
1

�
� ∆

∆

∆

∆

� �

�
�

�

0 0

0 0

1

Abstract

�����	�
���
���

�����	�
���
���Off-line and On-line execution

Giuseppe De Giacomo Hector Levesque

Introduction

degiacomo@dis.uniroma1.it hector@cs.toronto.edu

high-level program execution

do do

do

off-line

before

An Incremental Interpreter for High-Level Programs with Sensing

��
����������� ��� � �"! ���#%$ & ���#'$
&
��

����������� (��*) #'$+# ��,#'$
) (��*) # � # �

) �
�

)
)

�*- .
� -

. .
� -

. � -

.

Like classical planning, the execution of high-level agent
programs requires a reasoner to look all the way to a final
goal state before even a single action can be taken in the
world. This deferral is a serious problem in practice for large
programs. Furthermore, the problem is compounded in the
presence of sensing actions which provide necessary infor-
mation, but only after they are executed in the world. To deal
with this, we propose (characterize formally in the situation
calculus, and implement in Prolog) a new incremental way of
interpreting such high-level programs and a new high-level
language construct, which together, and without loss of gen-
erality, allow much more control to be exercised over when
actions can be executed. We argue that such a scheme is the
only practical way to deal with large agent programs contain-
ing both nondeterminism and sensing.

It is assumed that once an action is taken, it need not be un-
doable, and so backtracking “in the world” is not an option.

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Rome, Italy

Department of Computer Science
University of Toronto

Toronto, Canada M5S 3H5

In [4] it was argued that when it comes to providing high
level control to autonomous agents or robots, the notion of

offers an alternative to clas-
sical planning that may be more practical in many applica-
tions. Briefly, instead of looking for a sequence of actions

such that

= (()) (())

where is the goal being planned for, we look for a se-
quence such that

= (())

where is a high-level program and () is a for-
mula stating that may legally terminate in state when
started in state . By a high-level program here, we mean
one whose primitive statements are the domain-dependent
actions of some agent or robot, whose tests involve domain-
dependent fluents (that are caused to hold or not hold by
the primitive actions), and which contains nondeterministic
choice points where reasoned (non-random) choices must
be made about how the execution should proceed.

What makes a high-level agent program different from a
deterministic “script” is that its execution is a problem solv-
ing task, not unlike planning. An interpreter needs to use
what it knows about the prerequisites and effects of actions

to find a sequence with the right properties. This can in-
volve considerable search when is very nondeterministic,
but much less search when is more deterministic. The fea-
sibility of this approach for AI purposes clearly depends on
the expressive power of the programming language in ques-
tion. In [4], a language called is presented,
which in addition to nondeterminism, contains facilities for
sequence, iteration, conditionals, concurrency, and priori-
tized interrupts. In this paper, we extend the expressive
power of this language by providing much finer control over
the nondeterminism, and by making provisions for sensing
actions. To do so in a way that will be practical even for
very large programs requires introducing a different style
of on-line program execution.

In the rest of this section, we discuss on-line and off-line
execution informally, and show why sensing actions and
nondeterminism together can be problematic. In the follow-
ing section, we formally characterize program execution in
the language of the situation calculus. Next, we describe an
incremental interpreter in Prolog that is correct with respect
to this specification. The final section contains discussion
and conclusions.

To be compatible with planning, the inter-
preter presented in [4] executes in an manner, in the
sense that it must find a sequence of actions constituting an
entire legal execution of a program actually execut-
ing any of them in the world. Consider, for example, the
following program:

() ; ; ?

where and are primitive actions, indicates nondetermin-
istic choice, is some very large deterministic program, and

? tests whether fluent holds. A legal sequence of actions
should start with either or , followed by a sequence for ,
and end up in state where holds. Before executing or ,
the agent or robot must wait until the interpreter considers
all of and determines which initial action eventually leads
to . Thus even a single nondeterministic choice occurring
early in a large program can result in an unacceptable delay.

�

�

� � �

�

�

�1 2

1 2

1 2

1 2

1 2

0

0

∆

∆

∆

∆

Σ Σ

Σ ∆

∆

Σ

∆ ∆

∆ ∆

∆ ∆

∆ ∆

∆ ∆

∆

∆

Σ

Characterizing program execution

Sensing actions

Situation calculus

if then else endIf

if then else endIf

while do endWhile

� -

�*-�� .

