiveness
empirically by incorporating it into prioritized sweeping.

Our modd has several advantages over more direct forms
of imitation and teaching. It does not require any agent
to explicitly play the role of mentor or teacher. Observers
learn simply by watching the behavior of other agents (men-
tors); if amentor shares certain subtasks with the observer,
the observed behavior can be incorporated (indirectly) by
the observer. Thisisimportant because there will be many
situations in which an observer can learn from a mentor
that is unwilling or unable to ater its behavior to teach the
observer, or even communicate information to it. For ex-
ample, common communication protocolsmay be unavail-



able to agents designed by different developers (e.g., Inter-
net agents); agents may be competing; or there may sm-
ply be no incentivefor one agent to provideinformation to
another.! Because an agent learns by observation, it can
exploit the existence of multiple mentors, essentialy dis-
tributingits search. The observer isalso not constrained to
directly imitatethe mentor and can decide whether such im-
itationisworthwhile. Finally, we do not assume that the ob-
server knowsthe actual actionstaken by the mentor, or that
thementor sharesareward function (or goals) with the men-
tor. While we make some strict assumptions in this paper,
the model can be generalized in interesting ways, as we de-
scribe below. Many of these generalizations are the subject
of ongoing research.

We present the basic model and assumptions underlying
model extraction in Section 2. We develop the model ex-
traction a gorithm and demonstrate a simple mechanism to
focus the agent’s updating mechanism on promising aress
of the state space in Section 3, and illustrate the perfor-
mance of the algorithm empirically in Section 4. We con-
clude in Section 5 with remarks on related work and a dis-
cussion of current and future research, especialy with re-
spect to the relaxation of certain modeling assumptions.

2 Modd and Assumptions

Our model assumes that we have some number of agents
acting to achieve their own objectives in a common envi-
ronment. To keep the notationsimple, we present the model
using two agents only: a mentor m and an observer o. The
observer isareinforcement learner that can observe aspects
of the mentor’sbehavior. The extension to multiple agents
should be viewed as adding further (potential) mentors to
the system, since we consider the RL problemfacing asin-
gle observer.?

The agents act to control amultiagent Markov decision pro-
cess (MMDP), in which the agents select actions indepen-
dently, and their joint actions determine stochastic state
transitions.® In order to focus on imitation without getting
into issues of strategic reasoning (e.g., game theoretic con-
cepts like equilibria), we assume that the agents’ actions
are noninteracting; that is, each agent can ignorethe behav-
ior of the other in predicting the effect of its own actions
on the system and the reward it receives. To do this, we
factor the MMDP into two standard (single-agent) MDPs
M, = <SOa Ay, Pry, Ro> and M, = <SmaAma Prpy, Rm>
pertaining to the observer and mentor, respectively. Here,
fori € {o,m}, S; isthe state space for agent i, A; itsset

! For reasons of consistency, we use the term “mentor” to de-
scribe any agent from which an observer can learn, even if the
mentor is an unwilling participant.

2Thisis not to say that the other “mentors’ cannot be learners
or even imitators themselves.

*MMDPs could be viewed as a form of stochastic game[20];
since Shapley’s original formulation involved the zero-zum as-
sumption, we use different terminology to avoid confusion.

of actions, Pr;(t|s, a) the stochastic state transition func-
tion and R;(s) itsreward function (defined over S;). For
instance, in a grid world, we might assume that the mentor
and observer can each move without affecting the other’s
ability to move or impact the reward it receives by occupy-
ing certain grid cells.

If the observer is to learn by observing the mentor, there
must be some relationship between the space of potential
behaviors they can implement. We make two especialy
strong assumptions in this regard. First, the agents have
identical state spaces; i.e, S = S, = S,. Second, the
observer has (at |east) the same capabilities as the mentor;
i.e, Am C A, and Pry, (t|s, a) = Pr,(t|s, a) for any a they
have in common. These assumptions make our description
of the imitation task somewhat simpler, but can be relaxed.
The essentid feature isthat there be some anal ogical map-
ping between state transitionsso that the observationsof the
mentor can berecast in termsthe observer understands[19]
(see Section 5). Our formulation makes this mapping triv-
ia. However, we do not assume that the reward functions
R, and R, arerelated in any specific way.

