The Situation Calculus with Sensing and Indexical
Knowledge*

Richard B. Scherl
Department of Computer and Information Science
New Jersey Institute of Technology
Newark, New Jersey 07102

email: scherl@vienna.njit.edu

Hector J. Levesque? Yves Lespérance
Department of Computer Science Department of Computer Science
University of Toronto University of Toronto
Toronto, Ontario Toronto, Ontario
Canada M5S 1A4 Canada M5S 1A4
email: hector@cs.toronto.edu email: lesperan@cs.toronto.edu

1 Introduction

Objective knowledge alone is unsuitable for the formalization of action.

e It is not necessary for action. Suppose I don’t know where an object is in absolute
terms, or where I am, but I do know that the object is 2 feet ahead.

e It is not sufficient for action. Suppose I know the precise location of an object (e.g. at
(2,-3)), but I do not know where T am.

e It not produced by perceptual actions. Perceptual actions cannot tell you the location
of an object; at best they tell you its location relative to you (2 feet ahead, or within
a radius of 6 feet, etc.).

*This research received financial support from the Information Technology Research Center (Ontario,
Canada), the Institute for Robotics and Intelligent Systems (Canada), and the Natural Science and Engi-
neering Research Council (Canada)

TMost of the work was performed while a National Sciences and Engineering Research Council of Canada
International Postdoctoral Fellow

{Fellow of the Canadian Institute for Advanced Research

What matters in these examples is not the objective locations of objects, but their locations
relative to the robot. We need to be able to express indexical information, i.e. information
about the world relative to a context—without having to identify these objectively. Examples
are me, my location, my orientation, the current time, and the object in my sights. The
importance of such indexical representations in the area of robotics has been pointed out in
[Agre and Chapman, 1990].

This paper develops a version of the situation calculus that incorporates the notion of
indexical knowledge. It is part of a larger endeavor, the cognitive robotics project, which uses
the situation calculus as the basis of both a higher level programming language for agents,
and a logical theory of the integration of reasoning, action, and perception [Lespérance et
al., 1994; Lespérance et al., 1995].

With the representational framework developed here, the knowledge prerequisites and
effects of actions can be specified in terms of indexical rather than objective knowledge. The
problem includes how to represent information such as the knowledge of relative positions
and relative effects of actions, how to model the lack of knowledge of one’s own identity, and
how to model knowledge of time.

These issues are considered in a modal framework in [Lespérance and Levesque, 1995].
Here, these notions are incorporated into the situation calculus. This is done in such a way
as to utilize the solution to the frame problem for knowledge producing actions developed in
[Scherl and Levesque, 1993] where only objective knowledge and a single agent are considered.
Additionally, a computationally attractive method is developed for answering queries of
whether or not a particular sentence is true in the state resulting from the execution of a
particular sequence of actions.

2 The Situation Calculus and the Frame Problem

The situation calculus is a first-order language for representing dynamically changing worlds
in which all of the changes are the result of named actions performed by some agent. Terms
are used to represent states of the world-i.e. situations. If « is an action and s a situation,
the result of performing « in s is represented by do (a, s). The constant Sy is used to denote
the initial situation. Relations whose truth values vary from situation to situation, called
fluents, are denoted by a predicate symbol taking a situation term as the last argument.
For example, BROKEN (z, s) means that object x is broken in situation s. Functions whose
denotations vary from situation to situation are called functional fluents. They are denoted
by a function symbol with an extra argument taking a situation term, as in POS(BILL, s),
which denotes the position of BILL in situation s.

One of the longstanding problems connected with the situation calculus has been the
frame problem, i.e., the need to add frame axioms that specify when fluents remain un-
changed. Reiter [1991] (generalizing the work of Haas, Schubert, and Pednault) proposed a
solution to the frame problem. In this presentation, the formulation found in [Reiter, 1991]
is generalized to a multi-agent context.

A simple example domain will be used throughout this paper. There are some number of

robots who move about on a two-dimensional grid. A relational fluent (HOLDING) is needed
to indicate whether or not a particular robot is holding an object and functional fluents
are needed to denote the position (POS) of robots (and other objects) and the orientation
(ORI) of the robots. The idea here is to imagine that these robots can perform a limited
number of primitive actions that are inherently indexical. These (following [Lespérance and
Levesque, 1995]) are picking up an object, putting down an object, moving forward one step,
turning 90° to the left, turning 90° to the right, and sensing whether an object with certain
properties is at his location.

