Appeared in Renee Elio, editor, Proceedings of the Tenth Biennial Conference of the Cana-
dian Society for Computational Studies of Intelligence, pp. 271-277, Banff, Canada, May,
1994.

An Argument for Indexical
Representations in Temporal Reasoning”

Yves Lespérance and Hector J. Levesque!
Department of Computer Science
University of Toronto

Toronto, ON, M5S 1A4 Canada

{lesperan,hector}@ai.toronto.edu

Abstract

This paper discusses the need for indexicals in a representation
language. It has been claimed that the cost of updating a knowledge
base containing indexicals would be prohibitive and thus that a robot
should use its internal clock to eliminate indexicals from its represen-
tations. We criticize this view and give an example of a commonplace
temporal reasoning/planning problem that can only be solved in a rep-
resentation formalism that includes both indexical and absolute terms
and supports reasoning using both. We show that the example can be
formalized within our theory of knowledge and action. We argue that
rather than trying to find restricted settings where indexical knowl-
edge can be reduced to objective knowledge, one should investigate
when and how planning and temporal knowledge base update can be
performed efficiently in the presence of indexicals.

*This research received financial support from the Institute for Robotics and Intelligent
Systems (Canada), the Information Technology Research Center (Ontario, Canada), and
the Natural Science and Engineering Research Council (Canada).

TFellow of the Canadian Institute for Advanced Research



1 Introduction

To someone accustomed to the objective point of view of science or mathe-
matics, indexicality (context-sensitivity) may appear as little more than an
artifact of natural language. One may thus claim that while using indexical
descriptions (e.g., now, three hours ago, one meter in front of me) is often
convenient, in practice, indexical knowledge can always be understood ob-
jectively. One reason for wishing that this claim were true has to do with the
fact that the semantic content of indexical representations depends on the
context, so if the context changes you may have to adjust the representations
to keep the semantic content unchanged. For instance, if an agent’s knowl-
edge base describes some facts as holding ‘now’, then at the next time step,
it should describe these facts as holding ‘one time step before now’.! Haas
[1991] points out that the cost of adjusting a knowledge base that contains
indexical time references for the passage of time would be high, if imple-
mented in the obvious way. He proposes that a robot use its internal clock
to eliminate all occurrences of ‘now’ in its representations.

This proposal and the general strategy of trying to eliminate indexical
representations are misguided.? First, humans do not have internal clocks
that they can use in the way a robot can, and they do not always know
what time it is. A system that is interacting with humans will need to
model this (e.g. to remind a user that his meeting is just starting). Even
if we limit ourselves to simple robotics contexts, it seems unlikely that the
internal clocks of robots could always be guaranteed to be accurate. In such
cases, Haas’s scheme leads to indexical information being misrepresented.
Moreover, Haas’s robot cannot even represent the fact that his internal clock
is incorrect; it could not monitor for this and plan to get its clock reset when
appropriate. Also, for very simple (e.g. insect-like) robots, the cost of fitting
them with internal clocks and setting them may be too high. Finally, as
Haas recognizes, it is not at all clear that the cost of updating a temporal
knowledge base that contains indexicals need be prohibitive; for example, if

!Subramanian and Woodfill [1989] prove that such a transformation is truth-preserving
within their indexical situation calculus framework.

2Philosophers such as Perry [1979] have long argued that indexical knowledge cannot
be eliminated. But the examples they cite to support their position can appear farfetched.
Here we try to make the point that this does apply to the practice of building intelligent
systems.



all occurrences of ‘now’ are replaced by a new constant and the fact that this
new constant is equal to ‘now’ is added, then only this single assertion need
be updated as time passes.

In the next section, we will give an example of a commonplace tem-
poral reasoning/planning problem that can only be solved in a representa-
tion formalism that includes both indexical and non-indexical concepts and
supports reasoning using both. The example involves an agent that does
not initially know what time it is; he must keep track of time in relative
terms (using a timer), but later convert this indexical knowledge into abso-
lute knowledge for communication to another agent. We will show in de-
tail in Section 4 that this example can be formalized within the theory of
knowledge and action that we proposed in [Lespérance and Levesque, 1994;
Lespérance, 1991]. We will return to our discussion of whether indexical
knowledge can be eliminated in the final section.

