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Abstract

Imitation is actively being studied as an effec-
tive means of learning in multi-agent environ-
ments. It allows an agent to learn how to act
well (perhaps optimally) by passively observ-
ing the actions of cooperative teachers or other
more experienced agents its environment. We
propose a straightforward imitation mechanism
called model extraction that can be integrated
easily into standard model-based reinforcement
learning algorithms. Roughly, by observing a
mentor with similar capabilities, an agent can ex-
tract information about its own capabilities in un-
visited parts of state space. The extracted infor-
mation can accelerate learning dramatically. We
illustrate the benefits of model extraction by inte-
grating it with prioritized sweeping, and demon-
strating improved performance and convergence
through observation of single and multiple men-
tors. Though we make some stringent assump-
tions regarding observability, possible interac-
tions and common abilities, we briefly comment
on extensions of the model that relax these.

1 Introduction

The application of reinforcement learning (RL) to multi-
agent systems offers unique opportunities and challenges.
When agents are viewed as independently trying to achieve
their own ends, interesting issues in the interaction of agent
policies [12] must be resolved (e.g., by appeal to equilib-
rium concepts). However, the possibility that agents may
coordinate their policies for mutual gain [22] or distribute
their search for optimal policies (and communicate partial
results to one another) [13] offers intriguingpossibilities for
accelerating RL and enhancing agent performance.

Another way in which individual agent performance can be
improved is by having a novice agent learn reasonable be-
havior from an expert mentor. This type of learning can

be brought about through explicit teaching or demonstra-
tion [1, 11, 25], by sharing of privileged information [13]
or through a more elaborate psychological theory of imita-
tion [2]. In imitation, the agent’s own exploration is used
to ground its observations of other agent’s behaviors in its
own capabilities and resolve any ambiguities in observa-
tions arising from partial observability and noise. A com-
mon thread in all of this work is the use of a mentor to
guide the exploration of the observer. Guidance is typically
achieved through some form of explicit communication be-
tween mentor and observer. A less direct form of teaching
involves an observer extracting information from a mentor
without the mentor making an explicit attempt to demon-
strate a specific behavior of interest [15].

In this paper we develop a model of implicit imitation
through observation of a mentor. Roughly, an agent ob-
serves the state transitions induced by the mentor’s actions.
Assuming that it has actions similar to the (unknown) action
taken by the mentor, the agent can use this information to
update its value function. In addition, a mentor can provide
hints to the observer about the parts of the state space on
which it may be worth focusing attention. The observer’s
attention to an area might take the form of additional ex-
ploration of the area or additional computation brought to
bear on the agent’s prior beliefs about the area. We derive
a new technique, model extraction, that is independent of
any specific RL algorithm, though it is best suited for use
with model-based methods. We illustrate its effectiveness
empirically by incorporating it into prioritized sweeping.

Our model has several advantages over more direct forms
of imitation and teaching. It does not require any agent
to explicitly play the role of mentor or teacher. Observers
learn simply by watching the behavior of other agents (men-
tors); if a mentor shares certain subtasks with the observer,
the observed behavior can be incorporated (indirectly) by
the observer. This is important because there will be many
situations in which an observer can learn from a mentor
that is unwilling or unable to alter its behavior to teach the
observer, or even communicate information to it. For ex-
ample, common communication protocols may be unavail-



able to agents designed by different developers (e.g., Inter-
net agents); agents may be competing; or there may sim-
ply be no incentive for one agent to provide information to
another.1 Because an agent learns by observation, it can
exploit the existence of multiple mentors, essentially dis-
tributing its search. The observer is also not constrained to
directly imitate the mentor and can decide whether such im-
itation is worthwhile. Finally, we do not assume that the ob-
server knows the actual actions taken by the mentor, or that
the mentor shares a reward function (or goals) with the men-
tor. While we make some strict assumptions in this paper,
the model can be generalized in interesting ways, as we de-
scribe below. Many of these generalizations are the subject
of ongoing research.

We present the basic model and assumptions underlying
model extraction in Section 2. We develop the model ex-
traction algorithm and demonstrate a simple mechanism to
focus the agent’s updating mechanism on promising areas
of the state space in Section 3, and illustrate the perfor-
mance of the algorithm empirically in Section 4. We con-
clude in Section 5 with remarks on related work and a dis-
cussion of current and future research, especially with re-
spect to the relaxation of certain modeling assumptions.