To treat multiple agents, we will take the first argument of do to be a pair consisting of
an agent and an action type. The variable a below ranges over such pairs. The function
AGENT(a) is used to map a to the agent component and the function TYPE(a) is used to
map a to the action type component. Action types are represented as strings of characters.
For our example, the action types are “pickup”, “putdown”, “forward”, “left”, and “right”.
This differs from our earlier work [Scherl and Levesque, 1993] and the work of Reiter [1991],
in which the variable a ranged over terms denoting actions.

The core of the solution to the frame problem rests on providing for each fluent a successor
state axiom of the form given below!.

Successor State Axiom

F(do(a,s)) = vila,s) V (F(s) A =yp(a,s)) (1)

Here 7 (a, s) represents the conditions under which the truth value of F' will change from
negative to positive and vz (a, s) represents the conditions under which the truth value of
F will change from positive to negative. Similar successor state axioms may be written for
functional fluents. Reiter[1991] shows how to derive a set of successor state azioms of the
form given in 1 from the usual axiomatization in terms of positive effect and negative effect
axioms, along with unique name axioms and a completeness assumption.

The successor state axioms for the fluents HOLDING, POS, and ORI are given below.

HoLpING(agt, x,do(a, s)) =
(OBIECT(2,8) A POS(agt,s) = POS(x,s) A =FJyHOLDING(agt, y,s) A
TYPE(a) = “pickup” A AGENT(a) = agt) V (2)
(HOLDING(agt, z,s) A
(TYPE(a) # “putdown” V AGENT(a) # agt))

This axiom states that the only way for the fluent HOLDING to be true of actor agt and
object z in situation do(a, s), is if in situation s either agt is located in the same position as
the object z, is not holding anything, and the action a is the execution of a “pickup” type

1Unlike the presentation in [Reiter, 1991; Scherl and Levesque, 1993], here we do not use action precondi-
tion axioms. The use of such axioms and the Poss predicate is perfectly consistent with the approach here,
but unnecessary for the types of examples that we are considering.

This discussion assumes (following [Reiter, 1991]) that there are no ramifications, i.e., indirect effects of
actions. The assumption that there are no state constraints in the axiomatization of the domain will be
made throughout this paper. In [Lin and Reiter, 1994], the approach discussed in this section is extended to
work with state constraints by compiling the effects of the state constraints into the successor state axioms.

action by agt; or agt is holding z in situation s and either the agent of action a is an actor
other than agt, or the action type of a is a type other than “putdown.”

POS(z,do(a,s)) =1 =
(x = AGENT(a) V (OBIJECT(z) A HOLDING(AGENT(a), z, 5)))
ATYPE(a) = “forward” A
POS(AGENT(a, s)) = (I — ({1,0) X ROT(ORI(AGENT(a),s)))))V
(pos(z,s) =1 A (TYPE(a) # “forward” V
(AGENT(a) # * A “HOLDING(AGENT(a), z, s)))

(3)

The following is the definition of ROT:

ROT(6) d:ef< cos 0 sm9>

—sinf cosf

This axiom states that for POS of an object in situation do(a, s) to be equal to [, it must
be the case in situation s that either z is a robot or something being held by a robot, = was
located 1 unit behind [and the action a is an execution of action type “forward” by x or
the robot holding z; or x was located at [and the action a is not the execution of the action
type “forward” by x or some robot holding x.

ORI(z,do(a,s)) =0 =
(x = AGENT(a) A TYPE(a) = “left” A ORI(z,s) = MODy,(6 — 7/2))V
(x = AGENT(a) A TYPE(a) = “right” A ORI(z,s) = MOD2,(0 + 7/2)) V (4)
(ORI(z,s) =0 A (TYPE(a) # “left” A TYPE(a) # “right”)V
AGENT(a) #)

This axiom states that for the orientation of robot x to be 8 in situation do(a, s) it must have
been the case in situation s that either the orientation was § + 7 /2 and «a is the execution of
action type “left” by z; or the orientation was § — 7/2 and a is the execution of action type
“right” by x; or the orientation was 6§ and a is not the execution of “left” or “right” by .