2 The Example

The example goes as follows. Imagine that you arrive at home and are greeted
by the following note:

“The turkey is ready to go into the oven (at 325°F). I will be
home in time to take it out, but leave me a message before you
go telling me at what time you put it in.”

Unfortunately, the only timing devices you have are the one-hour timer on
the stove, and a radio station that announces the time at least every 30
minutes. You also want to put the turkey to roast as early as possible and
be done as quickly as possible.

It is not too hard to see what needs to be done. A reasonable plan is to
put the turkey in the oven, set the timer to one hour, then listen to the radio
until the time is announced while keeping track of the roasting time with the
timer, and finally calculate the time the turkey started roasting, and leave a
message to that effect.?

Obviously, a single example by itself is not much of an argument for
anything. However, the example illustrates a simple but extremely common

31t would be more efficient to listen to the radio as one is putting the turkey in, but
we do not want to deal with true concurrency here.



situation where two very different notions of time need to be dealt with:
indexical or relative time, as determined by the timer (“the turkey went in
20 minutes ago”), and absolute or objective time, as calculated from the
radio announcement (“the turkey went in at 12:45pm”). The key point is
that either notion of time by itself is inadequate to model the situation. To
see this, observe that the problem cannot be solved without the radio, and

> To make sense

yet all it provides is information like “It is now 1:05pm.’
of this essential piece of information, we need to be able to relate the two
separate conceptions of time. In purely indexical or purely absolute terms,

the information is meaningless.

3 Overview of the Formalism

Before presenting a formalization of the example, we briefly review a for-
mal theory of indexical knowledge, action and ability (see [Lespérance and
Levesque, 1994; Lespérance, 1991] for a more detailed presentation.) The
goal is to be able to express attributions of indexical knowledge, for exam-
ple, that Rob knows that he himself was holding a cup five minutes ago.* In
such cases, what is known is a “proposition” that is relative. It may be rela-
tive to the knower, or to the time of the knowing, or perhaps to other aspects
of the context. To handle this, our language includes two special terms: self,
which denotes the current agent, and now, which denotes the current time;
these terms are called primitive indexicals. Non-logical (domain-dependent)
symbols may also depend on the current agent and time for their interpre-
tation, for example, 3rHOLDING(z) may express the fact that the current
agent is currently holding something — we say that such symbols are non-
primitive indexicals. Our semantics handles this by interpreting terms and
formulas with respect to indices, which consist of a possible-world (model-
ing the objective circumstances), and an agent and a time (modeling the
context).

The language used is a many-sorted first-order modal language with
equality called LIKA (Language of Indexical Knowledge and Action). It in-
cludes terms of four different sorts: terms for ordinary individuals (as usual),
temporal terms, agent terms, and action terms. For each of these sorts, there

*As well, we want to be able to distinguish this from having objective knowledge, such
as Rob’s knowing that Rob was holding a cup at some specified time, say, 4:37pm.



are both variables and function symbols (i.e., functions whose values are of
the proper sort); as usual, constants are taken to be 0-ary function symbols.

The atomic formulas include predications using predicate symbols and
terms, written R(6:,...6,), which are used to assert that 6,,...6, stand in
static relation R at the current time for the current agent. We also have
equality expressions (6; = 6;), between terms of the same sort, as well as
expressions of temporal precedence (6} < 6%). We assume that time is linearly
ordered. Finally, Does(#¢,6") is used to assert that the current agent does
action #¢ starting from the current time and ending at time 6?.

Non-atomic formulas may be composed using the standard boolean con-
nectives and quantifiers as well as a set of modal operators. At(6, ¢) means
that ¢ holds at time #?, that is, when 6’ is taken to be the current time.
By(0*,») means that ¢ holds when 6* is taken to be the current agent. Oy
means that ¢ is historically necessary at the current time, that is, that ¢
now holds in all possible courses of events that are identical to the current
one up to the current time. We also introduce a dual to O: O def —O-.