Initialy, the observer will not know the transition model
Pr,; but we assume it knowsitsreward function R,,. While
intypica RL models, the learner does not know R,, prior
knowledgeof R, isconsistent with theinterpretation of RL
as automatic programming: the agent designer can often
provide predicates to evauate the quality of a situation in
advance, but cannot provideamodel of the state dynamics.
To learn from the mentor, the observer must be able to ob-
serve certain aspects of its behavior. Unless it communi-
cates its policy or selected actions to the observer, the ac-
tual actionstaken by the mentor will be unknown to the ob-
server. All it can seeistheeffectsof an action. For instance,
inanoisy grid world, thementor may attempt to movenorth
but actually move east: the observer sees only the actual
state transition, not the intended transition or actual action
attempted. Therefore, we assume the observer can see the
specific state transitionss — ¢ taken by the mentor. The
mentor’sstateisthusfully observableto the observer. This,
too, is a strong assumption—we indicate ways in which it
can be relaxed in Section 5.

3 Modd Extraction and Implicit Imitation

Theobserver’sproblemisto determinean optimal course of
action that maximizes expected value, whereitsva uefunc-
tionis given by the Bellman equation:

V(s) = Ro(s) + v max {Z Pr,(i]s, a)V(t)} D

We assume here a discounted infinite horizon context with
discount factor ~. For the present, we also assume that the
agent’s actions do not influence the agent’s reward struc-
ture, but thisassumption will later be relaxed.



In an RL context, our observer has access to transition
samples of the form (s, a, t) (recall that it knows R,(s)).
An optimal policy can be determined by directly learning
a Q-function (s, ) [24], or using model-based methods
that estimate the model Pr, and solve (generaly, asyn-
chronously and incrementally) Equation 1 (e.g., prioritized
sweeping [17]). There is alimited scope in which obser-
vations of the mentor’s state trgjectories can influence this
computation. Since the observer aready knows its reward
function, its observations of the mentor cannot influence
its reward model. Observations could be used to update
its estimate of its own transition model Pr,, or the order
in which to apply Bellman backups to its own estimated
value function. We consider both forms of influencein this
section. Two other possible (direct) influences are not ex-
plored here: the observer could attempt to infer the best ac-
tion to perform in state s based on the mentor’strgjectory;
or the observer could use the observations to directly com-
putethe valuefunction, or constraintson the value function
for statesit has not visited [23].

In Section 3.1, we describe the model extraction agorithm
in the context of model-based RL. However, in Section 3.2,
we indicate how the same ideas can be incorporated into
model -free a gorithms such as Q-learning.

3.1 Modd Extractionin General Terms

If amentor is“ expert” at achievingitsobjectives, we can as-
sume it is executing a stationary, deterministic policy =,
with ., (s) denotingitsaction choiceat state s. Behavior =
inducesaMarkov chain Pr, (t|s) = Prp, (t]s, mm(s)) over
S. By observing mentor transitions, the observer can con-
struct an estimate Pr,, of thischain: Pr,,(¢|s) can simply
be estimated by the relative observed frequency of mentor
transitionss — ¢ (w.r.t. al transitionstaken from s).

Since 4,, C A,, the observer knows that there is some
action a € A, that is the same as 7,,,(s); that is, there
exists an action a such that Pr,(¢|s, a) = Prp,(t|s). Un-
fortunately, since the observer does not know its own tran-
sition model—it has only estimates—and cannot observe
the mentor’s actions directly, it does not know the iden-
tity of thisaction r,,, (s). However, the mere fact that there
exists some action with estimated transition probabilities
Prp,(+|s) can beused to good effect by theobserver invalue
functionestimation. Since A,, C A,, V (s) can begivenby
the foll owing augmented Bellman equation:

Vis) = RO(S)+'ymaX{g613>o<{ZPro(tls,G)V(t)},

> Pry, <t|s>V<t>} )

Thisis the usual Bellman equation (1) with an extraterm
added, the second summation, denoting the expected value

of duplicating the mentor’s action m,,(s). Since this (un-
known) action isidentical to one of the observer’s actions,
the term is redundant and the augmented value equation is
valid. Of course, the observer using the augmented backup
operation must rely on estimates of these quantities. If the
observer’sexploration policy ensures that each stateisvis-
ited infinitely often, the estimates of the Pr, termswill con-
vergeto their truevalues. The mentor’spolicy isnot under
the observer’s control. However, if the mentor’s policy is
ergodic over state space S, then these terms too will con-
verge to their true values. If the mentor’spolicy restrictsit
to asubset of states .S’ C S (those forming the basis of its
Markov chain), these estimateswill converge correctly with
respect to S’ if thechainisergodic, and statesin S — 5" will
remain unvisited. An observer can apply the augmented
equation only for those states visited by the mentor. In e-
ther of these cases, the use Equation (2) does not impact the
usua convergence resultsfor RL algorithms.