2 Model and Assumptions

Our model assumes that we have some number of agents
acting to achieve their own objectives in a common envi-
ronment. To keep the notationsimple, we present the model
using two agents only: a mentor m and an observer o. The
observer is a reinforcement learner that can observe aspects
of the mentor’s behavior. The extension to multiple agents
should be viewed as adding further (potential) mentors to
the system, since we consider the RL problem facing a sin-
gle observer.2
The agents act to control a multiagent Markov decision pro-
cess (MMDP), in which the agents select actions indepen-
dently, and their joint actions determine stochastic state
transitions.3 In order to focus on imitation without getting
into issues of strategic reasoning (e.g., game theoretic con-
cepts like equilibria), we assume that the agents’ actions
are noninteracting; that is, each agent can ignore the behav-
ior of the other in predicting the effect of its own actions
on the system and the reward it receives. To do this, we
factor the MMDP into two standard (single-agent) MDPsMo = hSo; Ao;Pro; Roi and Mm = hSm; Am;Prm; Rmi
pertaining to the observer and mentor, respectively. Here,
for i 2 fo;mg, Si is the state space for agent i, Ai its set1For reasons of consistency, we use the term “mentor” to de-
scribe any agent from which an observer can learn, even if the
mentor is an unwilling participant.2This is not to say that the other “mentors” cannot be learners
or even imitators themselves.3MMDPs could be viewed as a form of stochastic game [20];
since Shapley’s original formulation involved the zero-zum as-
sumption, we use different terminology to avoid confusion.

of actions, Pri(tjs; a) the stochastic state transition func-
tion and Ri(s) its reward function (defined over Si). For
instance, in a grid world, we might assume that the mentor
and observer can each move without affecting the other’s
ability to move or impact the reward it receives by occupy-
ing certain grid cells.

If the observer is to learn by observing the mentor, there
must be some relationship between the space of potential
behaviors they can implement. We make two especially
strong assumptions in this regard. First, the agents have
identical state spaces; i.e., S = Sm = So. Second, the
observer has (at least) the same capabilities as the mentor;
i.e.,Am � Ao and Prm(tjs; a) = Pro(tjs; a) for any a they
have in common. These assumptions make our description
of the imitation task somewhat simpler, but can be relaxed.
The essential feature is that there be some analogical map-
ping between state transitions so that the observations of the
mentor can be recast in terms the observer understands [19]
(see Section 5). Our formulation makes this mapping triv-
ial. However, we do not assume that the reward functionsRo and Rm are related in any specific way.

Initially, the observer will not know the transition modelPro; but we assume it knows its reward functionRo. While
in typical RL models, the learner does not know Ro, prior
knowledge ofRo is consistent with the interpretation of RL
as automatic programming: the agent designer can often
provide predicates to evaluate the quality of a situation in
advance, but cannot provide a model of the state dynamics.
To learn from the mentor, the observer must be able to ob-
serve certain aspects of its behavior. Unless it communi-
cates its policy or selected actions to the observer, the ac-
tual actions taken by the mentor will be unknown to the ob-
server. All it can see is the effects of an action. For instance,
in a noisy grid world, the mentor may attempt to move north
but actually move east: the observer sees only the actual
state transition, not the intended transition or actual action
attempted. Therefore, we assume the observer can see the
specific state transitions s ! t taken by the mentor. The
mentor’s state is thus fully observable to the observer. This,
too, is a strong assumption—we indicate ways in which it
can be relaxed in Section 5.

3 Model Extraction and Implicit Imitation

The observer’s problem is to determine an optimal course of
action that maximizes expected value, where its value func-
tion is given by the Bellman equation:V (s) = Ro(s) + 
 maxa2Ao(Xt2S Pro(tjs; a)V (t)) (1)

We assume here a discounted infinite horizon context with
discount factor 
. For the present, we also assume that the
agent’s actions do not influence the agent’s reward struc-
ture, but this assumption will later be relaxed.



In an RL context, our observer has access to transition
samples of the form hs; a; ti (recall that it knows Ro(s)).
An optimal policy can be determined by directly learning
a Q-function Q(s; a) [24], or using model-based methods
that estimate the model Pro and solve (generally, asyn-
chronously and incrementally) Equation 1 (e.g., prioritized
sweeping [17]). There is a limited scope in which obser-
vations of the mentor’s state trajectories can influence this
computation. Since the observer already knows its reward
function, its observations of the mentor cannot influence
its reward model. Observations could be used to update
its estimate of its own transition model Pro, or the order
in which to apply Bellman backups to its own estimated
value function. We consider both forms of influence in this
section. Two other possible (direct) influences are not ex-
plored here: the observer could attempt to infer the best ac-
tion to perform in state s based on the mentor’s trajectory;
or the observer could use the observations to directly com-
pute the value function, or constraints on the value function
for states it has not visited [23].