Know(yp) is used to represent the fact that the current agent knows at
the current time that ¢. If ¢ contains indexical elements, Know(y) should
be taken as attributing indexical knowledge, that is, knowledge the agent
has about himself and the current time. For example, Know(HOLDING(z))
could mean that the agent knows that he himself is currently holding the
object denoted by z. The semantics for Know is a simple generalization of
the standard possible-world scheme. The knowledge accessibility relation K
is taken to hold over indices rather than plain possible worlds. Informally,
((w,a,t),(w',a’,t")) € Kif and only if as far as agent a at time t in world w
knows, it may be the case that w’ is the way the world actually is and he is
a’ and the current time is t’. Thus, we allow an agent to be uncertain not
only about what world he is in, but also about who he is and what time it
is. We assume that the knowledge accessibility relation K is reflexive and
transitive, meaning that Know obeys the principles of modal logic S4. We
also assume that agents have perfect memory and always know what actions
they have done.

For the example to follow, it is convenient to make two general assump-
tions beyond those embodied in the logic. First, we assume that the domain
of times is (or is isomorphic to) the integers, that is, we assume that the
facts about integer arithmetic that we need are valid and that constants



and function symbols representing arithmetic operations are rigid. Secondly,
we assume that all actions are “solid”, in the sense that any overlapping
instances of an action (type) must be the same instance (have the same end-
points) [Shoham, 1987]. This ensures that we can refer to things like “the
starting time of the action I have just done”.

To talk more easily about a wider class of actions, it is useful to extend the
use of Does to a new syntactic category, that of action expressions. These
include action terms as above, which represent simple actions, noOp, which
represents the empty action and takes no time, (d1;02), which represents
the sequential composition of the actions §; and d,, and if(p, dy,d2), which
represents the action that consists in doing action ¢; if the condition ¢ holds,
and in doing action dy otherwise. Formulas of the form Does(d, §") where
0 is an action expression, can be thought of as abbreviations that reduce
to formulas where Does ranges only over the simple action terms, in the
obvious way. We also define a bounded form of “while loop” as an action
expression as follows:

whiley(p,6) % { 20OP =0
kK290 = if (¢, (6; whiley (¢, 6)),n00p) ifk >0,k e N

Let us also define some dynamic-logic-style operators that will be used in
our formalization of ability. AfterNec(d,¢), which is intended to mean “p
must hold after §”, is defined inductively as follows:

o AfterNec(6%, o) ¥ Ovv!(Does(6?,vt) O At(v,p)), where vt is a

temporal variable that does not occur free in ¢

o AfterNec(noOp,¢) & ¢

o AfterNec((d1;02), ) &of AfterNec(d;, AfterNec(ds, ¢))

o AfterNec(if(¢.,d1,02), ) d:ef

(pe D AfterNec(d1,¢)) A (mp. D AfterNec(ds, ¢))

Also, let PhyPoss(§) & —~AfterNec(d, False). PhyPoss(§) is intended to
mean that it is “physically possible” for self to do action § next (even though
he may not be able to do it because he does not know what primitive actions
 stands for). True (False) stands for some tautology (contradiction).

Our formalization of ability, based on that of Moore [1980], says that the
agent is able to achieve the goal ¢ by doing action §, formally Can(d, ¢), if

5



and only if he can do action ¢ and knows that after doing 4, the goal ¢ must
hold:
Can(d,¢) & CanDo(6) A Know (AfterNec(d, ¢))

CanDo(¢) is defined inductively as follows:®

e CanDo(0%) L 3y Know(v? = 67) A Know(PhyPoss(0?)), where

action variable v? does not occur free in ¢

e CanDo(noOp) ¥ True

e CanDo(d;;6,) & Can(6;, CanDo(5,))
def

e CanDo(if(p,d1,0,)) =
(Know(yp) A CanDo(41)) V (Know(—¢.) A CanDo(d3))

Note that we eliminate Moore’s requirement that the agent know who he
is; instead, we require indexical knowledge (see [Lespérance and Levesque,
1994] for a discussion of why this is better). Also, as we will see in the next
section, the fact that our account of ability is based on a more expressive
temporal logic allows it to deal with actions whose prerequisites or effects
involve knowledge of absolute times and knowing what time it is.