Our primary interest, however, isthe behavior of the system
during theinitial stages of learning when the advantage of a
knowledgeable mentor can make the most difference to an
observer. Assuming that the mentor is pursuing a greedy
policy, therewill be many states for which the observer has
much more accurate estimates of Pr,, (¢|s) than it does for
Pr,(t]s, a) for any specific a. Since the observer islearn-
ing, it must explore both state space (causing less frequent
visitsto s) and action space (thus spreading its experience
a s over dl actions @), generaly ensuring that the sample
sizeuponwhich Pr,,, isbased isgreater thanthat for Pr, for
any specific action. Apart frombeing more accurate, theuse
of Pr,,(t|s) can often give more informed value estimates
a state s, since prior action models are generally “flat” or
uniform, and only become distinguishable at a given state
when the observer has sufficient experience a state s.

When the mentor’sMarkov chain is not ergodic, or even if
the mixing rate is sufficiently low, the mentor may visit a
certain state s relatively infrequently. A state that israrely
(or never) visited by the mentor may provide a very mis-
leading estimate—based on the small sample or the prior
for the mentor’s chain—of the value of the mentor’s (un-
known) action at s; and since the mentor’spolicy isnot un-
der the control of the observer, this misleading value may
persist for an extended period. This stemsin part from the
fact that we use maximization to combine values based on
theestimates of the mentor’ schain and theobserver’saction
models, and in part because we use mean val ues (estimated
probabilities) based on observed samples. The augmented
Bellman equation does not consider thereliability of thein-
formation sources.

To overcome this, we have incorporated an estimate of
model confidence into our augmented backups. For the
mentor’s Markov chain and the observer’s action transi-
tions, we assume a Dirichlet prior over the parameters of
each of these multinomid distributions[7]. These reflect
the observer’s initial uncertainty about the possible tran-



sition probabilities. From sample counts of mentor and
observer transitions, we update these distributions. With
this information, we could attempt to perform an optimal
Bayesian estimation of the value function; but when the
sample counts are small (and normal approximations are
not appropriate), there is no simple, closed form expres-
sionfor theresultant distributionsover values. Wetherefore
employ an approximate method for combining information
sources inspired by Kaelbling'sinterval estimation method
[9].

We first compute the observer’s optimal action « using a
simple max over themean value of the state given each pos-
sible action (The usua method). With the benefit of the
Dirichlet distributions, we then construct alower bound v
on thevalue of the state to the observer using the model de-
rived from its own behavior—thisis the lower bound of a
suitable confidence interva over the expected value of that
state. A second lower bound v, is constructed using the
model based on observations of the mentor. If v, < v,
then either the mentor-inspired model has, in fact, alower
expected vaue (within a specified degree of confidence)
and uses a nonoptimal action (from the observer’s perspec-
tive), or the mentor-inspired model has lower confidence.
In either case, we regject the information provided by the
mentor and use the mode! derived from the observer’s ob-
servationsof itself. Using Tchebycheff’sinequality, we can
choose a confidence level even though the Dirichlet distri-
butionsfor small sample countsare highly non-normal.

We note that the reasoning above holds even if the mentor
isimplementing a (stationary) stochastic policy (since the
expected value of stochastic policy for a fully-observable
MDP cannot be greater than that of an optimal deterministic
policy). While the “direction” offered by a mentor imple-
menting a deterministic policy tends to be more focussed,
empirically we have found that mentors offer broader guid-
ance in moderately stochastic environments or when they
implement stochastic policies, since they tend to visit more
of the state space. We note that the extension to multiple
mentors is strai ghtforward—each mentor model can bein-
corporated into the augmented Bellman equation without
difficulty.