In Section 3.1, we describe the model extraction algorithm
in the context of model-based RL. However, in Section 3.2,
we indicate how the same ideas can be incorporated into
model-free algorithms such as Q-learning.

3.1 Model Extraction in General Terms

If a mentor is “expert” at achieving its objectives, we can as-
sume it is executing a stationary, deterministic policy �m,
with�m(s) denoting its action choice at state s. Behavior �
induces a Markov chain Prm(tjs) = Prm(tjs; �m(s)) overS. By observing mentor transitions, the observer can con-
struct an estimate cPrm of this chain: cPrm(tjs) can simply
be estimated by the relative observed frequency of mentor
transitions s ! t (w.r.t. all transitions taken from s).

Since Am � Ao, the observer knows that there is some
action a 2 Ao that is the same as �m(s); that is, there
exists an action a such that Pro(tjs; a) � cPrm(tjs). Un-
fortunately, since the observer does not know its own tran-
sition model—it has only estimates—and cannot observe
the mentor’s actions directly, it does not know the iden-
tity of this action �m(s). However, the mere fact that there
exists some action with estimated transition probabilitiesPrm(�js) can be used to good effect by the observer in value
function estimation. SinceAm � Ao, V (s) can be given by
the following augmented Bellman equation:V (s) = Ro(s) + 
max(maxa2Ao(Xt2S Pro(tjs; a)V (t)) ;Xt2S Prm(tjs)V (t)) (2)

This is the usual Bellman equation (1) with an extra term
added, the second summation, denoting the expected value

of duplicating the mentor’s action �m(s). Since this (un-
known) action is identical to one of the observer’s actions,
the term is redundant and the augmented value equation is
valid. Of course, the observer using the augmented backup
operation must rely on estimates of these quantities. If the
observer’s exploration policy ensures that each state is vis-
ited infinitelyoften, the estimates of thePro terms will con-
verge to their true values. The mentor’s policy is not under
the observer’s control. However, if the mentor’s policy is
ergodic over state space S, then these terms too will con-
verge to their true values. If the mentor’s policy restricts it
to a subset of states S0 � S (those forming the basis of its
Markov chain), these estimates will converge correctly with
respect to S0 if the chain is ergodic, and states inS�S0 will
remain unvisited. An observer can apply the augmented
equation only for those states visited by the mentor. In ei-
ther of these cases, the use Equation (2) does not impact the
usual convergence results for RL algorithms.

Our primary interest, however, is the behavior of the system
during the initial stages of learning when the advantage of a
knowledgeable mentor can make the most difference to an
observer. Assuming that the mentor is pursuing a greedy
policy, there will be many states for which the observer has
much more accurate estimates of Prm(tjs) than it does forPro(tjs; a) for any specific a. Since the observer is learn-
ing, it must explore both state space (causing less frequent
visits to s) and action space (thus spreading its experience
at s over all actions a), generally ensuring that the sample
size upon whichPrm is based is greater than that forPro for
any specific action. Apart from being more accurate, the use
of Prm(tjs) can often give more informed value estimates
at state s, since prior action models are generally “flat” or
uniform, and only become distinguishable at a given state
when the observer has sufficient experience at state s.

When the mentor’s Markov chain is not ergodic, or even if
the mixing rate is sufficiently low, the mentor may visit a
certain state s relatively infrequently. A state that is rarely
(or never) visited by the mentor may provide a very mis-
leading estimate—based on the small sample or the prior
for the mentor’s chain—of the value of the mentor’s (un-
known) action at s; and since the mentor’s policy is not un-
der the control of the observer, this misleading value may
persist for an extended period. This stems in part from the
fact that we use maximization to combine values based on
the estimates of the mentor’s chain and the observer’s action
models, and in part because we use mean values (estimated
probabilities) based on observed samples. The augmented
Bellman equation does not consider the reliability of the in-
formation sources.

To overcome this, we have incorporated an estimate of
model confidence into our augmented backups. For the
mentor’s Markov chain and the observer’s action transi-
tions, we assume a Dirichlet prior over the parameters of
each of these multinomial distributions [7]. These reflect
the observer’s initial uncertainty about the possible tran-



sition probabilities. From sample counts of mentor and
observer transitions, we update these distributions. With
this information, we could attempt to perform an optimal
Bayesian estimation of the value function; but when the
sample counts are small (and normal approximations are
not appropriate), there is no simple, closed form expres-
sion for the resultant distributionsover values. We therefore
employ an approximate method for combining information
sources inspired by Kaelbling’s interval estimation method
[9].