4 Formalizing the Example

Let us formalize the example and prove that the agent is able to achieve
his goal by executing the proposed plan given some reasonable assumptions
about his initial knowledge. Our formalization will be rather simplistic, but
could easily be made more accurate and general. We define the agent’s plan
as follows:

def
GETDINNERGOING = STARTROASTING; SETTIMER (1H);
LISTENUNTILTIMEANNOUNCED; LOOKATTIMER; LEAVEMSG

5This way of defining Can is preferable to the one in [Lespérance, 1991; Lespérance
and Levesque, 1990] as it separates the knowledge prerequisites involving the goal from
the rest. The definitions of AfterNec and PhyPoss given here are also changed; they
now behave exactly as their dynamic logic [Goldblatt, 1987] counterparts do.



We use abbreviations such as 1H (1 hour) and 30MIN (30 minutes) for read-
ability; it is assumed that such abbreviations stand for the corresponding
number of seconds. The complex action LISTENUNTILTIMEANNOUNCED is
defined below. Let ANNOUNCEDTIME mean that the time has been an-
nounced on the radio during the last step of LISTEN:®

ANNOUNCEDTIME %' 3¢,3t;(DoesFromTo(LISTEN, {,, now) A

ts < t; < now A At(t;, ANNOUNCINGTIME))

LISTENUNTILTIMEANNOUNCED stands for repeatedly doing LISTEN until
the time is announced (at least once and at most some very large number of
times vin):

LISTENUNTILTIMEANNOUNCED def

LISTEN; while,,(“ANNOUNCEDTIME, LISTEN)

Let us now formalize the actions involved in the plan. First note that we
must specify an appropriate limit on the duration of the actions, otherwise
they might take so much time as to prevent the goal from being achieved.
But note also that we cannot have these actions take a fixed length of time
that is known to the agent, for otherwise, he could use them to measure time
and dispense with the timer. What we will do is specify that basic actions
take a indeterminate amount of time that must be between given bounds.
So we specify the effects of the STARTROASTING action as follows:

Assumption 1 (Effects of STARTROASTING)

= VitVi.(DoesFromTo(STARTROASTING, t;,t.) D
te = (ts + IMIN) £ 30 A At(t., ROASTING) A
Vi(ts <t <t. D At(t,-ROASTING)))

This says that setting the turkey to roast takes one minute plus or minus
30 seconds (i.e., between half a minute and a minute and a half), that the
turkey is roasting afterwards, and that it is not roasting while the action is
being done.

For the action of setting the timer, we have the following:

®DoesFromTo(4, 0%, 0¢) means that the agent does action § from time 6% to time 6¢;
def

formally: DoesFromTo(d, 0%, 0%) ‘= ot (vf = 0L A At(0%, Does(d,vL))), provided that vt

1Vs)y Ve

does not occur anywhere in 6%, ¢, or §.



Assumption 2 (Effects of SETTIMER)

= Vit Vt.Vn(DoesFromTo(SETTIMER(n), ts,t.) D
te = (ts + 15s) £ 55 A At(t., TIMERVAL = n))

This says that doing SETTIMER(n) takes 15 seconds plus or minus 5 seconds,
and that afterwards, the timer is set to show that the time left is n seconds.