Though the model has assumed no action costs (i.e., re-
wards that depend only on the state), we can use more
genera reward functions (e.g., where reward has the form
R(s, a)). Thedifficulty liesin backing up action costswhen
the mentor’s chosen action is unknown. We use a sim-
ple heuristic method to find the action of the observer that
is“closest” to that of the mentor (given current transition
probability estimates) and then construct an estimate of the
value of the state using the information derived from men-
tor transitionsbased on thisaction. Let «(s) denotethat ob-
server's action at state s that is closest” to the action ex-
ecuted by the mentor at state s. Thisis defined as the ac-
tion whose observed transition distribution has minimum
Kullback-Leibler distancefrom thementor’sobserved tran-

sition distribution:

k(s) = argmin, {— Z Pro(t]s, a) log Prm(t|s)} 3)

The augmented Bellman equation 2 can be rewritten using
the « function as follows:

Vis) = max{gréi)j{Ro(s,a)+72Pro(t|5,a)V(t)

tes

Ro(s,k(s)) +7 > Prm, (t|5)V(t)}

tes

We notethat Bayesian methods could be used could be used
to estimate action costs in the mentor’s chain as well.

Our model extraction algorithm requires that: (a) the ob-

server maintain an estimate Pr,, (¢|s) of the Markov chain
induced by the mentor’s policy—this estimate is updated
with every observed transition; and (b) that all backups per-
formed to estimate its value function use the augmented
backup Equation 2 with confidence testing.*

A second way in which an observer can exploit itsobserva
tions of the mentor is to focus attention on the states vis-
ited by the mentor. In a model-based approach, the spe-
cific focusing mechanism we adopt requiresthe observer to
perform a (possibly augmented) Bellman backup at state s
whenever the mentor transitions out of s. This has three
effects. If the mentor tends to visit interesting regions of
space (e.g., if it shares a certain positive or negative re-
ward structure with the observer in state s), the observer’s
attention is drawn there. More importantly, this focus of
attention directs computational effort toward parts of state

space where the estimated model Pr,, (¢|s) changes, hence
where the estimated value of one of the observer’s actions
may change. In addition, computationisfocused wherethe
model islikely more accurate (as discussed above).

3.2 Modd Extraction in Specific RL Algorithms

Model extraction and the focusing mechanism described
above can be integrated into model-based RL a gorithms
with relative ease. In the experiments described in the next
section, prioritized sweeping is used [17]. Roughly, prior-
itized sweeping works by maintaining an estimated transi-
tion model Pr and reward model 2. Whenever an expe-
rience tuple (s, a, r, t) is sampled, the estimated model at
dtate s can change; a Bellman backup is done at s to in-
corporate the revised model and some (usually fixed) num-
ber of additional backups are performed at selected states.

*Of course, these backups are implemented using estimated
models Pr, (t|s, a) and Pr,, (¢|s).



States are selected using apriority that estimates the poten-
tial changeintheir values based onthe changes precipitated
by earlier backups (see [17] for details). Essentially, com-
putational resources (backups) are focused on those states
that can most “benefit” from those backups.

Incorporating our ideasinto prioritized sweeping smply re-
quiresthe following changes:

(8 With each transition (s, a, t) the observer takes,

the estimated model f’?o(t|5, a) isupdated and an
augmented backup (Equation 2) is performed at
state s. Augmented backups are then performed
at afixed number of statesusing the usua priority
gueue implementation.

(b) With each observed mentor transition (s, ¢), the
estimated model Pr,,, (¢|s) isupdated and an aug-
mented backup is performed at s. Augmented
backups are then performed at a fixed number of
states using theusual priority queueimplementa-
tion.

The fact that augmented backups are used instead of stan-
dard Bellman backups implements model extraction, while
the requirement that backups be performed at observed
transitions (in addition to experienced transitions) incorpo-
rates our focusing mechanism. We can view thisRL algo-
rithm as embodying a form of implicit imitation. The ob-
server isnot forced to “follow” or otherwise mimic the ac-
tions of the mentor directly. But it does back up valuein-
formation along the mentor’s trgjectory as if it had. Ulti-
mately, the observer must move to those states to discover
which actionsareto be used; but in the meantime, important
valueinformationisbeing propagated that can guideits ex-
ploration (we discuss exploration in more detail below).

We note that the usual convergence results hold for pri-
oritized sweeping (and other algorithms such as certainty
equivalence) when model extraction isused. Asthe mod-
els converge, the augmentation of the Bellman equation be-
comes irrelevant. During initial phases of training, how-
ever, it can induce different exploratory and computational
behavior in the observer, and in many instances faster con-
vergence. In particular, as we will see below, thisimplicit
imitation often causes the learner to obtain higher accumu-
lated reward during the initial stages of learning.