� �
�

.

�
- .
� -

.
))

)

�*-�� .

� -
�

�

�

� � .

�

�
- � .��
� -

�

� - .
�

�
- � .	�

� � -

�

$

��# �
� �

��# � �
�

��# � �
�

$
�

commit

on-line

readq

readq

readq

readq

readq

both

readq readq

arbi-
trary etc.

readq

i.e. Trans Final

initial situation

do do

fluents

Poss

SF

We will see below that this problem is compounded in the
presence of sensing actions.

If a small amount of nondeterminism in a program is to
remain practical (as suggested by [4]), we need to be able
to choose between and based on some local criterion
without necessarily having to go through all of . Using
something like

() ; ? ; ; ?

here does not work, since an off-line interpreter cannot set-
tle for even if it leads to a state where holds. We need
to be able to to a choice that satisfies , with the un-
derstanding that it is the responsibility of the programmer to
use an appropriate local criterion, and that the program will
simply fail without the option of backtracking if does not
hold at the end.

It is convenient to handle this type of commitment by
changing the execution style from off-line to on-line, but
including a special off-line search operator. In a ex-
ecution, nondeterministic choices are treated like random
ones, and any action selected is executed immediately. So
if the program

() ; ; ?

is executed on-line, one of or is selected and executed
immediately, and the process continues with ; in the end,
if happens not to hold, the entire program fails. We use a
new operator for search, so that , where is any pro-
gram, means “consider off-line, searching for a globally
successful termination state”. With this operator, we can
control how nondeterminism will be handled. To execute

() ; ? ; ; ?

on-line, we would search for an or that successfully leads
to , execute it immediately, and then continue boldly with

. In this scheme, it is left to the programmer to decide
how cautious to be. There is no loss of expressive power
here since to execute a program the old way, we need only
put the entire program within a operator.

This on-line style of execution is well-suited to programs
containing sensing actions. As described in [5, 9, 15], sens-
ing actions are actions that can be taken by the agent or
robot to obtain information about the state of certain fluents,
rather than to change them. The motivation for sensing ac-
tions involves applications where because the initial state
of the world is incompletely specified or because of hidden
exogenous actions, the agent must use sensors of some sort
to determine the value of certain fluents.

Suppose, for example, that nothing is known about the
state of some fluent , but that there is a binary sensing ac-
tion which uses a sensor to tell the robot whether or
not holds. To execute the program

; ; ; ?

the interpreter would get the robot to execute in the world,
get it to execute , then use the information returned to

decide whether to continue with or . But consider the
program

() ; ; ; ?

An off-line interpreter cannot commit to or in advance,
and because of that, cannot use to determine if
would hold after the action. The only option available is
to see if one or or would lead to for values of
. This requires considering both and , even though

in the end, only one of them will be executed. Similarly, if
we attempt to generate a low-level robot program (as sug-
gested in [9] for planning in the presence of sensing), we
end up having to consider both and .

The situation is even worse with loops. Consider

() ; ; ; ; ?

Since an off-line interpreter has no way of knowing in ad-
vance how many iterations of the loop will be required to
make false, to decide between and , it would be nec-
essary to reason about the effect of performing an

number of times (by discovering loop invariants).
But if a commitment could be made to one of them on local
grounds, we could use to determine the actual value
of , and it would not be necessary to reason about the de-
terministic loop. It therefore appears that only an on-line
execution style is practical for large programs containing
nondeterminism and sensing actions.

The technical machinery we use to define on-line program
execution in the presence of sensing is essentially that of [4],

we use the predicates and to define a single
step semantics of programs [6, 13]. However some adap-
tation is necessary to deal with on-line execution, sensing
results, and the operator.

The starting point in the definition is the situation calculus
[12]. We will not go over the language here except to note
the following components: there is a special constant
used to denote the , namely that situation in
which no actions have yet occurred; there is a distinguished
binary function symbol where () denotes the suc-
cessor situation to resulting from performing the action ;
relations whose truth values vary from situation to situation,
are called (relational) , and are denoted by predicate
symbols taking a situation term as their last argument; there
is a special predicate () used to state that action
is executable in situation ; finally, following [9], there is a
special predicate () used to state that action would
return the binary sensing result 1 in situation .