We have developed a set of macros for specifying complex actions that are abbreviations
for formulas in the situation calculus. Space precludes their presentation here, but it is fully
developed in the longer version of this paper. Moving to a particular objective location or
relative location can then be specified as a complex action in this macro language.

3 Indexical Knowledge

The approach we take to formalizing indexical knowledge is to adapt the possible-world model
of indexical knowledge of [Lespérance and Levesque, 1995] to the situation calculus, much
as Moore[1985] adapted the possible-world model of knowledge to the situation calculus.

It will be assumed here that agents are aware of all actions, i.e., every action occurrence
is common knowledge. But, consistent with the indexical logic of knowledge and action,
although actors know that the agent of a particular action is denoted by a particular term,
they will not necessarily know who that agent is. An actor may know that he himself

performed an action, without necessarily knowing who he is. Similarly, an actor may know
that the block was moved by the person on his left, without necessarily knowing who the
person on his left is.

A 4-place relation K(agt',s',agt,s) is introduced. This is understood as indicating that
it is compatible with agt’s knowledge in s that the current situation is s’ and he is agt’. The
predicate K is treated the same way one would any other fluent.

We use the notation Knows(A, P(now),s) (read as A knows P in situation s) as an
abbreviation for a formula that uses K. For example:

Knows(ROB, BROKEN(y, now), s) f VYagt', s’ K(agt',s',ROB,s) — BROKEN(y, s').

Note that this notation substitutes the appropriate situation argument for now on expansion.
This notation can be generalized inductively to arbitrary formulas so that, for example?:

Jz Knows(ROB, Jy[NEXTTO(z, y, now) A “Knows(ROBERTA, BROKEN(y, now), now)], s)

f daVagt', s' K(agt',s',ROB,s) — Jy[NEXTO(z,y,s") A

=Vagt”,s"K(agt",s", ROBERTA, s') — BROKEN(y, s”)].

We also introduce the notation self as illustrated in the following example:

Knows(ROB, NEXTTO(self, y, now), s) def

Vagt' s' K(agt',s',ROB,s) — NEXTTO(agt',y,s’).

The convention is that self is replaced by the leftmost argument of K, when it (self) occurs
within a literal not in the scope of another K. Consider the following example:

Knows(ROB, Jy[NEXTTO(self, y, now) A ~“Knows(self, NEXTTO(self, y, now), now)], s)

def Vagt',s' K(agt',s',ROB,s) — Jy[NEXTTO(agl’,y,s")A

—Vagt", s"K(agt",s" agt',s') — NEXTTO(agt" y,s")].

The term self can only be used within the scope of a Knows operator.

Turning now to the specification of the effects of knowledge-producing actions, consider
actions whose effect is to make known the truth value of some formula®. We might have a
" action for a sentence «, such that after doing a “sense,”, the agent comes to know
whether a holds. We introduce the notation Kwhether(agt, a, s) as an abbreviation for a

“sense,’

formula indicating that the truth value of sentence « is known:
Kwhether(agt, a, s) & Knows(agt, a, s) V Knows(agt, —a, s).

By adding a fluent TIME(s) representing the absolute time of a situation, we can also
handle objective knowledge about time, indexical knowledge about time, and knowledge of
the relation between indexical and objective notions of time (e.g. knowing that it is now
3:00). Full details are in the extended version of this paper.

2The predicate NEXTTO can be defined in terms of P0s.
3The results reported here can easily be extended, following [Scher]l and Levesque, 1993], to incorporate
a “read” type action that makes known the denotation of a term.

4 Solving the Frame Problem for Knowledge

The extension of Reiter’s [1991] solution to the frame problem to the situation calculus with
indexical knowledge rests on the specification of a successor state axiom (following [Scherl
and Levesque, 1993]) for the four-place K relation. For all situations do(a, s), the K relation
will be completely determined by the K relation at s and the action a. The successor state
axiom for K will first be introduced by stages. Consider the simple situation where there
are only two actors and each refers to the other with the term OTHER(self, s)*. It is assumed
that OTHER is axiomatized in such a way that OTHER(agt, s) # agt. First we will consider
what effect ordinary actions will have on the K relation and then we will give a specification
for the case where there is only a single knowledge-producing action. In the discussion to
follow, for convenience the notation {(agt,type) is used to represent pairs of agents and action
types.