Whilemodel extraction fits naturally with model-based RL
methods, some of these ideas can be readily incorporated
into model-free algorithms like Q-learning. For example,
the observer could augment its Q-function with a “ficti-
tious’ action a,,,—the action used by the mentor—and up-
date the Q-valuesof a,,, using mentor transitions (imposing
itsown R). When updating the Q-values of itsown actions,
the value of any state s would be estimated using the max-
imum Q-values of al actions, including a,y, .

3.3 Action Selection

Exploration is a key part of any RL algorithm, and here
we adopt ¢-greedy action selection, using a decaying ex-
ploration rate ¢ over time. The following remarks apply
equally well to other pseudo-greedy methods such asBoltz-
mann expl oration.

When selecting an action at state s, greedy action selection
requires that we choose the action with highest expected
value (i.e, the a that maximizes >, Pr,(t|s, a)V (2)).
When the mentor’s policy dictates an especialy appealing
action at state s, it may well bethat >, Pr,, (t|s)V (t) is
greater than the value of any known action, in which case
the observer isbetter off tryingto duplicate the action of the
mentor. Unfortunately, this action is unknown. Again, we
define the “ greedy action” for the observer to be that action

a whose estimated distribution Pr, (t|s, a) has minimum

Kullback-Leibler distance from Pr, (t|s). Thisproves es-
pecially effective early in training when value estimates
based on actionswithsmall samplesvary widely, whilecon-
fidence in the mentor’s model is much higher.®

4 Empirical Validation

Thefollowingempirical testsreport on theincorporation of
model extraction and our focusing mechanism with priori-
tized sweeping. These results illustrate the types of prob-
lems and scenarios in which implicit imitation of thisform
can provide advantages to an RL agent. In each of the ex-
periments, an expert “mentor” is introduced into the ex-
periment to serve as a model for an “observer” agent. In
each case, the mentor is following an e-greedy policy with
avery smal ¢ (on the order of 0.01). Thistendsto cause
the mentor’strajectoriesto lie within a*“cluster” surround-
ing optimal trajectories(and reflect goodif not optimal poli-
cies). Even with this (and environment stochasticity), men-
tors generally do not “cover” the entire state space so con-
fidence testing isimportant.

In al of these experiments, prioritized sweeping is used
with afixed number of backups per observed or experienced
sample.® e-greedy explorationisused withdecaying s. Ob-
server agents are given uniform Dirichlet priors. Observer
agents are compared to control agents that do not bene-
fit from a mentor’s experience, but are otherwise identical
(implementing prioritized sweeping with similar parame-
ters and exploration policies). The tests are all performed
on stochastic grid-world domains, since these make it clear

51t is easy to construct cases where the action a closest to the
mentor’'s a,, haslower expected valuethan action b, while the ex-
pected value of ., isgreater thanthat of 5. In suchacase, it often
makes senseto view a as abetter (greedy) actionthan 5. However,
we recognize that, ultimately, confidence factors should be incor-
porated into such judgments as well, so that mentor models with
relatively small sample sizes are not given such priority.

6 Generally, the number of backupswas set to be roughly equal
to the length of the optimal “noise-free” path.
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Figure 1: Basic Observer and Control Agent Comparisons

to what extent the observer’sand mentor’s optimal policies
overlap (or fal to). We assume an eight-connectivity be-
tween cells so that any statein the grid has 9 neighborsin-
cluding itself, but agent’s use only the North, South, East
and West actions. We focus primarily on whether imitation
improves performance during learning, since the learner
will convergeto an optimal policy whether it usesimitation
or not.

First we show atypical profile of an observer using model
extraction (with an expert mentor) vs. acontrol agent which
does not. Both agents attempt to learn a policy that maxi-
mizes discounted return on a 10x10 grid world. They start
in the upper-left corner and seek a goa with value 1.0 in
the lower corner. Upon reaching the goal, the agents are
restarted at the top. Actions are noisy, resulting in an un-
intended transition 10% of the time. The discount fac-
tor is 0.9. In Figure 1 we plot the cumulative number of
goal s obtained over the previous 1000 time stepsfor the ob-
server “Obs’ and control “Ctrl” (results are averaged over
10runs). The observer isableto quickly incorporate a pol-
icy learned from the mentor into its value estimates. This
resultsin a steeper learning curve. In contrast, the control
agent dowly explores the space to build amodd first. The
“Delta’ curveshowsthedifferencein performance between
the agents. Both agents converge to the same optimal value
function.