Within this language, we can formulate domain theories
which describe how the world changes as the result of the
available actions. One possibility is an action theory of the
following form [14]:

Axioms describing the initial situation, . Note that
there can be fluents like about which nothing is known
in the initial state.

2 3

�

� � �
�

� �
�

Σ

Σ
Σ

Σ
Σ

Σ

Σ
Σ

Trans Final

2

1 1 1

1 2

1 2

1 2

1 2 1

2 1

2

0

0

3

true

true

if then else else

Histories

The and predicates

� �

� �

�
�

� � � �

� �

�
�

�

�

�

� �
�

� �
� �
� � � � � � � � � � � � � �

�

�

�
�

�
�

�
�

���

�

� �
� ���

�
� 	

 �

�

� � �*�

� � �*�

� � �*�

�
�

�

�

 � �

 �

A fluent whose current value could only be determined by
sensing would normally not have a successor state axiom.

We do not attempt to deal with the subtleties that arise when a
search is performed with other programs executing concurrently.

Poss

do

SF SF

readq
SF readq

SF

history

end
end situation

end end
do end

Sensed
sensing results

Sensed
Sensed Sensed SF end

Sensed Sensed SF end
SF

Final Trans Final

Trans

Trans
Final Trans

Trans

Trans
Final

Trans do

end

Sensed Trans do

Sensed
Trans end do end

Sensed Final end

i.e.

readq

SF readq

Trans Final Final

Final Final

Trans

Trans
Trans

Trans Final

� ��# �
�

� �� # ��# �
� �

�
��# � & � #

� � � # �
��# � �

��# � �
�

� # � � # � � # #%�
�

� �
�

��# �
� �

 # � � � ��# � # �
��# ��# �

��# �

 # �
� ��# # � ��# � ��# ��# �

� ��# # � ��# � ��# ��# �

� �

) # �
)

�) # � #) # �
) �

�)

)) # � #) # �
) # �) # � #) # �

) �) # � #) # �))) �

)))
))

)))

(��

�
) �

� ���������) # � #) # ��# �
) �

�
� ��#%$ �

�
� ��������� ��#'$) # � #) # ��# � �

� �
�

����� ��� � ��# �
) # ��# � #) # ��# ��# � �

)

� ��������� ��# �) # ��# � #
�

�

�
�

� �)
�

) # �) #��

) # �) # � �
) # �

��# �) # � ��# �
� # �

) # � #) # �
� �) �) # � #�� # �
� # � � � # � #�� # � � # � �

Action precondition axioms, one for each primitive ac-
tion , characterizing ().

Successor state axioms, one for each fluent , stating
under what conditions (()) holds as function of
what holds in situation These take the place of the so-
called effect axioms, but also provide a solution to the
frame problem [14].

Unique names axioms for the primitive actions.

Some foundational, domain independent axioms.

Finally, as in [9], we include

Sensed fluent axioms, one for each primitive action of
the form () () characterizing .

For the sensing action used above, we would have
[() ()] and for any ordinary action that
did not involve sensing, we would use [()]

To describe a run which includes both actions and their sens-
ing results, we use the notion of a history. By a we
mean a sequence of pairs () where is a primitive ac-
tion and is 1 or 0, a sensing result. Intuitively, the history
() . . . () is one where actions . . . happen
starting in some initial situation, and each action returns
sensing value . The assumption is that if is an ordinary
action with no sensing, then = 1. Notice that the empty
sequence is a history.

Histories are not terms of the situation calculus. It is con-
venient, however, to use [] as an abbreviation for a
situation term called the of history on , and
defined by: [] = ; and inductively, [()] =

([]).
It is also useful to use [] as an abbreviation for

a formula of the situation calculus, the of
a history, and defined by: [] = ; and induc-
tively, [(1)] = [] ([]),
and [(0)] = [] ([]).
This formula uses to tell us what must be true for the
sensing to come out as specified by starting in .