For non-knowledge-producing action types (e.g. “pickup”), the specification (based on
Moore [1985]) is as follows:

K(agt",s" agt', do({agt, “pickup”),s)) =
ds" K(agt",s',agt',s) A s" =do(a*,s') A Ja* TYPE(a*) = “pickup” A
(agt' = agl — AGENT(a*) = agt"”) (5)
AN
(agt’ = OTHER(agt,s) — AGENT(a*) = OTHER(agt", s'))

The axiom ensures that if agt’ = agt, the only change in knowledge that occurs in moving
from s to do({agt, “pickup”), s) is the knowledge that the action type “pickup” has been
performed by itself. But if agt’ is not the agent of the action, then the only change in
knowledge that occurs in moving from s to do({agt, “pickup”), s) is the knowledge that the
action type “pickup” has been performed by the other robot. Note that this does not require
the agent to know who he is or who the other agent is.

Now consider the simple case of a knowledge-producing action type “sensep” that deter-
mines whether or not the fluent P is true (following Moore [1985]).

K(agt",s" agt", do({agt, “sensep”,s))) =
ds" K(agt", s’ agt’,s) N " = do(a*,s') A Ja* TYPE(a*) = “sensep” A
(agt' = agt — (AGENT(a*) = agt” A P(s) = P(s'))) (6)
N
(agt’ = OTHER(agt,s) — AGENT(a*) = OTHER(agt”, s))

The idea here is that in the case where agt’ is the agent of the action, after performing the
action agt’ not only knows that the action type “sensep” has been performed, and that he
has performed it (as above), but also the truth value of the predicate P. On the other hand,
iff agt’ # agt then in moving from s to do({agt, “sensep”), s), agt’ knows only that the action
type “sensep” has been performed, and OTHER has performed it, but he does not know the
truth value of the predicate P.

4The simplest option is chosen here. Issues with regard to naming agents are discussed in [Lespérance
and Levesque, 1995).

Poss(a,s) — [K(agt",s' agt’ do(a s)

)
(a

ds" K(agt”,s',agt’,s) A do(a*,s') A Ja* TYPE(a*) = TYPE(a) A
(agt’ = AGENT(a) — (AGENT) = agt" A
(TYPE(a) = A1 — ¢1)
AN
AN

(TYPE(a) = A, — ©,))A
(agt’' = OTHER;(AGENT(a),s) — AGENT(a*) = OTHER,(agt",s'))
A

A
(agt’ = OTHERM (AGENT(a),s) — AGENT(a*) = OTHERpM (agt”,s'))

Figure 1: Successor State Axiom for K

Observe that the successor state axiom for P guarantees that P is true at do({(agt, “sensep”), s)
iff P is true at s, and similarly for s’ and do({agt, “sensep”),s’). Therefore, P has the
same truth value in all worlds s” such that K(agt", s", agt’,do({agt, “sensep”), s)), and so
Kwhether(P, do({agt, “sensep”), s)) is true.

In general, there may be many knowledge-producing actions. Associated with each
knowledge-producing action A; is a formula of the form ;(s) = ¥;(s’), where v, is a sen-
tence. Assume that there are n knowledge-producing actions A;,..., A, and therefore n
associated sentences vq,...,%,. Additionally, other than the agent of the action a, there are
n other actors—OTHER:(agt,s)...OTHER,(agt,s). The general form of the successor state
axiom for K is given in Figure 1.

The only remaining issue concerns requiring that the Knows operator conform to the
properties of a particular modal logic. Restrictions need to be placed on the K relation
so that it correctly models the accessibility relation of a particular modal logic. This is-
sue is discussed in [Scherl and Levesque, 1993]. The solution is to utilize a sort Init to
restrict variables to range only over Sy and those situations accessible from Sy;. Then the
K relation is appropriately restricted over these initial situations. The needed restrictions
(following [Lespérance and Levesque, 1995]) are reflexivity and transitivity. Full details on
the axiomatization of these restrictions is found in the extended version of this paper.