For the action of listening to the radio (LISTEN), we assume that it takes
10 seconds plus or minus 4 seconds, and that afterwards, the agent either
knows that the time has not been announced during the action, or knows
that it has been announced and knows what time it is within a margin of
error of 7 seconds:

Assumption 3 (Effects of LISTEN)

= VitVi.(DoesFromTo(LISTEN, ¢5,1.) D t. = (ts + 108) - 4s A
At(t.,Know(—ANNOUNCEDTIME) V
(Know(ANNOUNCEDTIME) A FtKnow(now = ¢ £+ 75))))

It is assumed that the time is announced on the radio at least every half
hour.

For the action of looking at the timer, we assume that it takes 5 sec-
onds plus or minus two seconds and that afterwards, the agent knows what
duration is left on the timer:

Assumption 4 (Effects of LOOKATTIMER)

= VitVi.(DoesFromTo(LOOKATTIMER,t,t.) D
te = (ts +5S) £ 25 A At(t., InKnow(n = TIMERVAL)))

Finally, we need to specify the effects of leaving a message. Let TSR(6?)
stand for the claim that the turkey has been roasting since time 6 and was
not roasting prior to that:

TSR(0") Evo!(0' < v' < now D At(v!, ROASTING))
A At(6" — 15, "ROASTING), where v is not free in 6’

We will assume that LEAVEMSG, that is, leaving a message about what time
the turkey started roasting, takes one minutes plus or minus 30 seconds, and
that afterwards, there must be a message on the table stating that the turkey
started roasting at some time ¢,, that is within € seconds of the time at which
the turkey actually started roasting:



Assumption 5 (Effects of LEAVEMSG)

=Vt Vt.(DoesFromTo(LEAVEMSG, t5,t.) D t. = (ts + IMIN) & 305
N At(te, 3t 3, (MSGONTBL(t,) A TSR(t,) Aty =t +¢)))

For this example, the error bound ¢ can be made as tight as 14 seconds, but
nothing depends crucially on this.

Now, let us specify the physical prerequisites of the actions. We assume
that it is physically possible for the agent to do STARTROASTING whenever
the turkey is not roasting:

Assumption 6 = “ROASTING D PhyPoss(STARTROASTING)

We also assume that it is physically possible for the agent to set the stove
timer to any duration between 0 and 1 hour (the formal statement is similar
to the one above). As well, it is assumed that LISTEN, LOOKATTIMER, and
LEAVEMSG are always physically possible.

We must also specify the conditions under which agents know how to
perform the basic actions. We assume that one always knows how to do
STARTROASTING:

Assumption 7 |= 3dKnow(d = STARTROASTING)

Similarly, we assume that agents always know how to do LOOKATTIMER,
LISTEN, and SETTIMER(n) (for any n). Finally, we assume that the agent
must know how to do LEAVEMSG if he knows when the turkey started roast-
ing within a margin of error of e:

Assumption 8 (LEAVEMSG is known)
E 3t Know(3t.(TSR(t,) A t, = t,, £ ¢)) D IdKnow(d = LEAVEMSG))

We also have various frame assumptions that specify what remains un-
changed as actions are done. First, we assume that actions other than
STARTROASTING have no effects on whether or not the turkey is roasting.”
Secondly, we assume that for any action other than setting the timer, the
time shown by the timer must accurately reflects the passage of time during
the action:

"This frame assumption (and the subsequent ones) should not really be taken to hold
for all actions. But given the limited domain under consideration, this causes no harm.
Such assumptions would probably be best specified as default statements.



Assumption 9 (Frame assumption about the value of the timer)

= Vit Vi Vdvnvt,(DoesFromTo(d, ts,t.) A Vm(d # SETTIMER(m)) A
At(ts,n = TIMERVAL) Aty < t; < L.
D At(t;, TIMERVAL = MAX(0,n — (t; — ¢5))))

Finally, we have unique name assumptions for all the actions introduced.

Given this formalization, our framework now allows us to prove the fol-
lowing proposition, which says that if the agent knows that the turkey is
not yet roasting, then by doing the action GETDINNERGOING, he is able
to achieve the goal that there be a message on the table telling when the
turkey started roasting within € seconds of accuracy and that the time after
the action be less than 32 minutes and 12 seconds after the turkey started
roasting:

Proposition 1

EKnow(—ROASTING) D
Can(GETDINNERGOING, 3¢, 3t,,,(MSGONTBL(¢,,) A TSR(t,) A
t, =t £ € Anow —t, < 32MIN125))

A sketch of the proof is provided in appendix.