The on-line execution of a program consists of a sequence
of legal single-step transitions. In [4], two special predi-
cates, and were axiomatized, where ()
was intended to say that program may legally terminate
in situation , and where () was intended to
say that program in situation may legally execute one
step, ending in situation with program remaining. For
example, the transition axiom for sequence is

([;])
() ()

() = (;)

This says that to single-step the program (;), either
terminates and we single-step , or we single-step leav-
ing some , and (;) is what is left of the sequence.

For our account here, we include all the axioms for
and from [4] (the details of which we omit), and add
two new ones below for the operator. However, instead of
using these axioms to characterize a formula for off-line
execution, we will use them together with sensing values to
define on-line execution.

In the absence of sensing, we have that an action is a
legal next step for program in situation only when

= (())

for some remaining program With sensing however, the
existence of such an may depend on the values sensed
so far. That is, if is [] where is the history of
actions and sensing values, should be such that

[] = (())

In general, given history starting in situation , we look
for a next action satisfying

[] =
([] ([]))

Similarly, we are allowed to terminate the program suc-
cessfully if

[] = ([])

where again the history can be taken into account.
How do we know that this specification is appropriate? It

is easy to see that if every sensing result in a history hap-
pens to be 1 (there is no sensing information), then the
specification correctly reduces to the specification of a le-
gal single step from before. Moreover, we can see that it
corresponds intuitively to on-line execution, in that we get
to take into account the sensing information returned by the
current action before deciding on the next one. So if hap-
pened to be the sensing action from above, and it re-
turned the value 0 in situation , then in looking for the next
legal action, we would assume that () was true,
and thus, that held in situation . So if above were
[.], the correct branch would be
taken for the next action.

As noted above, the only change we require to the axioms
for and is for the operator. For , we have
that () is a final configuration of the program if ()
itself is, and so we get the axiom

() ()

For , we have that the configuration () can evolve
to () provided that () can evolve to () and from
() it is possible to reach a final configuration in a finite
number of transitions. Thus, we get the axiom

()
= ()

() ()

4

0

4

�����

Σ Σ

Σ

Σ

Σ

Σ

� �

� �
� �

�

Trans Final

senses

trans final

ok

An incremental interpreter

�

� � � � �

� � � � � � � �
� � � � � � � � � �

�

The main loop

Implementing and

) # � #) # � � �) # � #) # �

� # � � � � # � #�� # �
� # ��# � # � # � # � � � � # � #�� # �

� # � #�� # � � � # � #�� # � �
) # �

) # �

) � �

�

$

Trans
Trans

Trans

Trans

Trans
Final

dynamic closed-world assumption

at that point

etc.

Final Trans

Trans
Final

In practice, we would not want the history list to get too long,
and would use some form of “rolling forward” [11].

/* P is a program */
/* H is a history, initially [] */
/* H ::= [] | [(Act,1/0)|H] */

incrInterpret(P,H) :- final(P,H).
incrInterpret(P,H) :-

nextAct(P,H,Act,P1), !,
execute(Act,Sv),
incrInterpret(P1,[(Act,Sv)|H]).

incrInterpret(P,H) :-
trans(P,H,P1,H), incrInterpret(P1,H).

nextAct(P,H,Act,P1) :-
trans(P,H,P1,[(Act,_)|H]).

execute(Act,Sv) :-
write(Act),
(senses(Act,_) ->

(write(’:’), read(Sv)) ; (nl, Sv=1)).

trans(seq(P1,P2),H,P,H1) :-
final(P1,H), trans(P2,H,P,H1).

trans(seq(P1,P2),H,seq(P3,P2),H1) :-
trans(P1,H,P3,H1).

final(search(P),H) :- final(P,H).

trans(search(P),H,search(P1),H1) :-
trans(P,H,P1,H1), ok(P1,H1).

ok(P,H) :- final(P,H).
ok(P,H) :- trans(P,H,P1,H), ok(P1,H).
ok(P,H) :- trans(P,H,P1,[(Act,_)|H]),

(senses(Act,_) ->
(ok(P1,[(Act,0)|H]) ,

ok(P1,[(Act,1)|H])) ;
ok(P1,[(Act,1)|H])).