We first compute the observer’s optimal action a�o using a
simple max over the mean value of the state given each pos-
sible action (The usual method). With the benefit of the
Dirichlet distributions, we then construct a lower bound v�o
on the value of the state to the observer using the model de-
rived from its own behavior—this is the lower bound of a
suitable confidence interval over the expected value of that
state. A second lower bound v�m is constructed using the
model based on observations of the mentor. If v�m < v�o ,
then either the mentor-inspired model has, in fact, a lower
expected value (within a specified degree of confidence)
and uses a nonoptimal action (from the observer’s perspec-
tive), or the mentor-inspired model has lower confidence.
In either case, we reject the information provided by the
mentor and use the model derived from the observer’s ob-
servations of itself. Using Tchebycheff’s inequality, we can
choose a confidence level even though the Dirichlet distri-
butions for small sample counts are highly non-normal.

We note that the reasoning above holds even if the mentor
is implementing a (stationary) stochastic policy (since the
expected value of stochastic policy for a fully-observable
MDP cannot be greater than that of an optimal deterministic
policy). While the “direction” offered by a mentor imple-
menting a deterministic policy tends to be more focussed,
empirically we have found that mentors offer broader guid-
ance in moderately stochastic environments or when they
implement stochastic policies, since they tend to visit more
of the state space. We note that the extension to multiple
mentors is straightforward—each mentor model can be in-
corporated into the augmented Bellman equation without
difficulty.

Though the model has assumed no action costs (i.e., re-
wards that depend only on the state), we can use more
general reward functions (e.g., where reward has the formR(s; a)). The difficulty lies in backing up action costs when
the mentor’s chosen action is unknown. We use a sim-
ple heuristic method to find the action of the observer that
is “closest” to that of the mentor (given current transition
probability estimates) and then construct an estimate of the
value of the state using the information derived from men-
tor transitions based on this action. Let �(s) denote that ob-
server’s action at state s that is “closest” to the action ex-
ecuted by the mentor at state s. This is defined as the ac-
tion whose observed transition distribution has minimum
Kullback-Leibler distance from the mentor’s observed tran-

sition distribution:�(s) = argmina(�Xt Pro(tjs; a) logPrm(tjs)) (3)

The augmented Bellman equation 2 can be rewritten using
the � function as follows:V (s) = max(maxa2Ao(Ro(s; a) + 
Xt2S Pro(tjs; a)V (t)) ;Ro(s; �(s)) + 
Xt2S Prm(tjs)V (t))
We note that Bayesian methods could be used could be used
to estimate action costs in the mentor’s chain as well.

Our model extraction algorithm requires that: (a) the ob-
server maintain an estimate cPrm(tjs) of the Markov chain
induced by the mentor’s policy—this estimate is updated
with every observed transition; and (b) that all backups per-
formed to estimate its value function use the augmented
backup Equation 2 with confidence testing.4
A second way in which an observer can exploit its observa-
tions of the mentor is to focus attention on the states vis-
ited by the mentor. In a model-based approach, the spe-
cific focusing mechanism we adopt requires the observer to
perform a (possibly augmented) Bellman backup at state s
whenever the mentor transitions out of s. This has three
effects. If the mentor tends to visit interesting regions of
space (e.g., if it shares a certain positive or negative re-
ward structure with the observer in state s), the observer’s
attention is drawn there. More importantly, this focus of
attention directs computational effort toward parts of state
space where the estimated model cPrm(tjs) changes, hence
where the estimated value of one of the observer’s actions
may change. In addition, computation is focused where the
model is likely more accurate (as discussed above).

3.2 Model Extraction in Specific RL Algorithms

Model extraction and the focusing mechanism described
above can be integrated into model-based RL algorithms
with relative ease. In the experiments described in the next
section, prioritized sweeping is used [17]. Roughly, prior-
itized sweeping works by maintaining an estimated transi-
tion model cPr and reward model bR. Whenever an expe-
rience tuple hs; a; r; ti is sampled, the estimated model at
state s can change; a Bellman backup is done at s to in-
corporate the revised model and some (usually fixed) num-
ber of additional backups are performed at selected states.4Of course, these backups are implemented using estimated
models bPro(tjs;a) and bPrm(tjs).



States are selected using a priority that estimates the poten-
tial change in their values based on the changes precipitated
by earlier backups (see [17] for details). Essentially, com-
putational resources (backups) are focused on those states
that can most “benefit” from those backups.