5 Discussion

Let us return to our discussion of the claim that indexical knowledge can be
reduced to objective knowledge. In our semantics for knowledge, indexical
terms and formulas are treated as relative to an agent and a time; for exam-
ple, knowing that something is here amounts to knowing that something is
at one’s position at the current time. Given this, it is clear that if one knows
who one is and knows what time it is (we are taking this to require knowing
a standard name), then anything that one knows in an indexical way is also
known in an objective way. But is it reasonable to assume that an agent
always knows who he is and what time it is?

As argued in section 1, the temporal part of this question must clearly
be answered negatively.® Humans do not always know what time it is and

8We also think that it should not be assumed that agents always know who they
are; see [Lespérance and Levesque, 1994; Lespérance, 1991; Grove and Halpern, 1991] for
arguments.

10



computers need to model this. And even robots sometimes need to get their
internal clocks reset. Work on reactive agent architectures supplies other
reasons for wanting a formalism that can represent indexical knowledge. As
pointed out by Agre and Chapman [1987], the world can change in unex-
pected ways and reasoning about change can be very costly; in some cases
it is better to rely on perception to get fresh information at every time step
rather than try to update a representation of the world; in such cases, the
problem of updating indexical representations does not arise. And as Rosen-
schein and Kaelbling [1986] have shown, it is legitimate to ascribe knowledge
to agents even when they have no explicit representation of this knowledge.
In such cases, one needs a formalism that distinguishes between indexical
and objective knowledge just to accurately model the agent’s thinking. The
output of the agent’s perception module says nothing about time, and even
if the agent has a correct internal clock, he may have no need to time-stamp
his knowledge. We want a formalism that makes the distinctions required to
model this.

Thus, rather than trying to find restricted settings where indexical knowl-
edge can be reduced to objective knowledge, we think it would be more pro-
ductive to investigate when and how planning and temporal knowledge base
update can be performed efficiently in the presence of indexicals. Once one
allows for agents not knowing what time it is, then examples like the one
formalized here easily come to mind, examples that require both indexical
and absolute terms for their representation and the ability to relate them
in reasoning. A formalism along the lines of ours is required for handling
such cases. Grove and Halpern’s logic of knowledge [Grove and Halpern,
1991] handles some aspects of indexicality, but does not deal with time; so
it cannot handle the kinds of situations discussed here. Subramanian and
Woodfill’s version of the situation calculus [Subramanian and Woodfill, 1989]
handles aspects of indexicality, but not knowledge; thus, it cannot account
for knowledge acquisition actions.

Let us conclude by discussing various areas in which our framework could
be extended or improved. It may be possible to develop more convenient
constructs for specifying of the temporal constraints associated with actions.
We are currently reformulating our framework into an extended version of the
situation calculus, to incorporate a solution to the frame problem described in
[Scherl and Levesque, 1993]. We are also developing a more general account of
the notions of “ability to achieve a goal” and “knowing how to execute a plan”

11



[Levesque et al., 1994]. Other important issues are how default information
could be specified, and identifying restrictions on domain theories and queries
that guarantee tractability or decidability.

Acknowledgements

We would like to thank Andy Haas for his comments on the ideas advanced
in this paper.

A Outline of the Proof of Proposition 1

The following lemmas are the main steps in proving proposition 1. One proves
the proposition by “chaining” these lemmas using the following properties of
Can:

If E¢; D Can(ds,p.), then |= Can(dr, ;) D Can((dy;d2), ¢.)

= Can(d,¢) D Can(d, Know(y))

The first lemma shows that given his initial knowledge, the agent is able to
set the turkey to roast:

Lemma 1

= Know(—ROASTING) D Can(STARTROASTING, TSR(now))

The proof uses assumptions 1, 6, and 7.