The next experiment illustrates the sensitivity of imitation
to the size of the state space and action noiselevel. In Fig-
ure 2 we plot the delta curves for the “Basic” scenario just
described, the* Scale” scenario inwhichthe state space size
isincreased 69% 13x13, and the " Stoch” scenario inwhich
the noise level is increased to 40% (results are averaged
over 10 runs). The difference between the observer and the
non-imitating prioritized sweeping agent increases withthe
state space size. Thisreflects Whitehead's observation for
gridworldsthat explorationneeds can increase quickly with
state space size, but that the optimal path length increases
only linearly [25]. Here we see that the guidance of the
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0 1000 2000 3000 4000 5000 6000

Figure 2: Influence of Domain Size and Noise

mentor can help more in larger state spaces.

Increasing the noise reduces the observer’s ability to act
upon the information received from the mentor and there-
fore erodes its advantage over the control agent. We note,
however, that the benefit of imitation degrades gracefully
with increased noise and is present even at this relatively
extreme noise levd.

Sometimes the observer’s prior beliefs about the transition
probabilities of the mentor can mislead the observer and
cause it to generate inappropriate values. The confidence
mechanism proposed in the previous section can prevent
the observer from being fooled by misleading priorson the
mentor’s transition probabilities. This experiment is based
on the scenario illustrated in Figure 3. Again the agent’s
task is to navigate from the top-left corner to the bottom-
right corner of a 10x10 grid in order to attain a reward of
+1. We have created a pathologica scenario in which is-
lands of high value (+5) are enclosed by obstacles. Since
the observer’spriorsreflect eight-connectivity and are uni-
form, the high-valued cell in the middle of each idand are
believed to bereachable from the states diagonally adjacent
with some small prior probability. In redlity, however, the
agent’s action set precludes thisand the agent will therefore
never be able to realize thisvalue. The four islandsin this
scenario thuscreate afairly large region in the center of the
space with a high value which could potentially trap an ob-
server.

To test, the confidence mechanism, the mentor follows a
path around the outside of the obstacles so that its path
cannot lead the observer out of the trap. The combination
of a high initial exploration rate and the ability of priori-
tized sweeping to spread value across large distances then
virtually guarantees that the observer will be “lead” to the
trap. Given this scenario, we ran two observer agents and
a control. The first observer used a confidence interval
with width given by 5¢ which according to the Tcheby-
cheff rule should cover approximately 96 percent of an ar-
bitrary distribution. The second observer was given a (o



Figure 3: An Environment with Midleading Priors
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Figure 4: Mideading priors may degrade performance

interval which effectively disables confidence testing. The
observer with no confidence testing consistently became
stuck. Examination of the value function revealed consis-
tent peaks within the trap region and observation of the
agent showed that it was stuck in the trap. The observer
with confidence testing consistently escapes the trap. Ob-
servation of itsvalue function over time showsthat thetrap
forms, but fades away as the observer gains enough expe-
rience to throw out erroneous priors. In Figure 4, the per-
formance of the observer with confidence testing is shown
with the performance of the control agent (results are aver-
aged over 10 runs). We see that the observer’s performance
isonly slightly degraded fromthat of the unaugmented con-
trol agent even in this pathological case.

The next experiment demonstrates how the potentia gains
of imitation can increase with the (qualitative) difficulty of
the problem. Inthe“maze” scenario weintroduce obstacles
in order to increase the difficulty of the learning problem.
The maze is set on a 25x25 grid (Figure 5) with 286 ob-
stacles complicating the agent’ sjourney from thetop-1eft to
the bottom-right corner. The only solutiontakestheform of
asnaking 133-step path, with distracting paths (up to length

Figure5: A complex maze
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Figure 6: Imitationin a complex space

22) branching off from the solution path necessitating fre-
guent backtracking. The discount factor is0.98. With 10%
noise, the optimal goal-attainment rate is about 6 goals per
1000 steps.