Incorporating our ideas into prioritizedsweeping simply re-
quires the following changes:

(a) With each transition hs; a; ti the observer takes,
the estimated modelcPro(tjs; a) is updated and an
augmented backup (Equation 2) is performed at
state s. Augmented backups are then performed
at a fixed number of states using the usual priority
queue implementation.

(b) With each observed mentor transition hs; ti, the
estimated modelcPrm(tjs) is updated and an aug-
mented backup is performed at s. Augmented
backups are then performed at a fixed number of
states using the usual priority queue implementa-
tion.

The fact that augmented backups are used instead of stan-
dard Bellman backups implements model extraction, while
the requirement that backups be performed at observed
transitions (in addition to experienced transitions) incorpo-
rates our focusing mechanism. We can view this RL algo-
rithm as embodying a form of implicit imitation. The ob-
server is not forced to “follow” or otherwise mimic the ac-
tions of the mentor directly. But it does back up value in-
formation along the mentor’s trajectory as if it had. Ulti-
mately, the observer must move to those states to discover
which actions are to be used; but in the meantime, important
value information is being propagated that can guide its ex-
ploration (we discuss exploration in more detail below).

We note that the usual convergence results hold for pri-
oritized sweeping (and other algorithms such as certainty
equivalence) when model extraction is used. As the mod-
els converge, the augmentation of the Bellman equation be-
comes irrelevant. During initial phases of training, how-
ever, it can induce different exploratory and computational
behavior in the observer, and in many instances faster con-
vergence. In particular, as we will see below, this implicit
imitation often causes the learner to obtain higher accumu-
lated reward during the initial stages of learning.

While model extraction fits naturally with model-based RL
methods, some of these ideas can be readily incorporated
into model-free algorithms like Q-learning. For example,
the observer could augment its Q-function with a “ficti-
tious” action am—the action used by the mentor—and up-
date the Q-values of am using mentor transitions (imposing
its ownR). When updating the Q-values of its own actions,
the value of any state s would be estimated using the max-
imum Q-values of all actions, including am.

3.3 Action Selection

Exploration is a key part of any RL algorithm, and here
we adopt "-greedy action selection, using a decaying ex-
ploration rate " over time. The following remarks apply
equally well to other pseudo-greedy methods such as Boltz-
mann exploration.

When selecting an action at state s, greedy action selection
requires that we choose the action with highest expected
value (i.e., the a that maximizes

Pt cPro(tjs; a)V (t)).
When the mentor’s policy dictates an especially appealing
action at state s, it may well be that

Pt cPrm(tjs)V (t) is
greater than the value of any known action, in which case
the observer is better off trying to duplicate the action of the
mentor. Unfortunately, this action is unknown. Again, we
define the “greedy action” for the observer to be that actiona whose estimated distribution cPro(tjs; a) has minimum
Kullback-Leibler distance from cPrm(tjs). This proves es-
pecially effective early in training when value estimates
based on actions with small samples vary widely, while con-
fidence in the mentor’s model is much higher.5
4 Empirical Validation

The following empirical tests report on the incorporation of
model extraction and our focusing mechanism with priori-
tized sweeping. These results illustrate the types of prob-
lems and scenarios in which implicit imitation of this form
can provide advantages to an RL agent. In each of the ex-
periments, an expert “mentor” is introduced into the ex-
periment to serve as a model for an “observer” agent. In
each case, the mentor is following an �-greedy policy with
a very small � (on the order of 0.01). This tends to cause
the mentor’s trajectories to lie within a “cluster” surround-
ing optimal trajectories (and reflect good if not optimal poli-
cies). Even with this (and environment stochasticity), men-
tors generally do not “cover” the entire state space so con-
fidence testing is important.

In all of these experiments, prioritized sweeping is used
with a fixed number of backups per observed or experienced
sample.6 "-greedy exploration is used with decaying ". Ob-
server agents are given uniform Dirichlet priors. Observer
agents are compared to control agents that do not bene-
fit from a mentor’s experience, but are otherwise identical
(implementing prioritized sweeping with similar parame-
ters and exploration policies). The tests are all performed
on stochastic grid-world domains, since these make it clear5It is easy to construct cases where the action a closest to the
mentor’s am has lower expected value than action b, while the ex-
pected value of am is greater than that of b. In such a case, it often
makes sense to view a as a better (greedy) action than b. However,
we recognize that, ultimately, confidence factors should be incor-
porated into such judgments as well, so that mentor models with
relatively small sample sizes are not given such priority.6Generally, the number of backups was set to be roughly equal
to the length of the optimal “noise-free” path.
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Figure 1: Basic Observer and Control Agent Comparisons

to what extent the observer’s and mentor’s optimal policies
overlap (or fail to). We assume an eight-connectivity be-
tween cells so that any state in the grid has 9 neighbors in-
cluding itself, but agent’s use only the North, South, East
and West actions. We focus primarily on whether imitation
improves performance during learning, since the learner
will converge to an optimal policy whether it uses imitation
or not.