5 Properties of the Solution

Note that even though the logic is a variant of S4, Sentence 7 is not a theorem of the logic.

Knows(ROB, P(now)) — Knows(ROB, Knows(ROB, P(now), now), Sp) (7)
On the other hand 8 is a theorem.

Knows(ROB, P(now)) — Knows(ROB, Knows(self, P(now), now), Sp) (8)

It is not the case that if ROB knows P he then knows that ROB knows P, but rather he knows
that he knows P.

It is also necessary to show that actions only affect knowledge in the appropriate way. The
truth of the following theorem ensures that there are no unwanted increases in knowledge.

Theorem 1 (Default Persistence of Ignorance) If ~-Knows(AGT, P(now),s) then
—Knows(AGT, P(now), do(a, s)), as long as

1. P is a fluent whose successor state axiom specifies that it is not changed by the action
TYPE(a). More formally, Vs, a TYPE(a) = TYPE(a) — P(s) = P(do(a, s))

2. It is not the case that both AGT = AGENT(a) and TYPE(a) is a knowledge-producing
action with the corresponding ¢ being of the form F(s) < F(s') such that either
F(s) and Knows(AGT, F(now) — P(now), s) or =F(s) and Knows(AGT, = F (now) —
P(now), s)
Finally, it is a property of this specification that agents never forget.
Theorem 2 (Memory) For all fluents P and situations s, if Knows(AGT, P(now), s) then

Knows(AGT, P(now), do(a, s)) as long as P is a fluent whose successor state axiom specifies
that it is not changed by the action TYPE(a).

Now consider the following sentences:

Knows(ROB, [JxOBI(z) A POS(z, now) = POS(self, now)A

—JyHOLDING(y, now)], Sp) (9)

dpp = Pos(self, Sp) A Knows(ROB, [FzOBI(z) A POS(z, now) = p (10)
A=JyHOLDING(y, now)], Sp)

Knows(rROB, 3yHOLDING(y, now), do((ROB, “pickup”}, So)) (11)

Our axiomatization entails that:
E (9) — (11) If ROB knows that there is an object where he is, then after doing pickup, he
will be holding something.
B~ (10) — (11) If ROB knows that there is an object at some location and that location
happens to be where he is, then he need not know that he would be holding anything after
doing a pickup action.

Additional properties are found in the extended version of the paper.

6 Reasoning

Given the representation of actions and their effects, we would like to have a method for
addressing the projection problem. This is the question of determining whether or not some
sentence GG is true in the situation resulting from the execution of a sequence of ground
action terms.

Following [Reiter, 1991; Scherl and Levesque, 1993] regression is used to reduce reasoning
about future situations to reasoning about the initial situation. So given a plan, expressed

as a ground situation term (i.e. a term built on Sy with the function do and ground action
terms) s,,., the question is whether the axiomatization of the domain F entails G(s,,) where
(G is an arbitrary sentence. Under these circumstances, the successor state axioms are only
used to regress the formula G(s,,). The result of the regression is a formula in a modal logic
of indexical knowledge—i.e. a formula where the only situation term is Sy.

We have the following theorem, where F is the axiomatization of the domain including
Fss, the successor state axioms. The theorem shows that reasoning with the successor state
axioms need only be done with regression. The notation R§(y) is used to indicate that
the regression operator is applied repeatedly until further applications leave the formula
unchanged.

Theorem 3 For any ground siluation term s,

FEGlsy) o F—=Fo FRoGlsy)

Both the axiomatization of the initial situation and the regressed formula are expressions in
a logic of indexical knowledge. The entailment test can be performed either by translating
the sentences into first-order logic and using an ordinary theorem prover or more efficiently
by using a theorem proving method for the indexical logic of knowledge. We have developed
such a method based on the framework in [Frisch and Scherl, 1991]. Full details appear in
the longer version of this paper.