From the graph in Figure 6 (with results averaged over 10
runs), we see that the control agent takes on the order of
150,000 stepsto build a decent value function that reliably
leads to the goal. At thispoint, it isonly achieving 4 goals
per 1000 steps on average asitsexplorationrateis still rea
sonably high (unfortunately, decreasing exploration more
quickly does not lead to faster value function formation).
The imitation agent is able to take advantage of the men-
tor’'s expertise to build a reliable value function in about
20,000 steps.  Since the control agent has been unable to
reach the goa at al in the first 20,000 steps, the delta be-
tween the control and theimitator issimply equa to theim-
itator’s performance. The imitator can quickly achieve the
optimal 6 goals per 1000 steps asitsexploration rate decays
much more quickly.

Theaugmented backup rule does not requirethat thereward
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Figure 7: A maze with a perilous shortcut

structure of the mentor and observer beidentical. Thereare
many useful scenarios, where rewards are dissmilar but in-
ducevaue functionsand policiesthat share some structure.
In thisexperiment, we demonstrate oneinteresting scenario
in which it is comparatively easy to find a suboptimal so-
[ution, but difficult to find the optimal solution. Once the
observer finds this suboptimal path, however, the observer
agent isable to exploit its observations of the mentor to see
that there is a shortcut that significantly shortens the path
to the goa. The structure of the scenario can be seen in
Figure 7. The suboptimal solution lies on the path from
1 around the scenic route at 2 to the goa at 3. The men-
tor takes the vertical path from 4 to 5 through the shortcut.
To discourage the use of the shortcut by novice agents, it
islined with cells (marked “*”) that jump back to the start
dtate. It istherefore difficult for a novice agent executing
many random exploratory moves to make it all the way to
theend of the shortcut and obtainthe valuewhich would re-
inforce its future use. Both the observer and control there-
fore generally find the scenic routefirst.

In Figure 8, the performance (goals per 1000 steps) of the
control and observer are compared (averaged over 10runs),
indicating the value of these observations. Observations
show that the observer and control agent take about the
same time on average to find the long scenic route to the
goal, however, the observer instantly recognizes the short-
cut and jumps to almost double the goal rate. This exper-
iment shows that mentors can improve observer policies
even whentheobserver’sgoalsare not onthementor’ spath.

The final experiment illustrates how model extraction can
be readily extended so that the observer can extract models
from multiple mentors and exploit the most valuable parts
of each. InFigure 9, the learner must move from start loca
tion 1 to goa location 4. Two expert agents with different
start and goa states serve as potential mentors. One men-
tor repeatedly movesfromlocation 3tolocation 5 along the
dotted line, while a second mentor departs from location 2
and ends at location 4 aong the dashed line. In thisexperi-
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Figure 9: Multiple mentors scenario

ment, the observer must combine the information from the
examples provided by the two mentors with independent
exploration of itsown in order to solve the problem.

In Figure 10, we see that the observer successfully pulls
together these information sources in order to learn much
more quickly than the control agent (results are averaged
over 10 runs).

Though we have not explored this empirically, “negative’
transfer can also be accommodated in our framework. Nat-
urally, one might want an observer to learn about “ negative”
rewards. A mentor which is unsuccessful and ends up in
aparticularly bad state (from the observer’s point of view)
may nonethel ess be profitable to study.

5 Concluding Remarks

5.1 Reated Work

Imitation is a common strategy for information transfer in
natural agents, from the octopus [8] to the primate, with
many forms of imitation occurring in (and across) other
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Figure 10: Learning from multiple mentors

species. Human imitation has been studied in contexts as
varied asmotor devel opment and language acquisition[21].
Many researchers have considered imitation to be an im-
portant means of enhancing learning in multiagent systems
[2, 4,5, 13], and many interesting ideas have been pursued
in the literature on imitation and teaching.

Much of thiswork relies on the observer sharing a com-
mon or similar (possibly perceptual) state with the men-
tor. In physical systems (e.g., mobile robots) thisis often
achieved by forcing the observer tofollow the mentor [4, 5]
or arranging for communication to occur when agents are
in close proximity [13]. This can be viewed as ensuring
both full observability of the mentor’s state and resolving
the “state analogy” problem. This approach is useful when
partial observability isat issue, thoughit can be plagued by
synchronization and aignment problems[3]. More princi-
pled approaches to partial observability should incorporate
POMDP models (see below). The “action analogy” prob-
lem is addressed formally in [19], where an algebraic for-
mulation of theimplicationsof different abilitieson the part
of the mentor and observer isprovided. We discussthisfur-
ther below, but at present it is not clear how to use the spe-
cific formulation of [19] with RL.