In this axiom, is the reflexive transitive closure of
, defined by

() = [. . . ()]

where the ellipsis stands for

()
()

() ()

The semantics of can be understood as follows: (1) ()
selects from all possible transitions of () those from
which there exists a sequence of further transitions lead-
ing to a final configuration; (2) the operator is propagated
through the chosen transition, so that this restriction is also
performed on successive transitions. In other words, within
a operator, we only take a transition from to , if is on
a path that will eventually terminate successfully, and from

we do the same. As desired, does an off-line search
before committing to even the first transition.

In this section we present a simple incremental interpreter in
Prolog. Although the on-line execution task characterized
above no longer requires search to a final state, it remains
fundamentally a theorem-proving task: does a certain
or formula follow logically from the axioms of the
action theory together with assertions about sensing results?

The challenge in writing a practical interpreter is to find
cases where this theorem-proving can be done using some-
thing like ordinary Prolog evaluation. The interpreter in [4]
as well as in earlier work on which it was based [10] was
designed to handle cases where what was known about the
initial situation could be represented by a set of atomic
formulas together with a closed-world assumption. In the
presence of sensing, however, we cannot simply apply a
closed-world assumption blindly. As we will see, we can
still avoid full theorem-proving if we are willing to assume
that a program executes appropriate sensing actions prior
to any testing it performs. In other words, our interpreter
depends on a where it is
assumed that whenever a test is required, the on-line inter-
preter has complete knowledge of the fluents
in question to evaluate the test without having to reason by
cases We emphasize, however, that while this assump-
tion is important for the Prolog implementation, it is not re-
quired by the formal specification.

As it turns out, most of the subtlety in writing such an in-
terpreter concerns the evaluation of tests in a program. The
rest of the interpreter derives almost directly from the ax-
ioms for , and described above. It is convenient,
however, to use an implementation of these predicates de-
fined over encodings of histories (with most recent actions
first) rather than situations. We get

So to incrementally interpret a program on-line, we either
terminate successfully, or we find a transition involving
some action, commit to that action, execute it in the world
to obtain a sensing result, and then continue the interpreta-
tion with the remaining program and the updated history.
In looking for the next action, we skip over transitions in-
volving successful tests where no action is required and the
history does not change. To execute an action in the world,
we connect to the sensors and effectors of the robot or agent.
Here for simplicity, we just write the action, and read back
a sensing result. We assume the user has declared using

(described below) which actions are used for sens-
ing, and for any action with no such declaration, we imme-
diately return the value 1.

Clauses for and are needed for each of the
program constructs. For example, for sequence, we have

which corresponds to the axiom given earlier. We omit the
details for the other constructs, except for (search):

The auxiliary predicate here is used to handle the
and part of the axiom by searching forward for a final

SF

�

�

5

6 7

5

6

0

7

0 0

0

0 0

Discussion

�

�

�

�

�

�

 � 	

� �
 �
�

� � �*�

�

� � � �

Handling test conditions

Correctness

both

do
causesTrue

causesFalse

etc.

Axioms Sensed Final end

Axioms Sensed
Trans end do end

Trans Final
proving

poss(,)

senses(,)

initially()

causesTrue(, ,)

causesFalse(, ,)

nil holds

holdsf

final(,)

nextAct(, , ,)

trans
final

������� ���	�

����� � !�
 ���
�

� !�
 ���
�
$

����� � !�
 ���
��� ���	�

����� � !�
 ���
��� ���	�

�

� ��# �
& ��# � #%& & �
� � & ��# � #%& & � �

� � �
�

) �

��#'$) # ��#%$

) � �)

��#'$
) # ��#'$ #) # ��# ��#%$

trans(prim(Act),H,nil,[(Act,_)|H]) :-
poss(Act,Cond), holds(Cond,H).

trans(test(Cond),H,nil,H) :- holds(Cond,H).

holdsf(F,[]) :- initially(F).

holdsf(F,[(Act,X)|H]) :-
senses(Act,F),!, X=1. /* Mind the cut */

holdsf(F,[(Act,X)|H]) :-
causesTrue(Act,F,Cond), holds(Cond,H).

holdsf(F,[(Act,X)|H]) :-
not (causesFalse(Act,F,Cond),

holds(Cond,H)),
holdsf(F,H).