The steps of the regression operator for fluents other than knowledge are the same as
those found in [Reiter, 1991; Scherl and Levesque, 1993]. Steps v and vi, for knowledge,
are given below. Two definitions are needed for the specification to follow. When ¢ is
an arbitrary sentence and s a situation term, then ¢[s] is the sentence that results from
substituting s for now throughout ¢, but not within the scope of a Knows operator. The
reverse operation ¢! is the replacement of those situation variables that are not within the
scope of a Knows operator by now.

In the definitions below, s’ is a new situation variable.

v. Whenever a is not a knowledge-producing action,

Ro[Knows(agt, W, do(a, s))] = Knows(agt, Re[W|[do(a, s')]] 71, s).

vi. Whenever a is a knowledge producing action and «; is the corresponding sentence in the
successor state axiom for K
Reo[Knows(agt, W, do(a, s))] =
(AGENT(a) = agt A ((¥:(s) — Knows(agt,; — Re[W|do(a,s")]]™,s))
A (—:(s) — Knows(agt, —; — Re[W]do(a, s)]]™, s)))
V (AGENT(a) # agt A Knows(agt, Re[W|do(a,s")]] ™, s))

Here the method is only illustrated with the example of Sentence 11. It is regressed to
the following:
Knows(ROB, Jy OBI(y) A pos(self, now) = POS(y, now)

A =J2zHOLDING(z, now)), s
It can be verified that that Sentence 9 = 12, while Sentence 10 [12.

(12)

7 Summary and Future Work

Knowledge producing actions such as sensing typically yield indexical knowledge, which is
exactly what agents require to know what actions to perform to achieve their goals. We have
extended the situation calculus with knowledge of [Scherl and Levesque, 1993] to deal with
this feature of commonsense reasoning. In doing so, we have preserved the solution to the
frame problem and adapted the regression method for reasoning about the effects of action
to cope with indexical knowledge.

In this paper the assumption was made that all agents are aware of all actions carried
out by other agents. Relaxing this assumption is being addressed in our current research.
Other topics are developing methods for synthesizing plans that include sensing actions, as
well as applications in robot programming.

References

[Agre and Chapman, 1990] Agre, P. E. and Chapman, D. 1990. What are plans for? Robotics and Au-
tonomous Systems 6:17-34.

[Frisch and Scherl, 1991] Frisch, Alan and Scherl, Richard 1991. A general framework for modal deduction.
In Allen, J.A.; Fikes, R.; and Sandewall, E., editors 1991, Principles of Knowledge Representation and

Reasoning: Proceedings of the Second International Conference, San Mateo,CA : Morgan Kaufmann.
196—-207.

[Lespérance and Levesque, 1995] Lespérance, Yves and Levesque, Hector 1995. Indexical knowledge and
robot action—a logical account. Artificial Intelligence 73(1-2):69-115.

[Lespérance et al., 1994] Lespérance, Yves; Levesque, Hector; Lin, Fangzhen; Marcu, Daniel; Reiter, Ray;
and Scherl, Richard 1994. A logical approach to high-level robot programming — a progress report.
Appears in Control of the Physical World by Intelligent Systems, Working Notes of the 1994 AAAT Fall
Symposium, New Orleans, LA.

[Lespérance et al., 1995] Lespérance, Yves; Levesque, Hector J.; Lin, F.; Marcu, Daniel; Reiter, Raymond;
and Scherl, Richard B. 1995. Foundations of a logical approach to agent programming. To appear in
Proceedings of the IJCAI-95 Workshop on Agent Theories, Architectures, and Languages.

[Lin and Reiter, 1994] Lin, Fangzhen and Reiter, Raymond 1994. State constraints revisited. Journal of
Logic and Computation 4(5):655-678.

[Moore, 1985] Moore, R.C. 1985. A formal theory of knowledge and action. In Hobbs, J.R. and Moore,
R.C., editors 1985, Formal Theories of the Commonsense World. Ablex, Norwood, NJ. 319-358.

[Reiter, 1991] Reiter, Raymond 1991. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In Lifschitz, Vladimir, editor 1991, Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy. Academic
Press, San Diego, CA. 359-380.

[Scher]l and Levesque, 1993] Scherl, Richard B. and Levesque, Hector J. 1993. The frame problem and
knowledge producing actions. In Proceedings, Eleventh National Conference on Artificial Intelligence.
689-695.