First we show a typical profile of an observer using model
extraction (with an expert mentor) vs. a control agent which
does not. Both agents attempt to learn a policy that maxi-
mizes discounted return on a 10x10 grid world. They start
in the upper-left corner and seek a goal with value 1.0 in
the lower corner. Upon reaching the goal, the agents are
restarted at the top. Actions are noisy, resulting in an un-
intended transition 10% of the time. The discount fac-
tor is 0.9. In Figure 1 we plot the cumulative number of
goals obtained over the previous 1000 time steps for the ob-
server “Obs” and control “Ctrl” (results are averaged over
10 runs). The observer is able to quickly incorporate a pol-
icy learned from the mentor into its value estimates. This
results in a steeper learning curve. In contrast, the control
agent slowly explores the space to build a model first. The
“Delta” curve shows the difference in performance between
the agents. Both agents converge to the same optimal value
function.

The next experiment illustrates the sensitivity of imitation
to the size of the state space and action noise level. In Fig-
ure 2 we plot the delta curves for the “Basic” scenario just
described, the “Scale” scenario in which the state space size
is increased 69% 13x13, and the “Stoch” scenario in which
the noise level is increased to 40% (results are averaged
over 10 runs). The difference between the observer and the
non-imitating prioritized sweeping agent increases with the
state space size. This reflects Whitehead’s observation for
grid worlds that explorationneeds can increase quickly with
state space size, but that the optimal path length increases
only linearly [25]. Here we see that the guidance of the
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Figure 2: Influence of Domain Size and Noise

mentor can help more in larger state spaces.

Increasing the noise reduces the observer’s ability to act
upon the information received from the mentor and there-
fore erodes its advantage over the control agent. We note,
however, that the benefit of imitation degrades gracefully
with increased noise and is present even at this relatively
extreme noise level.

Sometimes the observer’s prior beliefs about the transition
probabilities of the mentor can mislead the observer and
cause it to generate inappropriate values. The confidence
mechanism proposed in the previous section can prevent
the observer from being fooled by misleading priors on the
mentor’s transition probabilities. This experiment is based
on the scenario illustrated in Figure 3. Again the agent’s
task is to navigate from the top-left corner to the bottom-
right corner of a 10x10 grid in order to attain a reward of
+1. We have created a pathological scenario in which is-
lands of high value (+5) are enclosed by obstacles. Since
the observer’s priors reflect eight-connectivity and are uni-
form, the high-valued cell in the middle of each island are
believed to be reachable from the states diagonally adjacent
with some small prior probability. In reality, however, the
agent’s action set precludes this and the agent will therefore
never be able to realize this value. The four islands in this
scenario thus create a fairly large region in the center of the
space with a high value which could potentially trap an ob-
server.

To test, the confidence mechanism, the mentor follows a
path around the outside of the obstacles so that its path
cannot lead the observer out of the trap. The combination
of a high initial exploration rate and the ability of priori-
tized sweeping to spread value across large distances then
virtually guarantees that the observer will be “lead” to the
trap. Given this scenario, we ran two observer agents and
a control. The first observer used a confidence interval
with width given by 5� which according to the Tcheby-
cheff rule should cover approximately 96 percent of an ar-
bitrary distribution. The second observer was given a 0�
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Figure 4: Misleading priors may degrade performance

interval which effectively disables confidence testing. The
observer with no confidence testing consistently became
stuck. Examination of the value function revealed consis-
tent peaks within the trap region and observation of the
agent showed that it was stuck in the trap. The observer
with confidence testing consistently escapes the trap. Ob-
servation of its value function over time shows that the trap
forms, but fades away as the observer gains enough expe-
rience to throw out erroneous priors. In Figure 4, the per-
formance of the observer with confidence testing is shown
with the performance of the control agent (results are aver-
aged over 10 runs). We see that the observer’s performance
is only slightly degraded from that of the unaugmented con-
trol agent even in this pathological case.