In practice, a breadth-first search may be preferable. Also,
we would want to cache the results of the search to possibly avoid
repeating it at the next transition.

The specification allows a sensor to be linked to an arbitrary
formula using ; the implementation insists it be a fluent.

We keep implicit the translation between Prolog terms and the
programs, histories, and terms of the situation calculus

configuration. Note that when a future transition involves
an action that has a sensing result, we need the program
to terminate successfully for sensing values. This is
clearly explosive in general: sensing and off-line search do
not mix well. It is precisely to deal with this issue in a flexi-
ble way that we have taken an on-line approach, putting the
control in the hands of the programmer.

The rest of the interpreter is concerned with the evaluation
of test conditions involving fluents, given some history of
actions and sensing results. We assume the programmer
provides the following clauses:

: the action is possible when the con-
dition holds;

: the action can be used to de-
termine the truth of the fluent;

: the fluent holds in the initial sit-
uation ;

: if the condition
holds, performing the action causes the fluent to hold;

: if the condition
holds, performing the action causes the fluent to not hold.

In the absence of sensing, the last two clauses provide a con-
venient specification of a successor state axiom for a fluent

, as if we had (very roughly)

(())
(() [])
() (() [])

In other words, holds after if causes it to hold, or it
held before and did not cause it not to hold. With sens-
ing, we have some additional possibilities. We can handle
fluents that are completely unaffected by the given primitive
actions by leaving out these two clauses, and just using sens-
ing. We can also handle fluents that are partially affected.
For example, in an elevator controller, it may be necessary
to use sensing to determine if a button has been pushed, but
once it has been pushed, we can assume the corresponding
light stays on until we perform a reset action causing it to
go off. We can also handle cases where some initial value
of the fluent needs to be determined by sensing, but from
then on, the value only changes as the result of actions,
Note that an action can provide information for one fluent
and also cause another fluent to change values.

With these clauses, the transitions for primitive actions
and tests would be specified as follows:

where is the empty program. The predicate is
used to evaluate arbitrary conditions. Because we are mak-
ing a (dynamic) closed-world assumption, the problem re-
duces to for fluents (we omit the reduction). For
fluents, we have the following:

Observe that if the final action in the history is not a sensing
action, and not an action that causes the fluent to hold or not
hold, we regress the test to the previous situation. This is
where the dynamic closed-world assumption comes in: for
this scheme to work properly, the programmer must ensure
that a sensing action and its result appear in the history as
necessary to establish the current value of a fluent.

This completes the incremental interpreter. The interpreter
is correct in the sense that :

if the goal succeeds, then

[] = ([])

if the goal succeeds, then

[] =
([] ([]))

But despite the very close correspondence between the ax-
ioms for and and the clauses for and

, actually this correctness is not trivial: we
need to show how the axioms of the background action
theory derive from the user-supplied Prolog clauses listed
above given our dynamic closed-world assumption. We
leave this to future research.

The framework presented here has a number of limitations
beyond those already noted: it only deals with sensors that
are binary and noise-free; no explicit mention is made of
how the sensing influences the knowledge of the agent, as
in [15]; the interaction between off-line search and concur-
rency is left unexplored; finally, the implementation has no
finite way of dealing with search over a program with loops.

One of the main advantages of a high-level agent lan-
guage containing nondeterminism is that it allows limited

Σ

�

�
8

8

7

31

92

& ��� � � � �

&
&

References

����� �����

�
	����
���

while do endWhileAcceptable

Acceptable

Acceptable

single

etc

guarantee

incremental planning

Proc. AAAI-88

Proc. AAAI-96

AAAI-87

Proc. IJCAI-97

Proc. KR-96

The Semantics of Programming Languages

IEEE Expert
6

Proc.
3rd European Workshop on Planning

Proc. AAAI-96

Journal of Logic Programming
1–3

Artificial
Intelligence

Machine In-
telligence

Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy

Proc. of AAAI-93

The operator is used for a nondeterministic choice of value.

[1] J. A. Ambros-Ingerson and S. Steel. Integrating Planning,
Execution and Monitoring. In , Saint Paul,
Minnesota, 1988.