The second lemma shows that once he has set the turkey to roast, the
agent is able to start measuring the roasting time by setting the timer to
one hour. Let us first define MRT, meaning that the agent is measuring the
roasting time:

MRT &' 3(TSR(t) A t = (now — (1H — TIMERVAL) — 158) + 58)
We can then establish that:

Lemma 2

= Know(TSR(now)) D Can(SETTIMER(IH), MRT A TIMERVAL = 1H)

12



The proof uses assumption 2, the assumptions that SETTIMER is always
known and physically possible, the frame assumption for ROASTING, and
the unique name assumption for actions.

Then, we show that once he gets in that state, by doing the iterative
action LISTENUNTILTIMEANNOUNCED the agent can find out what time it
is within 7 seconds of accuracy, with the timer still measuring the roasting
time:

Lemma 3

EKnow(MRT A TIMERVAL = 1H) D
Can(LISTENUNTILTIMEANNOUNCED,
MRT A 30MIN — 148 < TIMERVAL A 3tKnow(now =t £+ 75))

To prove this, we need the following two sublemmas. Let us define ATSTS,
meaning that the time has been announced on the radio since the timer was
set:

def

ATSTS =
dt(now — (1H — TIMERVAL) < ¢ < now A At(¢, ANNOUNCINGTIME))

The first sublemma states that if the agent knows that he is measuring the
roasting time with the timer and that the time has not been announced on
the radio since he set the timer, then by doing LISTEN, he is able to either
find out that the time has been announced during the action and know what
it is (within 7 seconds of accuracy), or know that it has not been announced
during the action and since he set the timer, while continuing to measure the
roasting time with the timer:

Lemma 4

E Vm(Know(MRT A 30MIN < TIMERVAL < m A -ATSTS) D
Can(LISTEN, MRT A
([Know (ANNOUNCEDTIME) A 30MIN — 148 < TIMERVAL A
JtKnow(now =1 £ 7s)] V
[Know (~ANNOUNCEDTIME) A 30MIN < TIMERVAL < m — 6S A
-ATSTS))))

This is proven using assumptions 3 and 9, the assumptions that LISTEN is
always possible and known, the frame assumption for ROASTING, the as-
sumption that the time is announced at least every thirty minutes, and the

13



unique name assumption. From the above lemma, we can then prove the
following by induction over the bound on the number of iterations n:

Lemma 5

For all n € N,
EKnow(MRT) A
([Know (ANNOUNCEDTIME A 30MIN — 14S < TIMERVAL)
A JtKnow(now =t £ 7S)]
V Know(—ANNOUNCEDTIME A 30MIN < TIMERVAL < 30MIN + n6s A
—ATSTS)) D
Can(whilep(=ANNOUNCEDTIME, LISTEN),
MRT A 30MIN — 148 < TIMERVAL A 3tKnow(now =t £+ 75))

This says that if the agent either knows that the time has been announced
during the previous LISTEN step and knows what it is (within 7 seconds), or
knows that it has not been announced during the action and since he set the
timer, while measuring the roasting time, then by repeatedly doing LISTEN
until the time is announced, he is able to find out what time it is (within 7
seconds) while continuing to measure the roasting time. Lemma 3 is then
proven by “chaining” the two results above.

Returning to the proof of the proposition, we then show that once he has
found out the time, the agent can find out at what time the turkey started
roasting by looking at the timer:

Lemma 6

EKnow(MRT A 30MIN — 145 < TIMERVAL) A 3tKnow(now =t +7s) D
Can(LOOKATTIMER,
3t,.Know (3t (TSR(t,.) A t, = t, + 14S Anow — ¢, < 30MIN42S)))

This is shown using assumptions 4 and 9, the assumptions that LOOKATTIMER
is always possible and always known, the frame assumption for ROASTING,
and the unique name assumption.