The next experiment demonstrates how the potential gains
of imitation can increase with the (qualitative) difficulty of
the problem. In the “maze” scenario we introduce obstacles
in order to increase the difficulty of the learning problem.
The maze is set on a 25x25 grid (Figure 5) with 286 ob-
stacles complicating the agent’s journey from the top-left to
the bottom-right corner. The only solution takes the form of
a snaking 133-step path, with distracting paths (up to length

Figure 5: A complex maze
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Figure 6: Imitation in a complex space

22) branching off from the solution path necessitating fre-
quent backtracking. The discount factor is 0.98. With 10%
noise, the optimal goal-attainment rate is about 6 goals per
1000 steps.

From the graph in Figure 6 (with results averaged over 10
runs), we see that the control agent takes on the order of
150,000 steps to build a decent value function that reliably
leads to the goal. At this point, it is only achieving 4 goals
per 1000 steps on average as its exploration rate is still rea-
sonably high (unfortunately, decreasing exploration more
quickly does not lead to faster value function formation).
The imitation agent is able to take advantage of the men-
tor’s expertise to build a reliable value function in about
20,000 steps. Since the control agent has been unable to
reach the goal at all in the first 20,000 steps, the delta be-
tween the control and the imitator is simply equal to the im-
itator’s performance. The imitator can quickly achieve the
optimal 6 goals per 1000 steps as its exploration rate decays
much more quickly.

The augmented backup rule does not require that the reward
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structure of the mentor and observer be identical. There are
many useful scenarios, where rewards are dissimilar but in-
duce value functions and policies that share some structure.
In this experiment, we demonstrate one interesting scenario
in which it is comparatively easy to find a suboptimal so-
lution, but difficult to find the optimal solution. Once the
observer finds this suboptimal path, however, the observer
agent is able to exploit its observations of the mentor to see
that there is a shortcut that significantly shortens the path
to the goal. The structure of the scenario can be seen in
Figure 7. The suboptimal solution lies on the path from
1 around the scenic route at 2 to the goal at 3. The men-
tor takes the vertical path from 4 to 5 through the shortcut.
To discourage the use of the shortcut by novice agents, it
is lined with cells (marked “*”) that jump back to the start
state. It is therefore difficult for a novice agent executing
many random exploratory moves to make it all the way to
the end of the shortcut and obtain the value which would re-
inforce its future use. Both the observer and control there-
fore generally find the scenic route first.

In Figure 8, the performance (goals per 1000 steps) of the
control and observer are compared (averaged over 10 runs),
indicating the value of these observations. Observations
show that the observer and control agent take about the
same time on average to find the long scenic route to the
goal, however, the observer instantly recognizes the short-
cut and jumps to almost double the goal rate. This exper-
iment shows that mentors can improve observer policies
even when the observer’s goals are not on the mentor’s path.

The final experiment illustrates how model extraction can
be readily extended so that the observer can extract models
from multiple mentors and exploit the most valuable parts
of each. In Figure 9, the learner must move from start loca-
tion 1 to goal location 4. Two expert agents with different
start and goal states serve as potential mentors. One men-
tor repeatedly moves from location 3 to location 5 along the
dotted line, while a second mentor departs from location 2
and ends at location 4 along the dashed line. In this experi-
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Figure 9: Multiple mentors scenario

ment, the observer must combine the information from the
examples provided by the two mentors with independent
exploration of its own in order to solve the problem.

In Figure 10, we see that the observer successfully pulls
together these information sources in order to learn much
more quickly than the control agent (results are averaged
over 10 runs).

Though we have not explored this empirically, “negative”
transfer can also be accommodated in our framework. Nat-
urally, one might want an observer to learn about “negative”
rewards. A mentor which is unsuccessful and ends up in
a particularly bad state (from the observer’s point of view)
may nonetheless be profitable to study.

5 Concluding Remarks

5.1 Related Work

Imitation is a common strategy for information transfer in
natural agents, from the octopus [8] to the primate, with
many forms of imitation occurring in (and across) other
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Figure 10: Learning from multiple mentors

species. Human imitation has been studied in contexts as
varied as motor development and language acquisition [21].
Many researchers have considered imitation to be an im-
portant means of enhancing learning in multiagent systems
[2, 4, 5, 13], and many interesting ideas have been pursued
in the literature on imitation and teaching.

Much of this work relies on the observer sharing a com-
mon or similar (possibly perceptual) state with the men-
tor. In physical systems (e.g., mobile robots) this is often
achieved by forcing the observer to follow the mentor [4, 5]
or arranging for communication to occur when agents are
in close proximity [13]. This can be viewed as ensuring
both full observability of the mentor’s state and resolving
the “state analogy” problem. This approach is useful when
partial observability is at issue, though it can be plagued by
synchronization and alignment problems [3]. More princi-
pled approaches to partial observability should incorporate
POMDP models (see below). The “action analogy” prob-
lem is addressed formally in [19], where an algebraic for-
mulation of the implications of different abilities on the part
of the mentor and observer is provided. We discuss this fur-
ther below, but at present it is not clear how to use the spe-
cific formulation of [19] with RL.