[2] F. Bacchus and F. Kabanza. Planning for temporally ex-
tended goals. In , Portland, Oregon, 1996.

[3] R. J. Firby. An investigation in reactive planning in complex
domains. In , Seattle, Washington, 1987.

[4] G. de Giacomo, Y. Lespérance, and H .Levesque. Reasoning
about concurrent execution, prioritized interrupts, and ex-
ogenous actions in the situation calculus. In ,
Nagoya, Japan, 1997.

[5] K. Golden and D. Weld. Representing sensing actions: the
middle ground revisited. In , Cambridge, Mas-
sachusetts, 1996.

[6] M. Hennessy. .
John Wiley & Sons, 1990.

[7] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture
for real-time reasoning and system control. , ,

, 1992,

[8] P. Jonsson and C. Backstrom. Incremental planning. In
, 1995.

[9] H. Levesque. What is planning in the presence of sensing?
In , Portland, Oregon, 1996.

[10] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl.
GOLOG: A logic programming language for dynamic do-
mains. , Special issue on ac-
tions, , , pp. 59–83, 1997.

[11] F. Lin and R. Reiter. How to progress a database. In
, , pp. 131–167, 1997.

[12] J. McCarthy and P. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. In

, vol. 4, Edinburgh University Press, 1969.

[13] G. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Computer Science Dept.
Aarhus Univ. Denmark, 1981.

[14] R. Reiter. The frame problem in the situation calculus: A
simple solution (sometimes) and a completeness result for
goal regression. In

,
pages 359–380. Academic Press, 1991.

[15] R. Scherl and H. Levesque. The frame problem and knowl-
edge producing actions. In , pp. 689–695,
Washington, DC, July 1993. AAAI Press/The MIT Press.

versions of (runtime) planning to be included within a pro-
gram. Indeed, a simple planner can be written directly:

(()? ;)

Ignoring , this program says to repeatedly per-
form some nondeterministically selected action until condi-
tion holds. An off-line execution would search for a legal
sequence of actions leading to a situation where holds.
This is precisely the planning problem, with be-
ing used as a forward filter, in the style of [2].

However, in the presence of sensing, it is not clear how
even limited forms of planning like this can be handled by an
off-line interpreter, since a nondeterministic choice
can cause problems, as we saw earlier. The formalism pre-
sented here is, as far as we know, the only one that has a
chance of being practical for large programs containing both
nondeterministic action selection and sensing.

One concern one might have is that once we move to
on-line execution where nondeterministic choice defaults to
being random, we have given up reasoning about courses
of action, and that our programs are now just like the pre-
packaged “plans” found in [3] or [7]. Indeed in
those systems, one normally does not search off-line for a
sequence of actions that would eventually lead to some fu-
ture goal; execution relies instead on a user-supplied “plan
library” to achieve goals. In our case, with , we get the ad-
vantages of both worlds: we can write agent programs that
span the spectrum from scripts where no look-ahead search
is done and little needs to be known about the properties
of the primitive actions being executed, all the way to full
planners like the above. Moreover, our formal framework
allows considerable generality in the formulation of the ac-
tion theory itself, allowing disjunctions, existential quanti-
fiers, . Even the Prolog implementation described here is
considerably more general than many -like systems,
in allowing the value of fluents to be determined by sensing
intermingled with the context-dependent effects of actions.

A more serious concern, perhaps, involves what we can
about the on-line execution of an agent program.

On-line execution may fail, for instance, even when a proper
sequence of actions provably exists. There is a difficult
tradeoff here that also shows up in the work on so-called

[1, 8]. Even if we have an important
goal that needs to be achieved in some distant place or time,
we want to make choices here and now without worrying
about it. How should I decide what travel agent to use given
that I have to pick up a car at an airport in Amsterdam a
month from now? The answer in practice is clear: decide
locally and cross other bridges when you get to them, ex-
actly the motivation for the approach presented here. It pays
large dividends to assume by default that routine choices
will not have distant consequences, chaos and the flapping
of butterfly wings notwithstanding. But as far as we know,
it remains an open problem to characterize formally what an
agent would have to know to be able to quickly confirm that
some action can be used immediately as a first step towards
some challenging but distant goal.