Finally, we show that once he has found out when the turkey started
roasting, by doing LEAVEMSG, the agent can ensure that there is a message
on the table telling when the turkey started roasting (within 14 seconds of
accuracy):

14



Lemma 7

=3t Know(3t.(TSR(¢,) A t, = t,, + 145 Anow — ¢, < 30MIN42s)) D
Can(LEAVEMSG, 3¢,3t,,,(TSR(t,) A MSGONTBL(t,,) A t, = t,, + 145
Anow —t, < 32MIN12s))

The proof uses assumptions 5 and 8, the assumption that LEAVEMSG is
always physically possible, the frame assumption for ROASTING, and the
unique name assumption.

References

[Agre and Chapman, 1987] Philip E. Agre and David Chapman. Pengi: An
implementation of a theory of activity. In Proceedings of the Sizth National
Conference on Artificial Intelligence, pages 268-272, Seattle, WA, July
1987. American Association for Artificial Intelligence, Morgan Kaufmann

Publishing.

[Goldblatt, 1987] Robert Goldblatt. Logics of Time and Computation. CSLI
Lecture Notes No. 7. Center for the Study of Language and Information,
Stanford University, Stanford, CA, 1987.

[Grove and Halpern, 1991] Adam J. Grove and Joseph Y. Halpern. Naming
and identity in a multi-agent epistemic logic. In James Allen, Richard
Fikes, and Erik Sandewall, editors, Principles of Knowledge Representa-

tion and Reasoning: Proceedings of the Second International Conference,
pages 301-312, Cambridge, MA, 1991. Morgan Kaufmann Publishing.

[Haas, 1991] Andrew R. Haas. Indexical expressions and planning. Unpub-
lished manuscript, Department of Computer Science, State University of

New York, Albany, NY, 1991.

[Lespérance and Levesque, 1990] Yves Lespérance and Hector J. Levesque.
Indexical knowledge in robot plans. In Proceedings of the Eight National
Conference on Artificial Intelligence, pages 868-874, Boston, August 1990.
American Association for Artificial Intelligence, AAAT Press/MIT Press.

[Lespérance and Levesque, 1994] Yves Lespérance and Hector J. Levesque.
Indexical knowledge and robot action — a logical account. To appear in

Artificial Intelligence, 1994.

15



[Lespérance, 1991] Yves Lespérance. A Formal Theory of Indexical Knowl-
edge and Action. PhD thesis, Department of Computer Science, University
of Toronto, Toronto, ON, January 1991. Also published as technical report
CSRI-248.

[Levesque et al., 1994] Hector J. Levesque, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl. Knowledge, action, and ability in the situation
calculus. In preparation, 1994.

[Moore, 1980] Robert C. Moore. Reasoning about knowledge and action.
Technical Report 191, AT Center, SRI International, Menlo Park, CA,
October 1980.

[Perry, 1979] John Perry. The problem of the essential indexical. Nois,
13:3-21, 1979.

[Rosenschein and Kaelbling, 1986] Stanley J. Rosenschein and Leslie P.
Kaelbling. The synthesis of digital machines with provable epistemic prop-
erties. In Joseph Y. Halpern, editor, Theoretical Aspects of Reasoning about
Knowledge: Proceedings of the 1956 Conference, pages 83-98, Monterey,
CA, 1986. Morgan Kaufmann Publishing.

[Scherl and Levesque, 1993] Richard B. Scherl and Hector J. Levesque. The
frame problem and knowledge-producing actions. In Proceedings of the
Eleventh National Conference on Artificial Intelligence, pages 689-695,
Washington, DC, July 1993. AAAT Press/The MIT Press.

[Shoham, 1987] Yoav Shoham. Temporal logics in Al: Semantical and onto-
logical considerations. Artificial Intelligence, 33(1):89-104, 1987.

[Subramanian and Woodfill, 1989] Devika Subramanian and John Woodfill.
Making the situation calculus indexical. In Proceedings of the First In-
ternational Conference on Principles of Knowledge Representation and
Reasoning, pages 467-474, Toronto, ON, May 1989. Morgan Kaufmann
Publishing.

16