Much work on imitation requires that the mentor directly
communicateitsintended action or reward, or providesome
other feedback to the observer [4, 13, 25], or that complete
state, reward and action information is directly accessible
[11]. Research on explicit teaching or demonstration of be-
haviorsincludeswork focused on abstract domains[11, 25]
and on specific roboticstasks [1, 10, 16], where behaviors
are learned by replicating observed human behaviors. This
work relies on a cooperative rel ationship between the men-
tor and observer; in contrast, our model makes no such as-
sumption. The middle ground—where a mentor must de-
cide whether (and how) to facilitate the learning of another
agent—should prove to be an interesting research topic.
Tan [22] explores multiagent RL where agents share reward
information and pool their perceptions—thefocusison ac-

celerating learning. Knowledge transfer occurs through di-
rect communication. While not imitation or teaching, this
type of transfer could enhance imitative capabilities.

Work on “learning apprentices’ [15, 18] can be seen as a
form of learning by observation aswell. The goal isto ob-
serve ahuman “mentor” and extract convenient rulesof be-
havior to recommend to the mentor. Thiswork differsfrom
oursin that the observer is not attempting to solve its own
decision problem, but is simply trying to improve the abil-
ities of the mentor. Finally, some work has been done on
using knowledge of other agent’s decisionsto place partial
order constraints on the value function over states [23].

5.2 Possible Extensions of the M odd

For our model to be more widely applied, a number of re-
strictive assumptions must be relaxed. We are currently ex-
ploring some of these. Though our agents have different re-
ward structures, we have assumed that they have common
state and action spaces. While requiring that the observer
have the same abilities as the mentor is crucial to the sim-
ple augmented Bellman equation presented, it is often un-
realistic. We are currently extending our algorithmsto deal
with agents with differing abilities, using methods that al-
low an observer to reason about how it can approximate a
given mentor trajectory (rather than a specific action), and
methods for reasoning about the similarity of the observer’s
actions to the observed mentor transition distribution at a
given state. Preliminary work in model-free settings has
shown remarkable transfer even when the mentor and ob-
server haverather different actionsat their disposal. Weare
also exploringthe use of anal ogical mappingsbetween state
spaces to relax the assumption that the agents have a com-
mon state space. See [19] for more on such mappings.

We must also alow for partially observable models, espe-
cialy with respect to the observer obtaining information
about the true state (and trajectories) of the mentor. Our
model can easily be extended to alow partial observability
and we are currently tackling extensions of our model ex-
traction algorithm in this framework. We hope to provide
a principled approach to devising strategies that facilitate
learning in thisframework (in contrast to heuristics such as
explicit following).

A more challenging extension would be the application of
model extraction to modelsthat alow interactions between
the observer and the mentor. If both are self-interested, a
game-theoretic model will be required to account for their
strategic reasoning. An observer may need to account for
the possibility of deception on the part of the mentor. Even
in cooperative settings, i ssues such as coordination must be
resolved. On the other hand, new opportunitiesfor facilita
tion emerge (e.g., the mentor may ater the environment so
that the observer can learn more readily, or learn in a risk-
free environment).

Under the current modeling assumptions, other extensions
of the algorithm can be explored. We are currently extend-



ing our explicit confidence measuresin order to addressrea-
soning about mentors with different abilities than the ob-
server. More sophisticated exploration techniques [6, 14]
can aso exploit confidence factors such as these. Finaly,
we hope to explore generaization and value function ap-
proximation methods within thisframework.

53 Summary

We have described aformal and principled approach toim-
itation called model extraction. For stochastic problemsin
which explicitformsof communication are not possible, the
underlying model -based framework combined with model
extraction provides an aternative to other imitation and
learning-by-observation systems. We have shown model
extraction to offer significant transfer capability on several
test problems, where it proves to be robust in the face of
noise, capable of integrating subskills from multiple men-
tors, and to provide benefits that increase with the diffi-
culty of the problem. Our initial assumptions are somewhat
restrictive—the observer and mentor have similar state and
action spaces, for instance—but we are pursuing techniques
that relax these.

Since model -extraction isasimple addition to model -based
reinforcement learning we expect to be able to generalize
thetechniqueto many of the domainsto which model -based
techniques have been applied. Givenits compact form and
principled framework, we expect model extraction will be
a sound basis on which to build a variety of algorithmsfor
implicit forms of imitation.
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