Much work on imitation requires that the mentor directly
communicate its intended action or reward, or provide some
other feedback to the observer [4, 13, 25], or that complete
state, reward and action information is directly accessible
[11]. Research on explicit teaching or demonstration of be-
haviors includes work focused on abstract domains [11, 25]
and on specific robotics tasks [1, 10, 16], where behaviors
are learned by replicating observed human behaviors. This
work relies on a cooperative relationship between the men-
tor and observer; in contrast, our model makes no such as-
sumption. The middle ground—where a mentor must de-
cide whether (and how) to facilitate the learning of another
agent—should prove to be an interesting research topic.
Tan [22] explores multiagent RL where agents share reward
information and pool their perceptions—the focus is on ac-

celerating learning. Knowledge transfer occurs through di-
rect communication. While not imitation or teaching, this
type of transfer could enhance imitative capabilities.

Work on “learning apprentices” [15, 18] can be seen as a
form of learning by observation as well. The goal is to ob-
serve a human “mentor” and extract convenient rules of be-
havior to recommend to the mentor. This work differs from
ours in that the observer is not attempting to solve its own
decision problem, but is simply trying to improve the abil-
ities of the mentor. Finally, some work has been done on
using knowledge of other agent’s decisions to place partial
order constraints on the value function over states [23].

5.2 Possible Extensions of the Model

For our model to be more widely applied, a number of re-
strictive assumptions must be relaxed. We are currently ex-
ploring some of these. Though our agents have different re-
ward structures, we have assumed that they have common
state and action spaces. While requiring that the observer
have the same abilities as the mentor is crucial to the sim-
ple augmented Bellman equation presented, it is often un-
realistic. We are currently extending our algorithms to deal
with agents with differing abilities, using methods that al-
low an observer to reason about how it can approximate a
given mentor trajectory (rather than a specific action), and
methods for reasoning about the similarity of the observer’s
actions to the observed mentor transition distribution at a
given state. Preliminary work in model-free settings has
shown remarkable transfer even when the mentor and ob-
server have rather different actions at their disposal. We are
also exploring the use of analogical mappings between state
spaces to relax the assumption that the agents have a com-
mon state space. See [19] for more on such mappings.

We must also allow for partially observable models, espe-
cially with respect to the observer obtaining information
about the true state (and trajectories) of the mentor. Our
model can easily be extended to allow partial observability
and we are currently tackling extensions of our model ex-
traction algorithm in this framework. We hope to provide
a principled approach to devising strategies that facilitate
learning in this framework (in contrast to heuristics such as
explicit following).

A more challenging extension would be the application of
model extraction to models that allow interactions between
the observer and the mentor. If both are self-interested, a
game-theoretic model will be required to account for their
strategic reasoning. An observer may need to account for
the possibility of deception on the part of the mentor. Even
in cooperative settings, issues such as coordination must be
resolved. On the other hand, new opportunities for facilita-
tion emerge (e.g., the mentor may alter the environment so
that the observer can learn more readily, or learn in a risk-
free environment).

Under the current modeling assumptions, other extensions
of the algorithm can be explored. We are currently extend-



ing our explicit confidence measures in order to address rea-
soning about mentors with different abilities than the ob-
server. More sophisticated exploration techniques [6, 14]
can also exploit confidence factors such as these. Finally,
we hope to explore generalization and value function ap-
proximation methods within this framework.

5.3 Summary

We have described a formal and principled approach to im-
itation called model extraction. For stochastic problems in
which explicit forms of communication are not possible, the
underlying model-based framework combined with model
extraction provides an alternative to other imitation and
learning-by-observation systems. We have shown model
extraction to offer significant transfer capability on several
test problems, where it proves to be robust in the face of
noise, capable of integrating subskills from multiple men-
tors, and to provide benefits that increase with the diffi-
culty of the problem. Our initial assumptions are somewhat
restrictive—the observer and mentor have similar state and
action spaces, for instance—but we are pursuing techniques
that relax these.

Since model-extraction is a simple addition to model-based
reinforcement learning we expect to be able to generalize
the technique to many of the domains to which model-based
techniques have been applied. Given its compact form and
principled framework, we expect model extraction will be
a sound basis on which to build a variety of algorithms for
implicit forms of imitation.
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